
HAL Id: hal-01757028
https://hal.science/hal-01757028

Submitted on 9 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scaling Up Schema Discovery for RDF Datasets
Redouane Bouhamoum, Kenza Kellou-Menouer, Zoubida Kedad, Stéphane

Lopes

To cite this version:
Redouane Bouhamoum, Kenza Kellou-Menouer, Zoubida Kedad, Stéphane Lopes. Scaling Up Schema
Discovery for RDF Datasets. Data Engineering meets the Semantic Web (DESWeb’2018), Apr 2018,
Paris, France. �10.1109/ICDEW.2018.00021�. �hal-01757028�

https://hal.science/hal-01757028
https://hal.archives-ouvertes.fr

Scaling Up Schema Discovery for RDF Datasets
Redouane Bouhamoum, Kenza Kellou-Menouer, Zoubida Kedad and Stéphane Lopes

DAVID - University of Versailles Saint-Quentin-en-Yvelines
Versailles, France

firstName.lastName@uvsq.fr

Abstract—An increasing number of data sources is published
on the Web, expressed using the languages proposed by the W3C
such as RDF. In these sources, data is not constrained by a
schema: data could differ from the schema-related statements
provided in the source; furthermore, the schema could be
incomplete or even missing; this makes the use of the data sources
difficult. Some works have addressed the problem of automatic
schema discovery but their scalability and their use in a big data
context remain a challenge.

In this work, we address this scalability issue, which is mainly
related to the clustering algorithms at the core of schema
discovery. In order to process large amounts of data, we propose
to build a condensed representation of the initial dataset by
extracting patterns representing all the existing combinations of
properties. The clustering is then performed on the patterns
instead of the initial dataset. In this paper, we describe our
approach, and present its implementation using a big data tech-
nology. We also present some experimental evaluations performed
on real datasets.

I. INTRODUCTION

Large amounts of data are made available on the Web,
as more and more interlinked datasets are published. These
datasets are described in languages such as RDF, which
does not impose any constraint on the structure of the data:
resources of the same type may have different property sets,
and an entity may have several types. Moreover, the schema
may be incomplete or even missing in the datasets. The lack
of schema can limit the use of these data sources: for example,
writing a query without knowing of the existing types and their
properties is not straightforward.

Some approaches have addressed the problem of the au-
tomatic extraction of a schema for RDF datasets to facilitate
their exploitation. However, the scalability of these approaches
and their use in a big data context remain a challenge.

In this paper, we address the problem of schema discovery
for a massive RDF data source. Our goal is, given a large RDF
dataset where the schema is missing, to ensure the scalability
of a schema discovery approach. We rely on previous works on
schema discovery that describe an approach using a density-
based clustering algorithm (DBscan) to extract a schema from
an RDF dataset [1], [2]; this approach provides a schema with
a good quality, but the underlying algorithms are costly and
not suitable for massive datasets.

In order to overcome this limitation, we propose to generate
a condensed representation of a dataset, and then apply the
clustering algorithm on this representation instead of the initial

dataset. This condensed representation is composed of pat-
terns, each one corresponding to a combination of properties
which exists in the initial dataset. Applying the clustering
algorithm on this representation of a dataset is less costly than
applying it on the whole dataset and gives the same result.

Our proposal is a contribution towards the scalability of
schema discovery. We have performed some experiments
on several real datasets which have shown that using the
condensed representation has significantly improved the per-
formances of schema discovery; we also propose a parallel
execution of our approach, implemented using Spark, in order
to further improve the performances.

In the remainder of this paper, we present an overview
of the schema discovery approach in section II. We then
introduce our approach for building a condensed representation
of an RDF dataset and its implementation in section III.
Experimental evaluations are presented in section IV. We
present some related works in Section V and we conclude
the paper in section VI.

II. SCHEMA DISCOVERY

In our proposal, we rely on previous works on schema dis-
covery for RDF data sources [1], [2]. This approach discovers
the types contained in a data source and the links between
them, without requiring any schema related information in the
data source or any parameter provided by the user. Moreover,
it allows to assign several types to an entity, and achieves a
good quality for the discovered schema. In the following, we
present an overview of this approach.

A. Description of the Data Source

Before presenting the general principle of the schema dis-
covery approach, we define both notions of data source and
entity.

Data Source. An RDF data source (dataset) is defined as
a set of triples D ⊆ (R ∪ B) × P × (R ∪ B ∪ L), where
R, B, P and L represent resources, blank nodes (anonymous
resources), properties and literals respectively.

Example: Figure 1 presents an RDF dataset storing in-
formation about a group of persons such as their name,
occupation, members of family, etc.

The dataset is represented as a graph where each node
corresponds to an entity which could be one of the followings:
• Person, such as ”:Margo” and ”:Paul”. The properties that

could be associated to an entity representing a person are

Abbreviations : Name (Nm), WorksAs (Wk), DriveA (DrA), HasHusband (HsH), HasWife (HsW), HasChild (HsC), LiveIn (LIn),School (Scl), Color (Clr), Year (Yr),

ManuFactory (Mnf), Country (Ctry), Region (Rg).

Fig. 1. An RDF Dataset describing people

the name, the occupation, the relation with other people
(wife, husband or child), the city where they live and the
car they drive;

• City, such as ”:Paris”, which could be described by its
name, the country and the region it belongs to;

• Car, such as ”:Golf” or ”:Polo”, which could be described
by its name, its color, the year it has been produced and
its manufacturer;

• Manufactory, such as ”:Volkswagen”, which could be
described by a name;

• Primary school, such as ”:VersaillesPrimary”, which is
not described by any property in our example.

The nodes represented by rectangles are the literals. The
edges are directed and labeled by the name of the property
they represent. An edge links either two resources, such as the
property ”LivesIn” between ”:Paul” and ”:Paris”, or a resource
and a literal, such as the property ”WorksAs” between ”:Paul”
and ”Doctor”.

The dataset presented in figure 1 will be used as the running
example throughout the paper.

Entity. An entity e in a data source D is a resource
described by a property set P where each property p is
annotated by an arrow indicating its direction, and such that:

• If ∃(e, p, r) ∈ D then −→p ∈ P with r ∈ R ∪B ∪ L;
• If ∃(r′, p, e) ∈ D then ←−p ∈ P with r′ ∈ R ∪B.

Example: In our context, we consider that the properties
describing an entity are the outgoing and incoming edges
linked to the same node. In Figure 1, :Paul is an entity
described by the property set {

−−→
Nm,

−−→
Wk,

−−→
DrA,

−−−→
HsH ,

−−→
LIn,−−−→

HsC,
←−−−
HsW}.

B. Type Discovery

In order to infer the types from an RDF data source, a
density-based clustering algorithm is used [3]. It has been ex-
tended to provide for each discovered type a profile composed
of properties and their respective probabilities [1]. This profile
is used to discover overlapping types [2].

Density-based clustering. The approach uses a density-
based clustering algorithm to discover the types, because it is
robust to noise and deterministic. Furthermore, the number of
classes is not required and the resulting clusters are of arbitrary
shape. In [2], an extension of this algorithm is proposed to
automatically determine the similarity threshold for grouping
entities, according to the density distribution of the data. A
cluster of similar entities corresponds to a type definition. The
similarity between two given entities is evaluated using Jaccard
similarity, considering the respective sets of both incoming and
outgoing properties of the entities.

Type profiles. Each type is described by a profile, which
is composed of the set of properties describing the type,
and where each property is associated with a probability.
The profile corresponding to a type Ti is denoted TPi =
{(pi1, αi1), . . . , (pin, αin)}, where each pij represents a prop-
erty and where each αij represents the probability for an entity
of Ti to have the property pij . The type profile represents the
canonical structure of the type Ti.

Overlapping types. An important aspect of RDF data
sources is that an entity may have several types. Density-based
clustering provides disjoints clusters. Overlapping types are
then discovered by analyzing the type profiles. We consider
that a strong property of a type is a property with a probability
of 1 in the type profile. If an entity e is described by all the

strong properties of a type Ti, then Ti could be assigned to e.

C. Link Discovery

In addition to type definitions, links between these types
are also useful to understand the content of a data source.
The approach presented in [1], [2] generates two types of
links: semantic links, corresponding to user-defined properties
and hierarchical links, corresponding to the rdfs:subClassOf
property.

Semantic links. They represent properties that are not
primitive properties. A primitive property is a property from
the standard RDF or RDFS vocabularies. A link is generated
by analyzing the type profiles. Two types Ti and Tj are linked
by a property p if

→
p belongs to the type profile TPi and

←
p

belongs to the type profile TPj . A generated link is checked
in a data source D by finding two entities e ∈ Ti and e′ ∈ Tj
such that (e, p, e′) ∈ D.

Hierarchical links. They represent the rdfs:subClassOf
properties between two types. A hierarchical clustering algo-
rithm is used on the type profiles to define these links. The
algorithm is adapted to process the type profiles by building a
generic type profile at each step of the hierarchy. A similarity
measure between two type profiles inspired from the Jaccard
similarity is used.

D. Limitations

The approach described in this section allows to discover
a schema with a good quality, however, it does not allow to
process a massive data source because it uses a density-based
clustering algorithm, which has a complexity of o(n2).

The use of big data technologies can enable massive data
sources processing. However, density-based clustering is hard
to implement using big data technologies. Indeed, the algo-
rithm browses the entire data source as it requires a pairwise
comparison of the entities; this raises the issues of partitioning
the source over cloud nodes and merging the results, which
are problems in their own rights.

III. BUILDING A CONDENSED REPRESENTATION OF AN
RDF DATASET

Schema discovery for RDF datasets raises two important
issues: (i) firstly, how to group the entities of the dataset to
form classes, taking into account the high heterogeneity of the
entities in the dataset in terms of properties and the lack of
schema describing the data? (ii) Secondly, how to ensure that
the schema discovery approach is capable of processing large
datasets?

Our goal in this paper is to address the scalability issue
of schema discovery approaches. We rely on the approach
presented in section II which gives good quality results, but
can not deal with massive datasets. We propose to transform
an RDF dataset into a condensed representation and to apply
the clustering algorithm on this representation instead of the
initial dataset. Moreover, to improve the execution time of our
approach, we propose a parallel version implemented using a
big data technology.

A. Solution Overview

Considering an RDF dataset, we first build a concise repre-
sentation consisting of all the patterns that represent the exist-
ing property combinations in the dataset. Then, the resulting
schema is obtained by executing the clustering algorithm on
the concise representation, which reduces the number of inputs
of the clustering step and therefore improves its speed.

Schema discovery approaches which use clustering algo-
rithms are based on the structure of the entities as they evaluate
the similarity according to the properties describing them. We
propose to extract patterns from the entities described in a
dataset. A pattern is defined as follows:

Pattern. A pattern Pt is a set of distinct properties such
that it exists at least one entity which property set is equal to
Pt.

Extracting patterns from a dataset produces as output all the
structures (or set of properties) that describe its entities. The
clustering algorithm is then applied on the patterns instead of
the entities to allow a faster execution while keeping the same
quality for the resulting schema.

Example: The condensed representation of the dataset
described in figure 1 is presented in table I, which shows
the extracted patterns and the corresponding entities. For each
patterns, the table gives the corresponding entities in the first
column, then the pattern as a list of properties as well as the
number of corresponding entities.

TABLE I
THE EXTRACTED PATTERNS

Entities Pattern
”:Marie”, ”Nicole” P1 = ({

−−→
Nm,

−−→
Wk,

−−→
DrA,

−−−→
HsH ,

−−→
LIn,−−−→

HsC,
←−−−
HsW}, 2)

”:Paul”, ”:Steven” P2 = ({
−−→
Nm,

−−→
Wk,

−−→
DrA,

−−−→
HsW ,

−−→
LIn,−−−→

HsC,
←−−−
HsH}, 2)

”:James”, ”:Margo” P3 = ({
−−→
Nm,

−−→
LIn,

−→
Scl,
←−−−
HsC}, 2)

”:Polo”, ”:Twingo”,
”:Golf”

P4 =
({
−−→
Nm,

−−→
Clr,

−→
Y r,
−−−→
Mnf,

←−−
DrA}, 3)

”:Renault” P5 = ({
←−−−
Mnf}, 1)

”:Volkswagen” P6 = ({
−−→
Nm,

←−−−
Mnf}, 1)

”:Paris”, ”:Marseille” P7 = ({
−−→
Nm,

−−−→
Ctry,

−→
Rg,
←−−
LIn}, 2)

”:VersaillesPrimary”,
”:MarillacPrimary”

P8 = ({
←−
Scl}, 2)

In order to build a schema describing the dataset from
the generated patterns, entities have to be grouped according
to the similarity of their property sets. After generating the
patterns from the initial dataset, we use a density-based
clustering algorithm (DBscan) on the set of patterns to group
them according to their similarity. This algorithm requires
two parameters, minPts, representing the minimum number
of neighbors for an entity to generate a cluster, and eps, the
similarity threshold. We have set minPts = 1 and eps = 0.5.

We evaluate the similarity between two patterns P1 and
P2 described respectively by the property sets prop(P1)
and prop(P2) using the Jaccard coefficient, which measures

the similarity between finite sets. It is defined as the size
of the intersection divided by the size of the union of the
considered sets:

J(P1, P2) =
|prop(P1) ∩ prop(P2)|
|prop(P1) ∪ prop(P2)|

The DBscan algorithm considers as noise elements with a
number of neighbors lower than minPts. When executed on the
set of patterns extracted from a dataset, the number of entities
corresponding to each pattern is compared to minPts: if the
total number of entities corresponding to a set of patterns is
above minPts, a cluster is generated. Each generated cluster
represents a class in the schema; the properties of this class
are the properties of all the entities that form the cluster. Since
a pattern represents one or more entities, the number of inputs
for the clustering algorithm will be reduced by a significant
factor which reduces its execution time. As the clustering is
performed based on the structural similarity of the patterns,
the result remains the same as if the algorithm was applied on
the initial dataset.

Considering our running example given in Figure 1, the
extracted classes, the patterns that form the classes and the
properties of each class are shown in Figure 2.

Fig. 2. The resulted clusters

The patterns P1 and P2 belong to the same cluster (C1)
because their similarity according to the Jaccard coefficient is
above the similarity threshold eps=0.5, and the total number
of entities associated to both patterns is equal to four, which is
greater than minPts. The class formed by these two patterns is
described by the following property set: {

−−→
Nm,

−−→
Wk,

−−→
DrA,−−→

LIn,
−−−→
HsC,

−−−→
HsH ,

←−−−
HsH ,

←−−−
HsW ,

−−−→
HsW}. The pattern P3

forms a cluster (C2) because the number of entities repre-
sented by this pattern is greater than minPts.

B. Algorithm
The pattern extraction algorithm takes as input the triples

of the considered dataset and provides as output the set of

patterns which represents a concise form of the initial dataset.
The algorithm extracts from each triple the subject and the

property (line 3-10), this property is annotated as outgoing
(line 5). If the object represents another entity, it will be
considered as a subject characterized by the property, which
is annotated as incoming (line 7-9). These two kinds of
properties are used for link discovery once the classes have
been generated. After grouping the properties describing the
same entity (line 12), the resulting property set is stored in a
distinct list and the algorithm counts the number of duplicates
(line 19).

Algorithm 1 Patterns extraction
Require: file data

1: pattern : (Set(String) : propertySet, int : number)
2: //read the files
3: for t:triplet in data do
4: if isPrimitif(getPredicat(t)) then
5: entities ← entities +

Array(getSubject(t), getPredicat(t)+’.out’)
6: end if
7: if isPrimitif(getPredicat(t)) and isNotLitteral(getOb-

ject(t)) then
8: entities ← entities +

Array(getObject(t),getPredicat(t)+’.in’)
9: end if

10: end for
11: //Group all properties that belong to the same entity
12: entityList← entities.groupByEntityId()
13: //Extract the properties set from the list of entities
14: for e:entity in entityList do
15: pattern← pattern+ (getPropertySet(e), 1)
16: end for
17: //Count the number of entity for each pattern
18: pattern← pattern.countEntityNumber()
19: return pattern

C. Implementation with Spark

For more efficiency, we have implemented the proposed
approach with Spark, an open source distributed computing
framework from the Apache Foundation.

First, the dataset is split and saved in HDFS (distributed file
system), as shown in figure 3.a. The first mapper reads the
files in parallel, and retrieves the ID (subject) and properties
of the entities (line 3-10); these properties will be annotated
as outgoing and suffixed by ”.Out” (line 5). Properties from
the RDF/RDFS or OWL vocabularies which provide schema-
related information will be filtered. Their detection is done
by a regular expression in the ”isPrimitive” operation. Two
situations may occur when processing an object: if it represents
a literal (a value), it will be ignored; if it represents a resource,
the object will be considered as an entity, its ID will be added
to the list of entities and the property will be considered as an
incoming property for this entity, suffixed by ”.In” (line 7-9).
The mapper generates pairs of the form (entityID, property).

Fig. 3. Size reducing process

All the properties of the same entity are then grouped together
(line 12); to do so, Spark requires a shuffle so that all pairs
with the same key (entityID) is sent to the same node; the
reducer then groups the properties of the same entity together
and generates pairs of the form (e1, {p1, p2, p3,...}). Figure
3.b shows the generated pairs.

The next step is pattern extraction (line 15-17), where the
inputs are the pairs (entity, {properties}) and the outputs are
the pairs ({pattern}, nbr), nbr being the number of entities
described by the pattern. A second mapper reads the input
of the reducer and produces the pairs (pattern, 1), the pattern
being the set of properties for an entity (see figure 3.c); the
number 1 indicates that one entity corresponding to this pattern
was found. A second reducer then groups the pairs having the
same key and counts them (line 19). At the end of this step,
the list of patterns and the number of entities for each one is
obtained. Figure 3.d illustrates the final result.

IV. EXPERIMENTAL EVALUATION

This section presents the results of our experiments for
pattern extraction with respect to the size reduction rate and
the execution time. These tests were performed on a Spark
cluster with 6 nodes, 80 core and 213 GB of RAM.

We have performed our experiments on the following
real RDF datasets: (i) DBpedia1 which is extracted from
Wikipedia; (ii) DBLP2 which contains the metadata of more
than 1.8 million publications; (iii) Katrina and (iv) Charley3

which contain descriptions of hurricanes and blizzard sightings
in the United States.

Table II shows, for each dataset, the number of triples, the
number of entities, the number of extracted patterns and the
size reduction rates, computed as the number of extracted
patterns divided by the number of entities in the initial dataset.

The number of output patterns depends on the heterogeneity
of entities in the dataset. The more heterogeneous the entities,
the higher the number of patterns. If we consider DBpedia,

1https://old.datahub.io/dataset/dbpedia
2https://old.datahub.io/dataset/dblp
3http://wiki.knoesis.org/index.php/LinkedSensorData

TABLE II
SIZE REDUCTION RATE

Dataset Triples Entities Patterns Ratio (%)
DBpedia 9 500 000 000 66 195 296 1 918 480 2.89
DBLP 222 375 855 16 086 516 351 0.002
Katrina 203 386 049 3 409 37 1.08
Charley 101 956 760 3 353 52 1.55

which is very heterogeneous, the number of patterns is high.
Data sources such as DBLP, Katrina and Charley are used by
scientific communities and they are less heterogeneous, which
results in fewer patterns.

Table III details the execution times of each step of the algo-
rithm, which are entity extraction (Entity), pattern extraction
(Pattern) and statistics computation (Stats).

TABLE III
EXECUTION TIMES

Dataset Total (s) Entity (s) Pattern (s) Stats (s)
DBpedia 750 590 130 30
DBLP 163 120 40 3
Katrina 100 96 3 1
Charley 50 46 3 1

The execution time depends on the number of triples, the
number of entities and the number of patterns. The entity
extraction phase reads in parallel the triples and writes the
resulting entities by grouping pairs with the same ID: the
higher the number of triples and entities, the higher the reading
and writing time. This operation is a pre-processing step and
is the most expensive. Since disk writing is an expensive
operation, the processing time is longer for datasets which
contains a high number of entities. The same holds for pattern
extraction. The final operation reads the patterns and computes
the number of entities having the same pattern.

The purpose of the condensed representation of a dataset
is to enable the execution of a clustering algorithm and to
provide a schema even when the size of the dataset does not
allow the use of a clustering algorithm. Our tests show that for
some datasets such as DBLP, Katrina and Charley, the number

of extracted patterns allows the execution of the clustering
algorithm. For DBpedia the clustering remains too costly due
to the large number of patterns.

V. RELATED WORK

Several works have focused on schema discovery for dif-
ferent purposes, such as summarizing datasets, indexing them,
or querying the data.

Some approaches propose to discover the implicit schema
of a dataset using clustering algorithms. These works do
not require any schema-related information in the considered
dataset and they generate the types from the entities of
the dataset and their properties. The approach proposed in
[1], [2] uses a density-based clustering algorithm (DBscan)
for discovering the implicit types. Another proposal uses an
ascending hierarchical clustering algorithm for type discovery
[4]. Once discovered, types are annotated by the most frequent
value of the rdf:type property. These approaches are not
suitable for massive datasets as they are costly. Furthermore,
the implementation of the underlying algorithms using a big
data technology is not straightforward.

Scalable versions of DBSCAN implemented using a big
data technology have been proposed. However, some of them
are non deterministic [5]; others require an order relation on
the data [6].

Some works have provided approaches for summarizing
an RDF dataset to make it easily readable and to support
the formulation of queries. In [7], the proposed approach
summarizes an RDF dataset by grouping the properties of the
entities according to the similarity of their subjects or/and their
objects; the summary is then refined by grouping resources of
the same type. Some works have proposed a recommendation
system to help users formulate complex Sparql queries based
on a summary of the initial RDF graph [8]. A summary is
provided by aggregating resources having the same type or
the same property set. The summaries proposed in [7], [8] are
based on rdf:type declarations but this property is not always
specified in RDF datasets. If the type is not provided, the
approach groups the entities that are structurally identical; such
approach is not well-suited to the context of the semantic Web,
as entities with different property sets may belong to the same
type.

Some approaches were proposed in a big data context and
were implemented using big data technologies such as Hadoop
or Spark to process massive data. The approach presented
in [9] groups entities that have the same type and describes
the primitive type of the grouped entities with a regular
expression. The approach presented in [10] proposes a strategy
for inferring a versioned schema for NoSQL datasets. This
approach considers that the different structures of entities
which have the same type are versions of this type. These
works rely on type declarations and are not suitable when the
schema is incomplete or missing in a dataset, which may be
the case for RDF datasets.

The survey of related works shows that there are two
categories of approaches: (i) approaches which are able to

manage big amounts of data but require some schema-related
information, and therefore can not be used when this informa-
tion is not provided in the dataset; and (ii) approaches which
use costly clustering algorithms that can not be applied in a
big data context. Our work is an attempt to fill the gap between
these two categories. Note that pattern discovery is similar to
frequent itemset mining. However, in our case, there is no
pruning and thus itemset mining algorithms are not suitable.

VI. CONCLUSION

We have proposed an approach for building condensed
representations for massive RDF data sources in order to
discover their schema. Our main contribution is to extract
the structural patterns, then apply a density-based clustering
algorithm on the patterns instead of the initial dataset. Indeed,
schema discovery on entities gives exactly the same result as
schema discovery on entity patterns. Since patterns are a repre-
sentation of all existing structures in the dataset, our proposal
would optimize any schema discovery approach based on the
structure of the entities and would achieve the same result,
with the same quality. Our algorithm is implemented with
Spark and the experiments performed on real data sources
show that it reduces considerably their size in a reasonable
time.

This work is a first contribution towards the scalability of
schema discovery; we are currently working on a scalable and
deterministic version of density-based clustering implemented
using big data technology. This will enable us to process data
sources having a high level of heterogeneity which results in
a large set of patterns.

ACKNOWLEDGMENT

This work is partially funded by the French National Re-
search Agency (CAIR ANR-14-CE23-0006 project).

REFERENCES

[1] K. Kellou-Menouer and Z. Kedad, “Schema discovery in RDF data
sources,” in Conceptual Modeling - 34th International Conference, ER
2015. Springer, pp. 481–495.

[2] K. Kellou-Menouer and Z. Kedad, “A self-adaptive and incremental
approach for data profiling in the semantic web,” T. Large-Scale Data-
and Knowledge-Centered Systems, vol. 29, pp. 108–133, 2016.

[3] M. Ester, H. Kriegel, J. Sander, and X. Xu, “A density-based algo-
rithm for discovering clusters in large spatial databases with noise,”
in Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining (KDD-96), Portland, Oregon, USA, 1996,
pp. 226–231.

[4] K. Christodoulou, N. W. Paton, and A. A. Fernandes, “Structure infer-
ence for linked data sources using clustering,” EDBT/ICDT, 2013.

[5] G. Luo, X. Luo, and T. F. Gooch, “A parallel dbscan algorithm based
on spark,” BDCloud, 2016.

[6] D. Han, A. Agrawal, W. Liao, and A. Choudhary, “A novel scalable
dbscan algorithm with spark,” International Parallel and Distributed
Processing Symposium Workshops, 2016.

[7] S. Cebiric, F. Goasdou, and I. Manoles, “Queryoriented summarization
of rdf graphs,” VLDB, vol. 8, 2015.

[8] S. Campina, T. E. Perry, D. Ceccarelli, R. Delbru, and G. Tummarello,
“Introducing rdf graph summary with application to assisted sparql,”
Workshop on Database and Expert Sytems Applications, 2012.

[9] M.-A. Baazizi, H. B. Lahmar, D. Colazzo, G. Ghelli, and C. Sartiani,
“Schema inference for massive json datasets,” EDBT, 2017.

[10] D. S. Ruiz, S. F. Morales, and J. G. Molina, “Inferring versioned schemas
from nosql databases and its applications,” ER, 2015.

