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Analysis and control of multi-leveled opinions spreading in social networks

Vineeth S. Varma∗, Irinel Constantin Morarescu∗ and Yezekael Hayel‡

Abstract— This paper proposes and analyzes a stochastic
multi-agent opinion dynamics model. We are interested in
a multi-leveled opinion of each agent which is randomly
influenced by the binary actions of its neighbors. It is shown
that, as far as the number of agents in the network is finite, the
model asymptotically produces consensus. The consensus value
corresponds to one of the absorbing states of the associated
Markov system. However, when the number of agents is large,
we emphasize that partial agreements are reached and these
transient states are metastable, i.e., the expected persistence
duration is arbitrarily large. These states are characterized
using an N-intertwined mean field approximation (NIMFA) for
the Markov system. Moreover we analyze a simple and easily
implementable way of controlling the opinion in the network.
Numerical simulations validate the proposed analysis.

Index Terms— Opinion dynamics, Social computing and net-
works, Markov chains, agent based models

I. INTRODUCTION

The analysis and control of complex sociological phenom-
ena as consensus, clustering and propagation are challenging
scientific problem. In the past decades much progress has
been made both on the development and the analysis of new
models that capture more features characterizing the social
network behavior. A possible classification of the existing
models can be done by looking at the evolution space of the
opinions. Precisely we find models in which the opinions
evolve in a discrete set of values, they come from statistical
physics, and the most employed are the Ising [1], voter [2]
and Sznajd [3] models. A second class is given by the models
that consider a continuous set of opinion’s values [4], [5],
[6]. While in some models the interaction network is fixed
in some others it is state-dependent. Although some studies
propose repulsive interactions [7] the predominant tendency
of empirical studies emphasize the attractive action of the
neighbors opinions. We can also emphasize that many studies
in the literature focus on the emergence of consensus in
social networks [8], [9], [10] while some others point out
local agreements leading to clustering [5], [6].

Most of the existing models including the aforementioned
ones share the idea that an individual’s opinion is influenced
by the opinions of his neighbors. Nevertheless, it is very
hard to estimate these opinions and often one may access
only a quantized version of them. Following this idea a mix
of continuous opinion with discrete actions (CODA) was
proposed in [11]. This model reflects the fact that even if
we often face binary choices or actions which are visible
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by our neighbors, the opinions evolve in a continuous space
of values which are not explicitly visible to the neighbors.
A multi-agent system with a CODA model was proposed
and analyzed in [12]. It was shown that this deterministic
model leads to a variety of asymptotic behaviors including
consensus and clustering.

In [13] the model in [12] was reformulated as a discrete
interactive Markov chain. One advantage of this approach
is that, it also allows analysis of the behavior of infinite
populations partitioned into a certain number of opinion
classes. Due to the complexity of the opinion dynamics,
we believe that stochastic models are more suitable than
deterministic ones. Indeed, we can propose a realistic deter-
ministic update rule but many random events will still influ-
ence the interaction network and consequently the opinion
dynamics. Following the development in [13] we propose
here a continuous-time interactive Markov chain modeling
that approximates the model in [12]. Although the asymp-
totic behavior of the model can be given by characterizing
the absorbing states of the Markov chain, the convergence
time can be arbitrarily large and transient but persistent
local agreements, called metastable equilibria, can appear.
These equilibria are very interesting because they describe
the finite-time behavior of the network. Consequently, we
consider in this paper an N-intertwined mean field approxi-
mation (NIMFA) based approach in order to characterize the
metastable equilibria of the Markov system. It is noteworthy
that NIMFA was successfully used to analyze and validate
some epidemiological models [14], [15].

In this work, we model the social network as a multi-agent
system in which each agent represents an individual whose
state is his opinion. This opinion can be understood as the
preference of the agent towards performing a binary action,
i.e. action can be 0 or 1. These agents are interconnected
through an interaction directed graph, whose edge weights
represent the trust given by an agent to his neighbor. We
propose continuous time opinion dynamics in which the
opinions are discrete and belong to a given set that is fixed
a priori. Each agent is influenced randomly by the actions
of his neighboring agents and consequently influences its
neighbors. Therefore the opinions of agents are an intrinsic
variable that is hidden from the other agents, the only visible
variable is the action. As an example, consider the opinion
of users regarding two products red and blue cars. A user
may prefer red cars strongly, while some other users might
be more indifferent. However, what the other users see (and
is therefore influenced by) is only what the user buys, which
is the action taken.

The contributions of this paper can be summarized as



follows. Firstly, we formulate and analyze a stochastic ver-
sion of the CODA model proposed in [12]. Secondly, we
characterize the local agreements which are persistent for a
long duration by using the NIMFA for the original Markov
system. Thirdly, we provide conditions for the preservation
of the main action inside one cluster as well as for the
propagation of actions. Finally, we study how an external
entity can control the opinion dynamics by manipulating
the network edge weights. In particular, we study how such
a control can be applied to a cluster for preservation or
propagation of its opinion.

The rest of the paper is organized as follows. Section II
introduces the main notation and concepts and provides a
description of the model used throughout the paper. The
analysis of the asymptotic behavior of opinions described
by this stochastic model is provided in Section III. The
presented results are valid for any connected networks with
a finite number of agents. Moreover Section III contains the
description of the NIMFA model and an algorithm to com-
pute its equilibria. In Section IV we emphasize conditions
for the preservation of the main action (corresponding to
a metastable state) in some clusters as well as conditions
for the action propagation, both without any control and
in the presence of some control. The results of our work
are numerically illustrated in Section V. The paper ends
with some concluding remarks and perspectives for further
developments.
Preliminaries: We use E for the expectation of a random
variable, 1A(x) the indicator function which takes the value
1 when x ∈ A and 0 otherwise, R+ the set of non-negative
reals and N = {1, 2, . . . } the set of natural numbers..

II. MODEL

Throughout the paper we consider N ∈ N an even number
of possible opinion levels, and the set of agents K =
{1, 2, . . . ,K} with K ∈ N. Each agent i is characterized
at time t ∈ R+ by its opinion represented as a scalar
Xi(t) ∈ Θ where Θ = {θ1, θ2, . . . , θN} is the discrete
set of possible opinions, such that θn ∈ (0, 1)\{0.5} and
θn < θn+1 for all n ∈ {1, 2, . . . , N}. Moreover Θ is
constructed such that θN/2 < 0.5 and θN/2+1 > 0.5. In
the following let us introduce some graph notions allowing
us to define the interaction structure in the social network
under consideration.

Definition 1 (Directed graph): A weighted directed graph
G is a couple (K, A) with K being a finite set denoting the
vertices, and A being a K × K matrix, with elements aij
denoting the trust given by i on j. We say that agent j is a
neighbor of agent i if aij > 0.
We denote by τi the total trust in the network for agent i as
τi =

∑K
j=1 aij . Agent i is said to be connected with agent j

if G contains a directed path from i to j, i.e. if there exists
at least one sequence (i = i1, i2, . . . , ip+1 = j) such that
aik,ik+1

> 0, ∀k ∈ {1, 2, . . . , p}.
Definition 2 (Strongly connected): The graph G is

strongly connected if any two distinct agents i, j ∈ K are
connected.

In the sequel we suppose the following holds true.
Assumption 1: The graph (K, E) modeling the interaction

in the network is strongly connected.
The action Qi(t) taken by agent i at time t is defined by the
opinion Xi(t) through the following relation

Qi(t) = bXi(t)e,

where b.e is the nearest integer function. This means that
if an agent has an opinion more than 0.5, it will take the
action 1 and 0 otherwise. This kind of opinion quantization
is suitable for many practical applications. For example,
an agent may support the left or right political party, with
various opinion levels (opinions close to 0 or 1 represents
a stronger preference), however, in the election, the agent’s
action is to vote with exactly two choices (left or right).
Similarly, an agent might have to choose between two cars
or other types of merchandise like cola as mentioned in the
introduction. Although its preference for one product is not
of the type 0 or 1, its action will be, since it cannot buy
fractions of cars, but one of them.

A. Opinion dynamics

In this work, we look at the evolution of opinions of the
agents based on their mutual influence. We also account for
the inertia of opinion, i.e., when the opinion of the agent is
closer to 0.5, he is more likely to shift as he is less decisive,
whereas someone with a strong opinion (close to 1 or 0) is
less likely to shift his opinion as he is more convinced by
his opinion. The opinion of agent j may shift towards the
actions of its neighbors with a rate βn while Xj(t) = θn.
If no action is naturally preferred by the opinion dynamics,
then we construct θn = 1− θN+1−n and assume that βn =
βN+1−n for all n ∈ {1, 2, . . . , N}. At each time t ∈ R+ we
denote the vector collecting all the opinions in the network
by X(t) = (X1(t), . . . , XK(t)). Notice that the evolution
of X(t) is described by a continuous time Markov process
with NK states and its analysis is complicated even for small
number opinion levels and relatively small number of agents.
The stochastic transition rate of agent i shifting its opinion
to the right, i.e. to have opinion θn+1 when at opinion θn,
with n ∈ {1, 2, . . . , N − 1}, is given by

βn

N∑
j=1

aij1(0.5,1](Xj(t)) = βn

K∑
j=1

aijQj(t) = βnRi(t).

Similarly, the transition rate to the left, i.e. to shift from θn
to θn−1 is given by

βn

N∑
j=1

aij1[0,0.5)(Xj(t)) = βn

N∑
j=1

aij(1−Qj(t)) = βnLi(t).

for n ∈ {2, . . . , N}. Therefore, we can write the infinitesimal
generator Mi,t (a tri-diagonal matrix of size N ×N ) for an
agent i as:

Mi,t =

−β1Ri(t) β1Ri(t) 0 . . .
β2Li(t) −β2τi β2Ri(t) . . .

...

 (1)



with elements corresponding the n-th rown and m-th column
given by Mi,t(m,n) and

∀n ∈ {1, . . . , N − 1}, Mi,t(n, n+ 1) = βnRi(t),

∀n ∈ {2, . . . , N}, Mi,t(n, n− 1) = βnLi(t),

∀|m− n| > 1, Mi,t(m,n) = 0

and

Mi,t(n, n) =

 −β1Ri(t) for n = 1,
−βnτi for n ∈ {2, . . . , N − 1},
−βNLi(t) for n = N.

Let vi,n(t) := E[1{θn}(Xi(t))] = Pr(Xi(t) = θn) be the
probability for an opinion level θn for user i at time t. Then,
in order to propose an analysis of the stochastic process
introduced above, we may consider the mean-field approx-
imation by replacing the transitions by their expectations.
Then, the expected transition rate from state n to state n+ 1
for K →∞, is given by:

βn

K∑
j=1

aijE
[
1(0.5,1](Xj(t))

]
= βn

K∑
j=1

aij

N∑
n=N/2+1

vj,n(t).

We have similar expression for transition between state n
and n− 1.

III. STEADY STATE ANALYSIS

Define by θ̄− = (θ1, . . . , θ1) and θ̄+ = (θN , . . . , θN ) the
states where all the agents in the network have an identical
opinion, which correspond to the two extreme opinions.

Proposition 1: Under Assumption 1, the continuous time
Markov process X(t), with (1) as the infinitesimal generators
corresponding to each agent, has exactly two absorbing states
X(t) = θ̄+ and X(t) = θ̄−.

Proof: Due to space limitation the proof is omitted.
Considering the NIMFA approximation, we get that the

dynamics of the opinion for an agent i are given by:

v̇i,1 = −β1rivi,1 + β2livi,2
v̇i,n = −βnrivi,n + βn+1livi,n+1

−βnlivi,n + βn−1rivi,n−1
v̇i,N = −βN livi,N + βN−1rivi,N−1

(2)

for all i ∈ K and 1 < n < N where

li =
∑
j∈K aijE[1−Qj ]

=
∑
j∈K

∑N/2
n=1 aijvj,n,

ri =
∑
j∈K aijE[Qj ]

=
∑
j∈K

∑N
n=N/2+1 aijvj,n.

(3)

and
∑
n vi,n = 1.

We can easily verify that Xi = θ1, i.e. vi,1 = 1 for all
i is an equilibrium for the above set of equations. When
vi,1 = 1 for all i, vi,n = 0 for all n ≥ 2 and as a result,
li = τi and ri = 0 for all i which gives v̇i,n = 0 for all i, n.
Excluding the extreme solutions θ̄+ and θ̄−, the non-linearity
of system (2) could give rise to the existence of interior rest
points which are locally stable. Such rest points are referred
to as metastable states in Physics. Metastability of Markov

processes is precisely defined in [16], where the exit times
from these metastable states are shown to approach infinity
when the network size is arbitrarily large.

A. Rest points of the dynamics

For a given ri = E[Ri(t)], the equilibrium state v∗i,n must
satisfy the following conditions

0 = −β1 riτi v
∗
i,1 + β2( τi−riτi

)v∗i,2
0 = −βnv∗i,n + βn+1( τi−riτi

)vi,n+1

+βn−1
ri
τi
v∗i,n−1

0 = −βN ( τi−riτi
)v∗i,N + βN−1

ri
τi
v∗i,N−1

(4)

We can write any v∗i,n based on v∗i,1, by simplification as

v∗i,n =
β1
βn

(
ri

τi − ri

)n−1
v∗i,1. (5)

As the sum of vi,n over n must be 1, we can solve for v∗i,1
as

v∗i,1 =
1∑N

n=1
β1

βn

(
ri

τi−ri

)n−1 . (6)

We then can use this relationship to construct a fixed-point
algorithm that computes a rest-point of the global opinion
dynamics for all users.

Data: Number of agents K, the edge weights ai,j for
all i, j ∈ K, initial values vi,n(0), convergence
factor ε << 1, opinion levels N and the jump
rates βn for all n ∈ {1, . . . , N}.

Result: v(m) at the end of the loop is close to a fixed
point of the opinion dynamics

do
m← m+ 1 ;
Set

ri(m) =
∑
k

N∑
n=N/2+1

ai,kvk,n(m) (7)

for all i ∈ K ;
Set

vi,n(m) =

β1

βn

(
ri(m)

τi−ri(m)

)n−1
∑N
l=1

β1

βl

(
ri(m)

τi−ri(m)

)l−1 (8)

for all n ∈ {1, . . . , N}, i ∈ K ;
while ||vm − vm−1|| ≥ ε;

Algorithm 1: Algorithm to find a fixed point of the
NIMFA.

Additionally, we can obtain some nice properties on the
relation between ri and vi,n by studying the following
function.

Lemma 1: Consider the function f : [0, 1] → [0, 1]
defined as



f(x) :=

∑N
n=N/2+1

β1

βn

(
x

1−x

)n−1
∑N
n=1

β1

βn

(
x

1−x

)n−1 (9)

for all x ∈ [0, 1) and with f(1) = 1. We have that f(x) is a
monotonically increasing continuous function and takes the
values f(0) = 0, f(0.5) = 0.5 and limx→1 f(x) = 1.

Proof: Due to space limitation the proof is omitted.
We can use f( ri

τi−ri ) to calculate the probability that
an agent i will take the action 1, i.e.,

∑N
n=N/2+1 v

∗
i,n =

f( ri
τi−ri ) from (6) and (5).

IV. OPINION SPREADING

A way to model generic interaction networks is to consider
that they are the union of a number of clusters (see for
instance [6] for a cluster detection algorithm). Basically a
cluster C is a group of agents in which the opinion of any
agent in C is influenced more by the other agents in C,
than agents outside C. When the interactions between cluster
are deterministic and very weak, we can use a two time
scale-modeling as in [17] to analyze the overall behavior
of the network. In the stochastic framework and knowing
only a quantized version of the opinions we propose here a
development aiming at characterizing the majority actions
in clusters. The notion of cluster can be mathematically
formalized as follows.

Definition 3 (Cluster): A subset of agents C ⊂ K defines
a cluster when, for all i, j ∈ C and some λ > 0.5 the
following inequality holds

aij ≥ λ
τi
|C|

. (10)

The maximum λ which satisfies this inequality for all i, j ∈
C is called the cluster coefficient.
For any given set of agents C ⊂ K, let us denote that

νC− =

∑
j∈C

∑N/2
n=1 vj,n

|C|
,

and

νC+ =

∑
j∈C

∑N
n=N/2+1 vj,n

|C|
.

Those values represent the expected fraction of agents within
a set C with action 0 and 1, respectively. We also denote by
νCn , the average probability of agents in a cluster to have
opinion θn, i.e., νCn =

∑
i∈C vi,n
|C| . Now we can use the

definition of a cluster given in (10) to obtain the following
proposition.

Proposition 2: The dynamics of the average opinion prob-
abilities in a cluster C ⊂ K can be written as:

ν̇C1
κ

= −β1νC1
(
λνC+ + (1− λ)δ

)
+β2ν

C
2

(
λνC− + (1− λ)(1− δ)

)
ν̇Cn
κ

= −βnνCn + βn+1ν
C
n+1

(
λνC− + (1− λ)(1− δ)

)
+βn−1ν

C
n−1

(
λνC+ + (1− λ)δ

)
ν̇CN
κ

= −βNνCN
(
λνC− + (1− λ)(1− δ)

)
+βN−1ν

C
N−1

(
λνC+ + (1− λ)δ

)
(11)

where κ =
∑

i∈C τi
|C| and δ ∈ [0, 1].

Proof: Due to space limitation the proof is omitted.
The result above shows that instead of looking at indi-

vidual opinions of agents inside a cluster, we can provide
equation (11) for the dynamics of the expected fraction of
agents in a cluster with certain opinions.

A. Action preservation

One question that can be asked in this context is what
are the sufficient conditions for the preservation of actions
in a cluster, i.e. regardless of external opinions, agents
preserve the majority action inside the cluster C for long
time. At the limit, all the agents will have identical opinions
corresponding to an absorbing state of the network but,
clusters with large enough λ may preserve their action in
metastable states (long time).

Proposition 3: If ∃ x ∈ (0.5, 1) such that x = f(λx)
than cluster C with coefficient λ preserves its action in a
metastable state. If no such x exists, then the only equi-
librium when the perturbation term δ = 1 from (11) is at
νC+ = 1, and when δ = 0, the equilibrium is at νC+ = 0.

Proof: Due to space limitation the proof is omitted.

B. Propagation of actions

In the previous subsection, we have seen that a cluster C
can preserve its majority action regardless of external opinion
if it has a sufficiently large λ. If there are agents outside C
with some connections to agents in C, then this action can
be propagated. Let τCi =

∑
j∈C aij denote the total trust of

agent i in the cluster C. Let the cluster C be such that it has
λ large enough so that ν̄C+ > 0.5 exists where ν̄C+ = f(λν̄C+ ).

Proposition 4: If the cluster C is preserving an action 1
with at least a fraction ν̄C+ of the population in C having
action 1, then the probability of any agent i ∈ K \ C to
chose action 1 at equilibrium is bounded as follows.

f

(
ν̄C+

τCi
τi

)
≤ Pr(Q∗i = 1) ≤ 1− f

(
ν̄C−

τCi
τi

)
. (12)

where Q∗i is the action taken by i when the system is in a
non-absorbing NIMFA equilibrium state.

Proof: Due to space limitation the proof is omitted.



C. Control of opinion spreading

Consider that an external entity, a firm for example, wants
to control the actions of the agents in the network. In
particular, the external agency wants to ensure that a cluster
C preserves its initial action. Practically, a set of consumers
in C might prefer the product of the firm, and this firm
wants to ensue that other competing firms do not sway their
opinions and convert their opinions.

For this purpose, the firm tries to reinforce the opinion
spread within C and from C to its followers, by strengthen-
ing the influence of agents in C. As an example, the party
might pay the social network, such as Facebook or Twitter,
to make messages, in the form of wall posts or tweets, to be
more visible when the source of these messages are within
C. This implies that aij for any i ∈ K and j ∈ C, is now
modified to a′ij = aij(1 + u), where u denotes the control
parameter. Here, u = 0 represents the normal state of the
network and u > 0 implies that agents in the network will
view messages from agents in C more frequently or more
easily (with a higher priority).

Thus, the cluster coefficient of C is no longer the initial
cluster coefficient λ, but the new coefficient is increased
depending on u.

Proposition 5: Let λ be the cluster coefficient of C. Then
a control which strengthens the connections from C from
aij to aij(1 + u) for all j ∈ C and i ∈ K results in a new
cluster coefficient λ′ ≥ λ given by

λ′ ≥ λ 1 + u

1 + λu
(13)

This results in a threshold on the control required for
preservation as the smallest u∗ ≥ 0 satisfying

x = f

(
λ

1 + u∗

1 + λu∗
x

)
(14)

for some x ∈ (0.5, 1]. Additionally, any follower of C has
its probability of action 1 modified to

f

(
ν̄C+

τCi (1 + u)

τi + τCi u

)
≤ Pr(Q∗i = 1) ≤ 1−f

(
ν̄C−

τCi (1 + u)

τi + τCi u

)
(15)

Proof: Due to space limitation the proof is omitted.
As λ ≤ 1, λ′ ≥ λ always, and we also have limu→∞ λ′ =

1. This implies that as long as we apply a sufficiently large
control u, any cluster C will be able to preserve its action
(as a result of Corollary 1). Additionally, this also means that
agents who are followers of C will now be influenced to a
greater degree by C.

V. NUMERICAL RESULTS

For all simulations studied, unless otherwise mentioned,
we take Θ = {0.2, 0.4, 0.6, 0.8}, β1 = β4 = 0.01 per unit
of time and β2 = β3 = 0.02 per unit of time.

For the first set of simulations, we take another graph
structure, but with the same K as indicated in Figure 1.
We first randomly make links between any i, j ∈ K with
a probability of 0.05. When such a link exists, aij = 1

Cluster C1

|C1| = 40

Cluster C2

|C2| = 40

Set B1

|B1| = 20

Set B2

|B2| = 20

Fig. 1: Structure of the graph. Any two agents in K may be
connected with a 0.05 probability. All agents within a cluster
are connected, and the arrows indicate directed connections.

and aij = 0 otherwise. Then we construct a cluster C1,
with the agents i = 1, 2, . . . , 40, and C2 with agents i =
81, 82, . . . , 120. We also label agents 40 < i ≤ 60 as set B1

and 60 < j ≤ 80 as set B2. To provide the relevant cluster
structure, we made the edge weights aij = 1 for all

• i, j ∈ C1 or i, j ∈ C2, making C1 and C2 clusters
with coefficients λ1 = 0.833 and λ2 = 0.816 (for the
particular random graph generated for this simulation).

• 40 < i ≤ 60 and 1 ≤ j ≤ 20, making agents in B1

trust C1 with τ
C1
i

τi
≥ 0.714 for all 40 < i ≤ 60.

• 60 < i ≤ 80 and 1 ≤ j ≤ 20 or 80 < j ≤ 120, making
agents in B2 trust both C1 and C2, with τ

C1
i

τi
,
τ
C2
i

τi
≥

0.444 for all 60 < i ≤ 80.

A. Propagation of actions

We find that the largest x satisfying x = f(λ1x) is
0.95 and that satisfying x = f(λ2x) is 0.94. Therefore, if
all agents in C1 start with opinion 0.2 and all agents in
cluster 2 start with opinion 0.8, we predict from proposition
3 that νC1

− ≥ 0.95 and νC2
+ ≥ 0.94 in the metastable

state. Additionally, applying proposition 4 yields νB1
− ≥

f(0.95 × 0.714) = 0.85, νB2
− ,≥ f(0.95 × 0.444) = 0.324

and νB2
+ ≥ f(0.94× 0.444) = 0.315.

Fig. 2: Simulation of
∑
i∈S Qi(t) for S = C1, C2, B1, B2.

We see that C1 and C2 preserve their initial actions as given
by proposition 3. We also see that as B1 follows only C1,
it’s action is close to C1. As B2 follows both C1 and C2

who have contradicting actions, it has a very mixed opinion
which keeps changing randomly in time.



Simulations of the continuous time Markov chain show
that our theoretical results are valid even when the cluster
size is 40. Figure 2 plots the population fraction of agents
with action 1 within a certain set for one simulation. We look
for this value in the clusters C1 and C2 as well as the sets B1

and B2. C1 and C2 are seen to preserve their actions which
are opposite to each other. Since B1 has a significant trust in
C1 alone, the opinion of C1 is propagated to B1. However,
as B2 trusts both C1 and C2, its opinion is influenced by the
two contradicting actions resulting in having some agents
with action 1 and the rest with action 0.

B. Control of opinion spreading

We consider the same graph structure used in Fig. 2
illustrated in Fig. 1, but with Cluster C2 having its first
25 agents removed. As a result, the cluster coefficient of
this cluster becomes λ2 = 0.636, which no longer allows
for preservation of its action as seen in Figure 3a. From
proposition 3, we find that a λ > 0.8 ensures preservation.
Therefore, we introduce a control u = 1.5 which enhances
the visibility of actions spread by agents in C2 by a factor
of 2.5, resulting in a′ij = 2.5aij for all j ∈ C, i ∈ K.
This results in a new λ′2 ≥ 0.8 according to proposition
5 and verified by numerical calculation on the graph to be
λ′2 = 0.814. As a result, we observe from Figure 3b that the
cluster 2 action is preserved for a long duration.

(a) Simulation with no control implemented.

(b) Simulation with u = 1 on cluster 2.

Fig. 3: Average population with action 1 plotted vs time for
each set.

VI. CONCLUSION

In this paper, we have proposed a stochastic multi-agent
opinion dynamics model with binary actions. Agents interact
through a network and individual opinions are influenced by
neighbors action. Our analysis based on a Markov model of
opinion dynamics show a consensus like limiting behavior

for a finite number of agents. Whereas, when this number
becomes large enough, the stochastic system can enter into
a quasi-stationary regime in which partial agreements are
reached. This type of phenomenon has been observed in all-
to-all and cluster type topologies. Additionally, we have also
studied the impact of an external entity which tries to control
the actions of the users in a social network by manipulating
the network connections. This can be interpreted as a com-
pany paying a social platform to make content from certain
groups of agents more visible or frequent. We have shown
how such a control can enable a community or cluster of
agents to preserve or propagate its opinion better.
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