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Abstract—Extensive research efforts are being attracted to-
wards resource allocation in LTE networks. However, from the
resource allocation perspectives, linear services such as Digital
TV programs have been scarcely studied. In fact, for end-users
requesting linear services, the maximization of the the number of
users served is much important goal than maximizing the overall
capacity of the network. In this paper, linear services oriented
resource allocation strategy is proposed. The goal of the proposed
algorithm is to maximize the success rate of the users, depending
on a minimum required quality of service (QoS), measured in
terms of user capacity constraint. The proposed method was
tested and compared to the optimal branch and Cut solution and
has shown good robustness against network and user parameters.

I. INTRODUCTION

Lately, versatile users associated with broadband systems
have been increasingly watching linear services on their cell
phones and tablets. Linear services could be characterized as
the video services where the end-client watches a program
controlled totally by the transmitter. Thusly, broadband sys-
tems (such as LTE) offering these services need to deal with
a colossal measure of data activity [1]. Additionally, these
systems need to deal with the signal to interference and noise
ratio (SINR) due to the inter-cell interference and also the
tremendous measure of data for such services.

Measures like frequency reuse methods were taken in an
attempt to reduce interference, and consequently, increase the
average capacity of a user. However, frequency reuse will have
a narrow effect since the increase in capacity has logarithmic
relation with SINR that frequency reuse offers to enhance.
On the other hand, managing the bandwidth for each user
affects linearly the users capacity, so it is very important
to efficiently manage the overall resource allocation so that
certain requirements like rate, minimum user capacity, and
fairness, etc, are satisfied.

Unicast transmission of non-linear services has taken ex-
tensive research. The reader may refer to the works in [2–5].
However, to the best of the authors’ knowledge, none of
these strategies has dealt with linear services which require
a maximization of the number of users served. Indeed, in
contrary to regular services where increasing a user’s capacity
would enhance the Quality of Service (QoS), the allocation of
larger number of resource blocks to the end-users will not be
reflected in QoS . Indeed, a user receiving linear service needs

a minimum capacity level to properly receive the content,
making it inefficient to allocate resources beyond this level. As
a result, system capacity enhancement would be a secondary
objective when compared to enhancing the percentage of users
receiving a linear service. Another important factor resides
in the utilization rate. Indeed, in non-linear services, existing
methods exploit all the available RBs, while in linear services
case, other services might need resources to be allocated.
This affects different resource allocation outcomes, such as
power reduction, new arrivals, congestion, etc. Hence, it is very
important to propose fair allocation approaches when dealing
with linear services.

In literature, Round Robin (RR) algorithm, among others,
is exhibited as the fairness approach. In RR, Resource Blocks
(RB) are iteratively distributed to the distinctive users until
all are allocated, or the user’s constraints are met [6]. This
guarantees that all users are relegated with RBs. However,
RR doesn’t consider the channel conditions for every client,
so it fails to accomplish high rates coverage. Conversely, the
Maximum Throughput (MT) approach allocates the first RB
to the user with the best channel conditions, then moves to
the second RB, and reruns the distribution until all RBs are
designated or the user’s limitations are fulfilled. This strategy
guarantees greater achievable rate at the detriment of fairness,
since a user with best channel conditions could acquire the
majority of the RBs, leaving different users with limited or
even no RBs. Nonetheless, this technique could be utilized as
a benchmark for system capacity. As a compromise between
the two above methods, Proportional Fair (PF) [7] allocates
resources according to a formula that considers not only
channel conditions of a user, but also the number of resource
blocks already allocated to that user.

In this work, we firstly derive and model the resource
allocation problem of a linear service as a Mixed Integer
Programming (MIP) problem. Then, we present a new Linear
Service Oriented Resource Allocation Strategy (LSORAS),
that aims to maximize the percentage of users receiving the
linear service while maintaining a minimum required capacity
for each user, with decent fairness level. This guarantees that
each user will be allocated the required number of RBs hence,
granting resources to other services, or idling unused RBs. The
proposed algorithm is compared to RR, PF, MT methods, and
more importantly to the optimal allocation provided by the



branch and cut (BaC) optimization technique usually adopted
for MIP problems. Average success rate (SR) has been mainly
used to assess the two algorithms performance. Moreover, the
effect of user density and required capacity on the SR was
analyzed.

It should be noted that linear services should be offered
by a broadcasting/multicast system or a broadcasting mode
such as the MBMS mode in LTE networks. However, as the
network operators are using unicast mode for most of their
services, it is judicious to model and analyze this mode for
linear services. Hence, the importance of the current work is
in the system specifications for network operators that need to
offer linear services.

The rest of this paper is organized as follows: In section II,
the used model, the assumptions, and the performance metrics
are introduced. Section III presents the problem and the new
proposed algorithm. In section IV the simulation results are
shown and section V concludes this work.

II. MODEL DESCRIPTION

We consider in this work an LTE network using Orthogonal
Frequency Division Multiplexing (OFDM) technology for the
transmission of linear services. we assume that M users are
uniformly distributed in the service area, by the means of N
BS sites forming the Broadband network.

A. Requirements and Assumptions

In this work, linear service is assumed to be always available
to any user at any time. A minimum capacity Creq is required
for a user to properly receive the service, i.e. Cuser ≥Creq. In
the broadband network, unicast is used to separately deliver the
linear service to each connected user. It is also assumed that
the user is connected to the nearest BS, and the transmission
power is considered to be identical in every cell. Another
assumption is that the BS has complete information about the
channel with each user within the cell borders.

The BSs are considered to be uniformly distributed over
the service area, according to a Poisson Point Process (PPP)
with density λBS, where Voronoi tessellation is employed to
draw the cell borders. The users’ density is also assumed
to follow PPP with density λu. A diagram representing the
service area, including base stations and users, is shown in
Fig.1. The edge of the service area is represented by the red
circle, connections between a BS with its served and un-served
users is represented with black and cyan lines respectively.

B. Broadband model

A number of RBs is allocated for each connected user by
its serving BS. The transmission bandwidth controls the total
number of RBs available at a BS transmitter, which is denoted
by RBmax.

Hence, the SINR for user m at RB i is given by:

γm,i =
Pt hm,i (

4π f rm
c )−α

σ2 + Im,i
(1)
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Fig. 1: Modeled broadband network with a PPP describing
the position of BSs, users and cells

where Pt is the transmitted power, hm,i is a random variable
representing the channel for user m and RB i, with exponential
distribution of mean 1/µ i.e. h∼ exp(µ). α represents the path
loss exponent, f is the operating frequency in Hz, c is the
speed of light and rm is the distance between the user m and
its serving BS. the noise power at the receiver is considered
to be a constant and is denoted by σ2, while the interference
power at user m for RB i expressed as:

Im,i = ∑
j∈Φ/um

Pt hm,i, j

(
4π f

c

)−α

d−α

m, j (2)

where Φ is the set of all BS transmitters, um denotes a user
m, dm, j is the distance between the receiver m and the inter-
fering transmitter j and hm,i, j denotes a random variable that
represents the channel between user m and the jth transmitter,
for RB i. Eq. 1 could then be reduced to:

γm,i =
hm,i r−α

σ̃2 + ∑
j∈Φ/b0

hm,i, j d−α

m, j
(3)

We introduce a normalized noise variance σ̃ according to
path loss given by:

σ̃
2 =

σ2

Pt(
4 π f

c )−α
(4)

The capacity of a single RB i for a user m will then be as
following:

CRB
m,i = BRB log2(1+ γm,i) (5)

where BRB is the bandwidth of a single RB, usually equal to
180 KHz in LTE networks

In this work, we assume that the capacity of user m to be
the sum of capacities of the RBs assigned to this user. It is
given by:

Cuser
m =

RBmax

∑
i=1

CRB
m,i ai,m (6)



where ai,m is a binary variable that is equal to 1 if RB i is
assigned to user m, and equal to 0 otherwise.

Similarly, the capacity of a cell is defined as the total
capacities of all users attached to this cell and will be defined
as follows:

Ccell
n = ∑

m∈M cell
n

Cuser
m bm (7)

where M cell
n represents the set of all users in a cell n, and

bm represents a binary variable indicating whether user m is
properly receiving the linear service or not, i.e. whether the
transmitter succeeds or fails to assign enough RBs so that Cuser

m
exceeds Creq.

C. Performance metrics

In order to evaluate the different approaches of a linear
service, we introduce the average service success rate. The
service SR ηs is defined as the ratio between the number of
users that have the access to the service to the total number of
users in the service area. In the case of overload, the network
will deny the service access. In a cell, the success rate can
then be stated as:

η
cell
n =

Number o f served users
Number o f users in the cell

which can be also expressed as

η
cell
n =

∑
m∈M cell

n

bm

Mcell
n

(8)

where Mcell
n is the number of users in cell n Hence, the success

rate of the system is given by:

η
s =

N
∑

n=1
∑

m∈M cell
n

bm

M
(9)

It should be noted that other metrics are often used to
evaluate a resource allocation scheme, like system capacity
and fairness index, or Jain’s fairness index [8] in precise.
However, system capacity has no significant importance in
linear services compared to SR. In addition, Jain’s fairness
index is highly correlated with the served (non-zero) users,
i.e. SR, and its information would be redundant.

III. PROBLEM FORMULATION AND PROPOSED ALGORITHM

A. Problem formulation

The aim of this work is to maximize the success rate defined
in Eq. (9), with a constraint on the minimum allowed capacity
for a served user, and another constraint on a maximum
number of users allocated with the same RB, limiting it to
only one user at a single time slot. The optimum success rate
of the system is achieved when all the cells are also at the
optimum success rate, so we define following optimization
problem for each cell:

max
a

[
NBS

∑
n=1

∑
m∈M cell

n

bm]

subject to ∑
i

ai,m 6 RBmax

Cuser
m =

RBmax

∑
i=1

CRB
m,i ai,m

∀ n ∑
m∈M cell

n

ai,m 6 1.

bm =

1,
RBmax

∑
i=1

ai,mCRB
i ,m≥Creq

0, Otherwise.

where a denotes the matrix holding all ai,m. Recall that
bm represents a binary variable that is equal to 1 if user
m is connected to its corresponding BS, and equal to zero
otherwise. Also recall that ai,m represents a binary variable
that is equal to 1 if the RB i is allocated to user m in its
corresponding cell, Cuser

m represents the achieved capacity of
user m, Creq is the minimum required capacity for a user to be
connected, RBmax represents the maximum number of resource
blocks available in a cell, and M cell

n is the set of all users in
cell n.

In the problem described above, bm depends on several other
variables in the system, so it holds information on SINR, and
consequently on the distance from base station r, the channel
and the interference. It also depends on the set of allocated
RBs to the corresponding user, since each RB has different
SINR even for the same user and same base station. The
limited number of RBs in a cell increases the complexity of
the problem. Indeed, whenever a RB is assigned to a user,
it won’t be available for allocation to other users, hence to
the RB pool for the next users, and consequently, options and
diversity are reduced. This correlation between users capacities
and variable dependencies indicates that the complexity of the
above problem makes its analytical solution, without losing
generality, prohibitive. We should mention that this algorithm
is by nature integer binary problem, hence MIP solutions could
be proposed. However, again due to its nature, it is very
difficult to propose an adequate analytical solution. Rather,
the choice of ai,m and consequently bm could be based on
an algorithm that leads to maximizing the success rate. Our
proposed algorithm is described next.

B. Proposed algorithm description
The linear nature of the services is the basic motivation in

our work. In non-linear services, QoS for a user increases with
its link capacity. Hence, most of the work in this domain has
dealt with the maximization of the system’s overall capacity as
a goal. Alternatively, when linear service is delivered, a certain
level capacity for a user is enough for a proper reception.
Hence, the main idea of our proposed algorithm is to fix a
minimum threshold for the user capacity and try to maximize
the success rate and increase the index of fairness, while
avoiding the usage of unnecessary or not beneficial RBs.



Due to the limited number of RBs, maximizing the number
of connected users could be achieved by allocating the exact
number of RBs for a user just to reach the required capacity
Creq. The proposed algorithm relies on assigning the RBs
to the users having the best conditions hence, increasing the
expected number of served users. In fact, assigning the RBs
to users with worst condition first will drain the number of
RBs offered to other users, since such users could be resource
hungry. In addition, the selection of the RBs with best channel
coefficients will reduce the required number to reach Creq,
and consequently enhance the number of connected users by
increasing available RBs.

The proposed LSORAS algorithm for each cell is described
in Alg. 1.

Algorithm 1 LSORAS aiming to maximize SR

for n = 1 : Ncell do
Select users in cell n
Sort users in descending order according to max(SINR)
Create a RB pool with all RBs
Set Muser,n as the number of users in current cell n
for m = 1 : Muser,n do

Sort available RB of user m in descending order
according to SINR

Select the RB of best SINR
Eliminate the RB assigned to m from the RB pool
Calculate the new Cuser

m
if The RB are exhausted and Cuser

m <Creq then
Assign no RB to user m
Put back the assigned RB to the pool
break

end if
if Cuser

m ≥Creq then
break

end if
end for

end for

Such algorithm satisfies all the points mentioned earlier and
consequently leads to the best use of the RBs available in a
given distribution. In addition, this algorithm will not assign
useless RBs for a user in two cases: the case when the capacity
achieved by a user exceeds Creq, and the case when assigning
the available number of RBs will not satisfy the given user
constraint. This property will save RBs to other services within
the same cell, i.e. implicitly turn off the unused RBs for power
saving.

C. Optimal Solution By Branch and Cut

In order to assess the performance of LSORAS algorithm, a
comparison with the optimal solution was achieved. Since our
problem is an mixed integer (binary) programming problem,
branch and cut algorithm was also implemented. Branch and
cut [9] is a combinatorial optimization method that solves MIP
problems¿ It is based on two main techniques:

1) Branch and bound [10]: a tree traverses all possible solu-
tions for each variable while calculating lower and upper
bound of the possible solutions. The latter are used to
eliminate some branches of the tree which cannot produce
an optimal solution, hence reducing complexity[11].

2) Cutting planes [12]: used to narrow the linear Program-
ming relaxation. Once a solution is found, it is checked
if its an integer. If it is not the case, it is guaranteed to
have a separation inequality that separates the optimum
from the convex hull.

The MIP problem is solved using a regular simplex algo-
rithm while relaxing the integer constrains, which will result
in obtaining a non-integer solution as a first step. The second
step is to find a additional linear constraints (by cutting plane
algorithm) that is violated by the non-linear solution found in
first step, but are satisfied by all integer points. Adding those
constrains will lead to a different less fractional solution. the
same procedure is repeated until an integer solution is found,
or until no more cutting constraints could be found. In this
case, branching is done for possible integer solution for an
element of the vector. after branching, smaller problems are
created, and the same procedure is repeated, until the complete
integer vector is found. The BaC algorithm is out of order in
the paper and left to the reader for more information. Reader
can refer to [13, 14].

However, BaC is guaranteed to reach an optimal solution if
it is implemented correctly and given enough time. For this
reason, it will be used as a benchmark for LSORAS in terms
of performance.

Branch

Original Problem

Solve and cut 
repeatedly

No integer solution found

Branch

Smaller Problem

Solve and cut 
repeatedly
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Smaller Problem

Solve and cut 
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Branch

Smaller Problem

Solve and cut 
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Smaller Problem

Branch

Smaller Problem

Solve and cut 
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Fig. 2: Example BaC procedure



IV. SIMULATION RESULTS

In this section, numerical simulation of the proposed algo-
rithm is presented. The results are compared to MT, RR and
PF algorithms, and most importantly to the optimal results
provided by branch and cut algorithm. In addition, the effect
of the user density and required capacity on the performance
of the proposed algorithm is studied.

A. Simulation setting

For the simulation, the broadband model was created with
suitable PPP density to have around 25 BS in the service
area, i.e. λ = 1/π . For cell boundaries, a Voronoi tessellation
is used. The user distribution was also set according to a
PPP with λ = 5/π leading to almost 125 users. The target
capacity or Creq is 1.5 Mbps. Table I gives the main simulation
parameters used.

TABLE I: Simulation parameters

simulation parameters
λBS 1/π

Isotropic Pt 1200 Watt
RBmax (available RB) 100
LTE BW 20 MHz
RB BW BRB 180 kHz
Path loss exponent α 3
Operating frequency f 2110 MHz
Radius of service Area 5 km

In order to implement the BaC optimal solution, AIMMS R©

[15] software has been used. AIMMS is designed for modeling
and solving large-scale optimization and scheduling problems,
particularly MIP using BaC.

B. Probability of coverage

Figure 3 shows a comparison between the proposed LSO-
RAS algorithm with MT, PF, RR, and with the optimal solution
produced by BaC algorithm, in terms of Complementary
Cumulative Distribution Function (CCDF). The CCDF is seen
as the probability of coverage, i.e. the probability of a user
to have a capacity that exceeds a certain value. Obviously,
LSORAS outperforms MT, PF, and RR. For a user capacity
threshold at 1.5 Mbps, 89% of the users succeed to receive
the service properly, compared to around 64% with RR and
PF, and around 31 % for Max Throughput. LSORAS curve
has a flat shape below 1.5 Mbps due to the fact that, as per
the proposed allocation, no user will have a capacity between
zero and Creq; it is either zero, Creq, or some value slightly
higher. Results also show that LSORAS is only 1.8% below
the optimal solution, which is not significant compared to
the reduction in computation, and the number of the resource
blocks used.

Compared to the computationally expensive branch and cut,
especially at a high number of users, LSORAS is a much
less expensive method that achieves comparable results. From
another perspective, LSORAS uses only a part of the RBs
available, compared to a complete consumption of resources
in MT, RR, PF solutions. For Creq = 1.5Mbps, and 5:1 users
to BS ratio, only 47% of the available 100 RBs were used,

compared to 100% in MT, PF, RR and branch and cut. This
means that the system saves around 53% of the resources,
which could be assigned to other services or turned off to
reduce power consumption.
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Fig. 3: CCDF of user capacity for 5:1 user to base station
ratio, Creq = 1.5 Mbps

C. Effect of user density

Figure 4 shows the variation of success rate with respect
to the number of users in a service area of around 100 base
stations. The results show that the success rate with MT, PF
and RR methods dramatically decays with the increase of
the number of users. On the other hand, LSORAS maintains
higher success rates even with a load ratio 30:1 users per BS,
while the decay is not as severe as with the other methods.
The optimal solution provided by branch and cut keeps a small
advantage over LSORAS. However, for a large number of
users, the BaC computation becomes very expensive in terms
of memory, power and time compared to LSORAS.
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D. Effect of user required capacity

Figure 5 shows the variation of success rate as a function
of required capacity. The results show that LSORAS proves
superiority over MT, PF, and RR, even when the required user
capacity is as high as 5 Mbps. Results show a smooth slow
decay in SR, almost linearly from values slightly lower than
100% at 0.5 Mbps, to around 65% at 5 Mbps, compared to
steeper decay in PF and RR. Those results show the robustness
of LSORAS against higher QoS.
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V. CONCLUSION

This work has considered the case of linear services pro-
vided by a broadband network. We designed a new linear-
service oriented resource allocation strategy (LSORAS) which
manages to maximize the number of served users in a certain
service area. Numerical results have been presented to verify
the effectiveness of the proposed algorithm. Comparison to the
optimal solution in terms of success rate showed that LSO-
RAS results are very close to optimal, with significantly less
computational resources. The results have shown a significant
increase in success rate compared to other algorithms. The
results also showed the robustness of the algorithm against
user density and higher required QoS. It also showed that
unlike the other algorithms, LSORAS manages to save a sig-
nificant portion of RBs for other services, or power reduction.
Undoubtedly, this work could be easily extended to broadcast
and multicast mode and will be considered in future research
directions.
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