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Abstract—This paper proposes and analyzes a stochastic multi-
agent opinion dynamics model. We are interested in a multi-
leveled opinion of each agent which is randomly influenced
by the binary actions of its neighbors. It is shown that, as
far as the number of agents in the network is finite, the
model asymptotically produces consensus. The consensus value
corresponds to one of the absorbing states of the associated
Markov system. However, when the number of agents is large,
we emphasize that partial agreements are reached and these
transient states are metastable, i.e., the expected persistence
duration is arbitrarily large. These states are characterized using
an N-intertwined mean field approximation (NIMFA) for the
Markov system. Numerical simulations validate the proposed
analysis.

Index Terms—Opinion dynamics, Social computing and net-
works, Markov chains, agent based models

I. INTRODUCTION

Understanding opinion dynamics is a challenging problem
that has received an increasing amount of attention over the
past few decades. The main motivation of these studies is to
provide reliable tools to fight against different addictions as
well as propagation of undesired unsocial behaviors/beliefs.
One of the major difficulties related to opinion dynamics is
the development of models that can capture many features
of a real social network [1]. Most of the existing models
assume that individuals are influenced by the opinion of their
neighbors [2], [3], [4], [5], [6], [7]. Nevertheless, it is very hard
to estimate these opinions. In order to relax this constraint of
measuring the opinions and to model more realistic behaviors,
a mix of continuous opinion with discrete actions (CODA) was
proposed in [8]. This model reflects the fact that even if we
often face binary choices or actions which are visible by our
neighbors, the opinions evolve in a continuous space of values
which are not explicitly visible to the neighbors. A multi-agent
system with a CODA model was proposed and analyzed in [9].
It was shown that this deterministic model leads to a variety
of asymptotic behaviors including consensus.

Due to the complexity of the opinion dynamics, we believe
that stochastic models are more suitable than deterministic
ones. Indeed, we can propose a realistic deterministic update
rule but many random events will still influence the interaction
network and consequently the opinion dynamics. For this
reason, we consider that it is important to reformulate the
model from [9] in a stochastic framework, specifically, as an
interactive Markov chain. Similar approaches for the Deffuant

and Hegselmann-Krause models have been considered in the
literature (see for instance [10], [11]). Although the asymptotic
behavior of the model can be given by characterizing the
absorbing states of the Markov chain, the convergence time
can be arbitrarily large. Moreover, transient but persistent local
agreements, called metastable equilibria, are very interesting
because they describe the finite-time behavior of the network.
Consequently, we consider in this paper an N-intertwined
mean field approximation (NIMFA) based approach in order
to characterize the metastable equilibria of the Markov system.
It is noteworthy that NIMFA was successfully used to analyze
and validate some epidemiological models [12], [13].

In this work, we model the social network as a multi-agent
system in which each agent represents an individual whose
state is his opinion. This opinion can be understood as the
preference of the agent towards performing a binary action, i.e.
action can be 0 or 1. These agents are interconnected through
an interaction directed graph, whose edge weights represent
the trust given by an agent to his neighbor. We propose
continuous time opinion dynamics in which the opinions are
discrete and belong to a given set that is fixed a priori. Each
agent is influenced randomly by the actions of his neighboring
agents and consequently influences its neighbors. Therefore
the opinions of agents are an intrinsic variable that is hidden
from the other agents, the only visible variable is the action.
As an example, consider the opinion of users regarding two
products Coca-cola and Pepsi. A user may prefer Coca-cola
strongly, while some other users might be more indifferent.
However, what the other users see (and is therefore influenced
by) is only what the user buys, which is the action taken.

Our goal here is to analyze the behavior of the opinions
in the network under the proposed stochastic dynamics. One
of the main results states that the opinions always asymp-
totically reach a consensus defined by one of the extreme
opinions. Nevertheless, for large networks, we emphasize that
intermediate local agreements are reached and preserved for
a long duration of time. The contributions of this paper
can be summarized as follows. Firstly, we formulate and
analyze a stochastic version of the CODA model proposed
in [9]. Secondly, we characterize the local agreements which
are persistent for a long duration by using the NIMFA for
the original Markov system. Thirdly, we give a complete
characterization of the system behavior under symmetric all-
to-all connection assumption. Finally, we provide conditions



for the preservation of the main action inside one cluster as
well as for the propagation of actions.

The rest of the paper is organized as follows. Section
II introduces the main notation and concepts and provides
a description of the model used throughout the paper. The
analysis of the asymptotic behavior of opinions described
by this stochastic model is provided in Section III. The
presented results are valid for any connected networks with
a finite number of agents. Moreover Section III contains the
description of the NIMFA model and an method to compute
its equilibria. In Section IV, we analyze the particular network
in which each agent is connected to all the others. In this case,
we show that only three equilibria exist and two of them are
stable, and correspond to the absorbing states of the system.
Section V presents the theoretical analysis of the system under
generic interaction networks. It also emphasizes conditions
for the preservation of the main action (corresponding to a
metastable state) in some clusters as well as conditions for the
action propagation. The results of our work are numerically
illustrated in Section VI. The paper ends with some concluding
remarks and perspectives for further developments.
Preliminaries: We use E for the expectation of a random
variable, 1A(x) the indicator function which takes the value
1 when x ∈ A and 0 otherwise, R+ the set of non-negative
reals and N = {1, 2, . . . } the set of natural numbers..

II. MODEL

Throughout the paper we consider N ∈ N an even
number of possible opinion levels, and the set of agents
K = {1, 2, . . . ,K} with K ∈ N. Each agent i is characterized
at time t ∈ R+ by its opinion represented as a scalar
Xi(t) ∈ Θ where Θ = {θ1, θ2, . . . , θN} is the discrete set of
possible opinions, such that θn ∈ (0, 1)\{0.5} and θn < θn+1

for all n ∈ {1, 2, . . . , N}. Moreover Θ is constructed such
that θN/2 < 0.5 and θN/2+1 > 0.5. In the following let
us introduce some graph notions allowing us to define the
interaction structure in the social network under consideration.

Definition 1 (Directed graph): A weighted directed graph
G is a couple (K, A) with K being a finite set denoting the
vertices, and A being a K × K matrix, with elements aij
denoting the trust given by i on j. We say that agent j is a
neighbor of agent i if aij > 0.
We denote by τi the total trust in the network for agent i as
τi =

∑K
j=1 aij . Agent i is said to be connected with agent j

if G contains a directed path from i to j, i.e. if there exists
at least one sequence (i = i1, i2, . . . , ip+1 = j) such that
aik,ik+1

> 0, ∀k ∈ {1, 2, . . . , p}.

Definition 2 (Strongly connected): The graph G is strongly
connected if any two distinct agents i, j ∈ K are connected.
In the sequel we suppose the following holds true.

Assumption 1: The graph (K, E) modeling the interaction
in the network is strongly connected.

Symbol Meaning
Θ Set of opinion values, |Θ| = N , with N even.
K Set of agents, |K| = K
βn Willingness to shift opinion, with current opinion θn ∈ Θ
Xi(t) Opinion of agent i at time t, Xi(t) ∈ Θ

Qi(t)
Action of agent i at time t
Qi(t) = bXi(t)e ∈ {0, 1}

aij Trust of agent i in agent j

τi
Trust of agent i in the network

τi =
∑

j∈K aij
vi,n(t) Probability that Xi(t) = θn

Ri(t)
Influence on i to shift opinion to 1

Ri(t) =
∑

j∈K aijQj(t)

Li(t)
Influence on i to shift opinion to 0
Li(t) =

∑
j∈K aij(1−Qj(t))

ri(t)
Expected influence on i to shift opinion to 1

ri(t) =
∑

j∈K aij
∑N

n=N/2+1 vj,n(t)

li(t)
Expected influence on i to shift opinion to 0

li(t) =
∑

j∈K aij
∑N/2

n=1 vj,n(t)

νn(t)
Expected fraction of population

with opinion θn, νn =
∑

i∈K
vi,n(t)

K

ν+(t),
ν−(t)

Expected fraction of population
with action 1, ν+(t) =

∑
i∈K

∑N
n=N/2+1

vi,n(t)

K

or action 0, ν− =
∑

i∈K
∑N/2

n=1
vi,n(t)

K

νCn (t)
Expected fraction of population in C ⊆ K
with opinion θn, νCn (t) =

∑
i∈C

vi,n(t)

|C|

νC+ (t),
νC−(t)

Expected fraction of population in C ⊆ K
with action 1, νC+ =

∑
i∈C

∑N
n=N/2+1

vi,n(t)

|C|

or action 0, νC− =
∑

i∈C
∑N/2

n=1
vi,n(t)

|C|

TABLE I: Notations used

The action Qi(t) taken by agent i at time t is defined by the
opinion Xi(t) through the following relation

Qi(t) = bXi(t)e,

where b.e is the nearest integer function. This means that
if an agent has an opinion more than 0.5, it will take the
action 1 and 0 otherwise. This kind of opinion quantization
is suitable for many practical applications. For example, an
agent may support the left or right political party, with various
opinion levels (opinions close to 0 or 1 represents a stronger
preference), however, in the election, the agent’s action is to
vote with exactly two choices (left or right). Similarly, an
agent might have to choose between two cars or other types
of merchandise like cola as mentioned in the introduction.
Although its preference for one product is not of the type 0
or 1, its action will be, since it cannot buy fractions of cars,
but one of them. For ease of exposition, we provide Table I,
a list of notations and their meanings.

A. Opinion dynamics

In this work, we look at the evolution of opinions of the
agents based on their mutual influence. We also account for
the inertia of opinion, i.e., when the opinion of the agent
is closer to 0.5, he is more likely to shift as he is less
decisive, whereas someone with a strong opinion (close to
1 or 0) is less likely to shift his opinion as he is more
convinced by his opinion. The opinion of agent j may shift



towards the actions of its neighbors with a rate βn while
Xj(t) = θn. If no action is naturally preferred by the opinion
dynamics, then we construct θn = θN+1−n and assume that
βn = βN+1−n for all n ∈ {1, 2, . . . , N}. At each time t ∈ R+

we denote the vector collecting all the opinions in the network
by X(t) = (X1(t), . . . , XK(t)). Notice that the evolution
of X(t) is described by a continuous time Markov process
with NK states and its analysis is complicated even for small
number opinion levels and relatively small number of agents.
The stochastic transition rate of agent i shifting its opinion to
the right, i.e. to have opinion θn+1 when at opinion θn, with
n ∈ {1, 2, . . . , N − 1}, is given by

βn

N∑
j=1

aij1(0.5,1](Xj(t)) = βn

K∑
j=1

aijQj(t) = βnRi(t).

Similarly, the transition rate to the left, i.e. to shift from θn to
θn−1 is given by

βn

N∑
j=1

aij1[0,0.5)(Xj(t)) = βn

N∑
j=1

aij(1−Qj(t)) = βnLi(t).

for n ∈ {2, . . . , N}. Therefore, we can write the infinitesimal
generator Mi,t (a tri-diagonal matrix of size N × N ) for an
agent i as:

Mi,t =

−β1Ri(t) β1Ri(t) 0 . . .
β2Li(t) −β2τi β2Ri(t) . . .

...

 (1)

with elements corresponding the n-th rown and m-th column
given by Mi,t(m,n) and

∀n ∈ {1, . . . , N − 1}, Mi,t(n, n+ 1) = βnRi(t),

∀n ∈ {2, . . . , N}, Mi,t(n, n− 1) = βnLi(t),

∀|m− n| > 1, Mi,t(m,n) = 0

and

Mi,t(n, n) =

 −β1Ri(t) for n = 1,
−βnτi for n ∈ {2, . . . , N − 1},
−βNLi(t) for n = N.

Let vi,n(t) := E[1{θn}(Xi(t))] = Pr(Xi(t) = θn) be the
probability for an opinion level θn for user i at time t. Then,
in order to propose an analysis of the stochastic process intro-
duced above, we may consider the mean-field approximation
by replacing the transitions by their expectations. Then, the
expected transition rate from state n to state n+1 for K →∞,
is given by:

βn

K∑
j=1

aijE
[
1(0.5,1](Xj(t))

]
= βn

K∑
j=1

aij

N∑
n=N/2+1

vj,n(t).

We have similar expression for transition between state n and
n− 1.

III. STEADY STATE ANALYSIS

Define by θ̄− = (θ1, . . . , θ1) and θ̄+ = (θN , . . . , θN ) the
states where all the agents in the network have an identical
opinion, which correspond to the two extreme opinions.

Proposition 1: Under Assumption 1, the continuous time
Markov process X(t), with (1) as the infinitesimal generators
corresponding to each agent, has exactly two absorbing states
X(t) = θ̄+ and X(t) = θ̄−.

Proof: We can verify that θ̄+ and θ̄− are absorbing states
by evaluating the transition rates using (1). If X(t) = θ̄−, then
Xi(t) = θ1 for all i, and the transition rate is

(1, 0, . . . , 0)Mi,t = (−β1Ri(t), β1Ri(t), 0, . . . , 0). (2)

but as Xi = θ1 for all i, Qi(t) = 0 for all i and so we have
Ri(t) = 0 for all i. Therefore the transition rate from this state
is 0. We can similarly show that θ̄+ is also an absorbing state.

Next, we show that no other state can be an absorbing state.
Consider any state with at least one agent i such that Xi(t) =
θn with 1 < n < N . The transition rate from such a state is
never 0, which can is easy to see, as we have Mi,t(n, n) =
βnτi.

This implies that as long as such an agent exists, the global
state is not an absorbing state. The only states which are
not θ̄+, θ̄− or such a state are those satisfying the following
property. Consider Xi(t) = θ1 for all i ∈ S and Xi(t) = θN
for all i ∈ K \ S with S ⊂ K and 1 < |S| < K. As the graph
is strongly connected, there is at least one agent k in S, which
is directly connected to some agent l in K \ S, i.e. ak,l > 0.
The transition rate of this k is given by

(−β1Rk(t), β1Rk(t), 0, . . . , 0)

As ak,l > 0 and Ql(t) = 1 as all agents outside S has
opinion θN , we have Rk(t) > 0. Therefore such a state is
also never an absorbing state, which concludes our proof that
θ̄+ and θ̄− are the two absorbing states and no other state is
an absorbing state.

Considering the NIMFA approximation, we get that the
dynamics of the opinion for an agent i are given by:

v̇i,1 = −β1rivi,1 + β2livi,2
v̇i,n = −βnrivi,n + βn+1livi,n+1

−βnlivi,n + βn−1rivi,n−1
v̇i,N = −βN livi,N + βN−1rivi,N−1

(3)

for all i ∈ K and 1 < n < N where

li =
∑
j∈K aijE[1−Qj ]

=
∑
j∈K

∑N/2
n=1 aijvj,n,

ri =
∑
j∈K aijE[Qj ]

=
∑
j∈K

∑N
n=N/2+1 aijvj,n.

(4)

and
∑
n vi,n = 1.



We can easily verify that Xi = θ1, i.e. vi,1 = 1 for all i is
an equilibrium for the above set of equations. When vi,1 = 1
for all i, vi,n = 0 for all n ≥ 2 and as a result, li = τi
and ri = 0 for all i which gives v̇i,n = 0 for all i, n. Apart
from the extreme solutions θ̄+ and θ̄−, the non-linearity of
system (3) could give rise to the existence of interior rest
points which are locally stable. Such rest points are referred
to as metastable states in Physics. Metastability of Markov
processes is precisely defined in [14], where the exit times
from these metastable states are shown to approach infinity.

For a given ri = E[Ri(t)], the equilibrium state v∗i,n must
satisfy the following conditions

0 = −β1 riτi v
∗
i,1 + β2( τi−riτi

)v∗i,2
0 = −βnv∗i,n + βn+1( τi−riτi

)vi,n+1

+βn−1
ri
τi
v∗i,n−1

0 = −βN ( τi−riτi
)v∗i,N + βN−1

ri
τi
v∗i,N−1

(5)

We can write any v∗i,n based on v∗i,1, by simplification as

v∗i,n =
β1
βn

(
ri

τi − ri

)n−1
v∗i,1. (6)

As the sum of vi,n over n must be 1, we can solve for v∗i,1
as

v∗i,1 =
1∑N

n=1
β1

βn

(
ri

τi−ri

)n−1 . (7)

We then can use this relationship to construct a fixed-point
algorithm that computes a rest-point of the global opinion
dynamics for all users.

Algorithm outline: The algorithm involves initializing v
to a random value. Then, this v can be used to compute
the corresponding ri and li with (4), which is then used to
compute the associated v with (6). Repeating this recursively
results in a fixed point of the NIMFA which is a potential
metastable equilibrium. Other potential equilibria can be found
by initializing with another random v.

Additionally, we can obtain some nice properties on the re-
lation between ri and vi,n by studying the following function.

Lemma 1: Consider the function f : [0, 1] → [0, 1] defined
as

f(x) :=

∑N
n=N/2+1

β1

βn

(
x

1−x

)n−1
∑N
n=1

β1

βn

(
x

1−x

)n−1 (8)

for all x ∈ [0, 1) and with f(1) = 1. We have that f(x) is
a monotonically increasing continuous function and takes the
values f(0) = 0, f(0.5) = 0.5 and limx→1 f(x) = 1.

Proof:
We can easily verify that

f(0) =
0

1 + 0 + . . .
= 0

As βn is assumed to be symmetric around N/2, i.e. β1 = βN
etc., we have

f(0.5) =

∑N
N/2+1 βn∑N

1 βn
= 0.5

In order to simplify differentiations, we use some additional
variables, ξ = x

1−x ,

p = β1 + β2ξ + . . . βN/2ξ
N/2−1

and
q = β1ξ

N + β2ξ
N−1 + . . . βN/2ξ

N/2

which gives f(x) = q
p+q . As q = 1 + . . . , q

p+q is continuous
at all points except when ξ is a pole, i.e., when x = 1.
Therefore if we show that f(x) is continuous at x = 1, f(x)
is continious is [0, 1]. For this, we use L’Hôpital’s rule to
calculate limx→1 f(x), which is

lim
ξ→∞

β1ξ
N + β2ξ

N−1 + . . . βN/2ξ
N/2

β1 + β2ξ + . . . βNξN
(9)

Applying L’Hôpital’s rule recursively N times, we get this
to be 1. Therefore, we have shown that our function f(x) is
continuous in [0, 1]. Next, we show that it is monotonic. We
have

(f)′ = q′(p+q)−(p′+q′)q
(p+q)2

=
(
q
p

)′
p2

(p+q)2

(10)

where (·)′ = d(·)
dξ . We see that dξdx ≥ 0. Therefore, if

(
q
p

)′
≥

0, then we have the monotonicity and increasing property. This
can be verified by simplifying it as(

q

p

)′
=

N∑
n=N/2+1

(
βnξ

n−1

p

)′
(11)

Each of these terms in the sum are positive and so we have
shown that the first derivative of f(x) w.r.t x is positive.

We can use f( ri
τi−ri ) to calculate the probability that an

agent i will take the action 1, i.e.,
∑N
n=N/2+1 v

∗
i,n = f( ri

τi−ri )
from (7) and (6).

IV. COMPLETE GRAPH WITH IDENTICAL CONNECTIONS

Let us first consider a simple graph structure in which each
agent is identically influenced by all the others agents i.e., with
ai,j = 1 for all i, j ∈ K and i 6= j, and ai,i = 0. We use νn to
denote the expected fraction of the population of agents with
opinion θn. This is simply

νn =
E[
∑
i∈K 1(Xi = θn)]

K
=

∑
i∈K vi,n

K
.

Also recall that we introduced the following notation ν− :=(∑N/2
n=1 νn

)
and ν+ =

(∑N
n=N/2+1 νn

)
. Under this specific

graph structure, we have



lim
K→∞

ri
τi

=
1

τi

∑
j∈K

aij

N∑
n=N/2+1

vj,n

= ν+ −
∑N
n=N/2+1 vi,n

K
= ν+

(12)

for any i ∈ K. Therefore, using (3) and the fact that ν̇n =∑
i∈K

v̇i,n
K

we can get the dynamics of ν̇n, ∀n ∈ K. Moreover,

following (12), for large values of K we can approximate this
dynamics as:

ν̇1
K − 1

= −β1ν1ν+ + β2ν2ν−,

ν̇n
K − 1

= −βnνn + βn+1νn+1ν−

+βn−1νn−1ν+, ∀n ∈ {2, 3, . . . , N − 1},
ν̇N

K − 1
= −βNνNν− + βN−1νN−1ν+.

(13)
where ν+ =

∑N
n=N/2+1 νn and ν− =

∑N/2
n=1 νn.

Theorem 1: When N ≥ 4, βn > 0 and βn = βN−n+1 for all
n ∈ {1, 2, . . . , N}, the dynamics described in (13) has exactly
three equilibrium points at (1, 0, . . . ), (0, . . . , 0, 1) and at a
point with ν+ = ν− = 0.5. The first two equilibrium points
correspond to the absorbing states and are stable, while the
third fixed point is an unstable equilibrium (not metastable).

Proof: Let us notice that:
• if ν1 = 1 and νn = 0 for all n > 1 one gets ν+ = 0;
• if νN = 1 with νn = 0 for all n < N one gets ν− = 0.
Consequently is straightforward to verify that (1, 0, . . . ),

(0, . . . , 0, 1) are equilibria of (13).
Another equilibrium point of (13) is obtained for νn = ω

βn
,

with 1
ω :=

∑N
i=1

1
βi

. Indeed, for this point one has ν+ = ν− =
0.5 and consequently, the right hand side of (13) becomes
−ω2 + ω

2 or −ω + ω
2 + ω

2 which are all 0.
Next, we show that no other equilibrium exists. For this, we

suppose by contradiction that there exists some 0 < ν+ < 1,
ν+ 6= 0.5 such that ν+ = f(ν+). If such a ν+ exists, then that
corresponds to another equilibrium point. However, notice that

ν+
1− ν+

=

∑N
i=N/2+1

β1

βi

(
ν+

1−ν+

)i−1
∑N/2
i=1

β1

βi

(
ν+

1−ν+

)i−1 (14)

replacing ν+
1−ν+ by ξ and accounting for βn = βN−n+1

(symmetry), we must have

N/2∑
i=1

β1
βn

(ξ − 1)ξi−1 = 0 (15)

for an equilibrium point. However, ξ = 1 corresponds to
ν+ = 0.5. As ξ > 0, the above equation is never satisfied
unless β1 = 0 (which also means βN = 0). Hence, by
contradiction, we prove that the only three equilibrium points
are those described.

In order to study the stability of these equilibrium points,
we look at the Jacobian and its eigenvalues. If we denote the

Jacobian elements by Ji,j , where Ji,j =
∂ν̇i
∂νj

, then for all

1 < i ≤ N
2 , and for all N

2 < j < N , we have:

J1,1 = β2ν2 − β1ν+, Ji,i = βi+1νi+1 − βi,
Jj,j = βj−1νj−1 − βj , JN,N = βN−1νN−1 − βNν−/

We also have ∀ 2 < i ≤ N/2, J1,i = β2ν2, and

∀N/2 < i ≤ N − 2, J1,i = −β1ν1,

∀ 2 < i ≤ N/2, JN,i = −βNνN ,

∀N/2 < i ≤ N − 2, JN,i = βN−1νN−1.

For all i, j ∈ {2, 3, . . . , N−1} such that |i−j| > 1 we have
Ji,j = βi+1νi+1 when j ≤ N/2 and Ji,j = βi−1νi−1 when
j > N/2. Next, we have J1,2 = β2 (ν2 + ν−) and JN−1,N =
βN−1 (νN−1 + ν+). For all i, j ∈ {2, 3, . . . , N − 1} such that
|i− j| = 1 we have

Ji,i+1 = βkνk + βi+1ν−

where k = i + 1 if i + 1 ≤ N/2 and k = i− 1 otherwise;
and

Ji,i−1 = βkνk + βi−1ν+

where k = i+ 1 if i− 1 ≤ N/2 and k = i− 1 otherwise.
At the absorbing state (1, 0, . . . , 0), we have the Jacobian

evaluated to have diagonal elements to be 0, −β2 , β3 etc.
Additionally, the Jacobian becomes an upper triangular matrix
as νn = 0 for all n > N/2. Therefore, the eigenvalues are
the elements of the diagonal, which are non-positive and this
corresponds to a stable equilibrium. By symmetry, we have
the same result for the other absorbing state.

When
(∑N/2

m=1 νm

)
= 0.5, we have that the fixed point

corresponding to this distribution satisfies νnβn = ω for some
K > 0. Thus, the first column of the Jacobian can be written
as

(K − β1
2
, ω +

β1
2
, ω, . . . ,K,−K)T

The columns j for 2 ≤ j ≤ N/2 are of the form

(ω, . . . , ω +
βj
2
, ω − βj , ω +

βj
2
, . . . , ω,−ω)T

where ω+
βj

2 is the diagonal term of the Jacobian. The j-th
column where N/2 < j ≤ N − 1 is of the form

(−ω, ω, . . . , ω +
βj
2
, ω − βj , ω +

βj
2
, . . . , ω)T

Finally, the N -th column is given by

(−ω, ω, . . . , ω, ω +
βN
2
, ω − βN

2
)T

The above matrix is such that each column has exactly one
element which is −ω either at the first row (after column



index is more than N/2) or at the last row. If we subtract
ω(N − 2)I from this matrix, it’s determinant becomes 0.
This can be verified using the properties of determinants that
adding a scalar times a row to another row does not change
the determinant. We replace the first row with the sum of all
rows and this results in the first row becoming all zeroes. This
implies that one of the eigenvalues of the Jacobian is ω(N−2)
which is positive. Therefore, the equilibrium at ν+ = ν− = 0.5
is unstable.
The previous theorem characterizes the behavior of the agents’
opinion in all-to-all networks with identical connections. Ba-
sically, this result states that beside the two stable equilibria in
which all the agents rich consensus we may have a metastable
equilibria in which the opinions are symmetrically displaced
with respect to 0.5.

V. GENERIC INTERACTION NETWORKS

A way to model generic interaction networks is to consider
that they are the union of a number of clusters (see for instance
[7] for a cluster detection algorithm). Basically a cluster C is
a group of agents in which the opinion of any agent in C is
influenced more by the other agents in C, than agents outside
C. When the interactions between cluster are deterministic
and very weak, we can use a two time scale-modeling as in
[15] to analyze the overall behavior of the network. In the
stochastic framework and knowing only a quantized version
of the opinions we propose here a development aiming at
characterizing the majority actions in clusters. The notion of
cluster can be mathematically formalized as follows.

Definition 3 (Cluster): A subset of agents C ⊂ K defines a
cluster when, for all i, j ∈ C and some λ > 0.5 the following
inequality holds

aij ≥ λ
τi
|C|

. (16)

The maximum λ which satisfies this inequality for all i, j ∈ C
is called the cluster coefficient.

One question that can be asked in this context is what are
the sufficient conditions for the preservation of actions in a
cluster, i.e. regardless of external opinions, agents preserve
the majority action inside the cluster C for long time. At the
limit, all the agents will have identical opinions corresponding
to an absorbing state of the network but, clusters with large
enough λ may preserve their action in metastable states (long
time).

For any given set of agents C ⊂ K, let us denote that

νC− =

∑
j∈C

∑N/2
n=1 vj,n

|C|
,

and

νC+ =

∑
j∈C

∑N
n=N/2+1 vj,n

|C|
.

Those values represent the expected fraction of agents
within a set C with action 0 and 1, respectively. We also
denote by νCn , the average probability of agents in a cluster

to have opinion θn, i.e., νCn =
∑

i∈C vi,n
|C| . Now we can use

the definition of a cluster given in (16) to obtain the following
proposition.

Proposition 2: The dynamics of the average opinion prob-
abilities in a cluster C ⊂ K can be written as:

ν̇C1
κ

= −β1νC1
(
λνC+ + (1− λ)δ

)
+β2ν

C
2

(
λνC− + (1− λ)(1− δ)

)
ν̇Cn
κ

= −βnνCn + βn+1ν
C
n+1

(
λνC− + (1− λ)(1− δ)

)
+βn−1ν

C
n−1

(
λνC+ + (1− λ)δ

)
ν̇CN
κ

= −βNνCN
(
λνC− + (1− λ)(1− δ)

)
+βN−1ν

C
N−1

(
λνC+ + (1− λ)δ

)
(17)

where κ =
∑

i∈C τi
|C| and δ ∈ [0, 1].

Proof: Consider ri
τi

for any agent i ∈ C. We can give a
lower bound on it using (16) as

ri
τi

≥
∑
j∈C

aij
τi

∑N
n=N/2+1 vj,n

⇒ ri
τi
≥ λ

|C|
∑
j∈C

∑N
n=N/2+1 vj,n

⇒ ri
τi
≥ λνC+

(18)

Applying the same derivation for li, we get liτi ≥ λν
C
− . Since

li + ri = τi, we always have λνC+ ≤ ri
τi
≤ λνC+ + (1 − λ).

Thus, we can always rewrite the dynamics of a single agent
in the cluster as

v̇i,1
τi

= −β1ν1
(
λνC+ + (1− λ)δi

)
+β2ν2

(
λνC− + (1− λ)(1− δi)

)
v̇i,n
τi

= −βnνn + βn+1νn+1

(
λνC− + (1− λ)(1− δi)

)
+βn−1νn−1

(
λνC+ + (1− λ)δi

)
v̇i,N
τi

= −βNνN
(
λνC− + (1− λ)(1− δi)

)
+βN−1νN−1

(
λνC+ + (1− λ)δi

)
(19)

where δi ∈ [0, 1]. By taking the sum of each equation over
the cluster and dividing by |C|, we get the averages. Each
term on the right hand side has a constant factor of the type
(li + ri)βmνnλν

C
+ and an additional perturbation term of the

type (li + ri)βmνn(1− λ)δi. The addition of the first type of
terms and division by |C| simply becomes κβmνnλνC+ , with
m being n− 1,n or n+ 1. The averaging of the perturbation
terms results in a value between 0 and κβmνn(1−λ) as all δi
are in [0, 1]. This can be therefore be written as in (17) with
a new δ ∈ [0, 1].

The result above shows that instead of looking at individual
opinions of agents inside a cluster, we can provide equation
(17) for the dynamics of the expected fraction of agents in a
cluster with certain opinions. Using proposition 2 and theorem
1, we can immediately obtain some interesting properties for
a cluster.

Corollary 1: Let C be a cluster with coefficient λ→ 1. Then
the cluster has two metastable equilibria at νC = (1, 0, . . . , 0),



νC = (0, . . . , 0, 1) and one unstable equilibrium correspond-
ing to νC+ = 0.5.

This result holds as if λ → 1, (17) simply becomes (13)
and therefore the equilibrium points of (13) must correspond
to those of (17), but with the fraction of population being the
fraction of agents within the cluster and not the whole graph.
For example, consider that K = C1 ∪ C2 with C1 ∩ C2 = ∅
and |C1|, |C2| → ∞. Additionally, aij = 1 for all i, j ∈ C1,
and for all i, j ∈ C2. Finally, we have a set A1 ⊂ C1 and
A2 ⊂ C2 such that aij = 0 = aji = 0 for all i ∈ C1 \ A1

and j ∈ C2 \ A2, but aij = aji = 1 for all i ∈ A1 and
j ∈ A2. If |A1| < ∞ and |A2| < ∞, then we have that
λ1 → 1, λ2 → 1 which are the cluster coefficients for C1 and
C2. In this example, the graph is connected and so the only
two absorbing states must be when all opinions are θ1 or θN
as shown in proposition 1. Corollary 1 implies that if there
are two clusters, each with its λ coefficient close to 1 but not
1, then each cluster can stay with contradicting actions in a
metastable state. Such a state is not an absorbing state for the
system, but can be held for an arbitrarily long duration.

A. Action preservation

We have shown that if a cluster has its coefficient λ → 1,
then it can preserve its action as if it starts with all agents
with opinion θ1 or θN , this state is a stable state and therefore
the local action of the cluster is preserved regardless of
the external opinions. However, one problem we want to
investigate is if this property hold for other λ < 1. The
following proposition provides a necessary condition for a
cluster to preserve its action and not collapse to external
perturbations.

Proposition 3: A necessary condition for C with coefficient
λ to preserve its action in a metastable state is if ∃x ∈ (0.5, 1)
such that x = f(λx). If no such x exists, then the only
equilibrium when the perturbation term δ = 1 from (17) is
at νC+ = 1, and when δ = 0, the equilibrium is at νC+ = 0.

Proof: The dynamics of the cluster average opinions
follow equation (17). We look for equilibrium points for this
dynamics under certain values of δ. To find the equilibrium
points, we set the left hand side to 0 in (17). For a given δ,
by definition of f(·), we obtain that if νC+ is the fraction of
agents with action 1 in the cluster, then it must satisfy

νC+ = f(λνC+ + (1− λ)δ) (20)

Having δ = 0 implies that the agents that interact with the
agents in the cluster from outside the cluster have all action 0.
If νC+ > 0 is an equilibrium point even with δ = 0, this means
that regardless of external opinion, the cluster can preserve an
action 1. This is true because f(·) is a monotonic function and
therefore f(λνC+ + (1− λ)δ) ≥ f(λνC+ ) for all δ ≥ 0.

From the properties of f(·) we know that it is monotonic
and takes f(x) = x only when x = 0, .5, 1. Additionally, as
f(x) < x when x→ 0, and as f(·) is continuous, f(λx) < x
for all x < 0.5 except at x = 0. However, x = 0 corresponds
to the state ν+ = 0 which means that this equilibrium is not

preserved. If an x > 0.5 exists such that x = f(λx), then
regardless of the actions outside C, i.e. δ, we will have νC+ ≥ x
as a possible equilibrium.

By studying the opposite case with the majority action
inside the cluster being 0 and external opinion 1, we get
1 − x = f(λ(1 − x)) with 1 − x > 0.5, which means that
the same condition holds for preserving the action 0 as well,
to get νC− ≥ x.

B. Propagation of actions

In the previous subsection, we have seen that a cluster C
can preserve its majority action regardless of external opinion
if it has a sufficiently large λ. If there are agents outside C
with some connections to agents in C, then this action can
be propagated. Let τCi =

∑
j∈C aij denote the total trust of

agent i in the cluster C. Let the cluster C be such that it has
λ large enough so that ν̄C+ > 0.5 exists where ν̄C+ = f(λν̄C+ ).

Proposition 4: If the cluster C is preserving an action 1 with
at least a fraction ν̄C+ of the population in C having action 1,
then the probability of any agent i ∈ K \C to chose action 1
at equilibrium is lower bounded as follows.

Pr(Qi = 1) ≥ f
(
ν̄C+

τCi
τi

)
. (21)

Proof: We know that at equilibrium, we must have:

N∑
n=N/2+1

vi,n = f

(
ri
τi

)
(22)

by definition of f(·), (7) and (6). However, we can lower
bound Ri as

ri ≥
∑
j∈C

aij

N∑
n=N/2+1

vj,n (23)

Since the cluster C has an action 1 by at least ν̄C+ of its
population, we have

N∑
n=N/2+1

vj,n ≥ f
(
λν̄C+

)
(24)

for any j ∈ C. As f(λν̄C+ ) = ν̄C+ , we have

ri ≥ ν̄C+
∑
j∈C

aij (25)

Therefore, ri ≥ ν̄C+τCi and so we have

N∑
n=N/2+1

vi,n ≥ f
(
ν̄C+

τCi
τi

)
(26)

VI. NUMERICAL RESULTS

For all simulations studied, unless otherwise mentioned, we
take Θ = {0.2, 0.4, 0.6, 0.8}, β1 = β4 = 0.01 per unit of time
and β2 = β3 = 0.02 per unit of time.



A. General graph

First, we perform some simulations to validate our NIMFA
model for the opinion dynamics. For this purpose, we construct
a graph with K = 120 partitioned into two sets B1 =
{1, . . . , 40} and B2 = {41, . . . , 120}. We take aij = 1 if
a connection exists and 0 otherwise. Connections between
agents belonging to the same set (B1 or B2) are established
randomly with a probability of 0.3 and connections from B1

to B2 and vice-versa are established with probability of 0.02.
For one such randomly generated graph (K, A), we study

the opinion dynamics both by simulating a continuous time
Markov chain and by looking at the equilibrium points gen-
erated by the recursive search algorithm described in Section
III. We always start with the initial state given by

Xi(0) = 0.2 for all i ∈ B1, Xi(0) = 0.8 for all i ∈ B2.

Setting this as the initial condition, the algorithm 1 gives us the
population fraction of agents at equilibrium with action 1, i.e.,
ν+ to be 0.693. To validate this, we run several simulations
of the continuous time Markov process with the same initial
state and graph structure, and plot the resulting

∑K
i=1Qi(t).

This plot is shown in Figure 1. We observe that on average
over time, the population with action 1 in all simulations are
close to the value obtained from the NIMFA model.

Fig. 1: Simulation of
∑K
i=1Qi(t) compared to the NIMFA

metastable state. The NIMFA works remarkably well even for
K = 120.

Next we focus on the approximation done by NIMFA
for individual agent opinions. Table II shows the estimated
probability of an agent choosing action 1 for some selected
agents. This estimate is computed in each simulation by
averaging the action taken over a large time horizon during
which the system is in the metastable state. We also observed
that the system collapsed to an absorbing state 16 times when
we did 1000 simulations. Therefore, we estimate Pr(Qi = 1)
by averaging over the 984 simulations for which the system
stayed in the metastable state.

Notice that, as a result of the starting conditions and the
graph structure, most agents in B1 have a high probability
of choosing action 0 at the metastable state (equilibrium of
the NIMFA), while most agents in B2 chose action 1. Some
agents like 9 and 10 have trust in some agents of B1 as well as

Agent i Equilibrium Pr(Qi = 1) from
NIMFA Simulation 1,2,3 Simulation average

1 0.003 0 0 0.006 0.002
9 0.288 0.267 0.2 0.39 0.296

10 0.382 0.369 0.43 0.41 0.391
50 0.999 0.995 0.997 0.999 0.998
70 1 1 1 1 1
102 0.997 0.998 0.995 0.999 0.997

TABLE II: Pr(Qi = 1) at equilibrium for some selected
agents. Pr(Qi = 1) values mentioned in simulation realization
1, 2 and 3 are calculated by time averaging over t = 1000 to
t = 3000 hours and the simulation average is taken over 984
realizations.

Cluster C1

|C1| = 40

Cluster C2

|C1| = 40

Set B1

|B1| = 20

Set B2

|B2| = 20

Fig. 2: Structure of the graph. Any two agents in K may be
connected with a 0.05 probability. All agents within a cluster
are connected, and the arrows indicate directed connections.

B2. Consequently, these agents constantly shift their opinions
resulting in a more random behavior for their actions.

B. Graph with clusters

For the next set of simulations, we take another graph
structure, but with the same K as indicated in Figure 2. We first
randomly make links between any i, j ∈ K with a probability
of 0.05. When such a link exists, aij = 1 and aij = 0
otherwise. Then we construct a cluster C1, with the agents
i = 1, 2, . . . , 40, and C2 with agents i = 81, 82, . . . , 120. We
also label agents 40 < i ≤ 60 as set B1 and 60 < j ≤ 80 as
set B2. To provide the relevant cluster structure, we made the
edge weights aij = 1 for all
• i, j ∈ C1 or i, j ∈ C2, making C1 and C2 clusters

with coefficients λ1 = 0.833 and λ2 = 0.816 (for the
particular random graph generated for this simulation).

• 40 < i ≤ 60 and 1 ≤ j ≤ 20, making agents in B1 trust
C1 with τ

C1
i

τi
≥ 0.714 for all 40 < i ≤ 60.

• 60 < i ≤ 80 and 1 ≤ j ≤ 20 or 80 < j ≤ 120, making
agents in B2 trust both C1 and C2, with τ

C1
i

τi
,
τ
C2
i

τi
≥

0.444 for all 60 < i ≤ 80.
We find that the largest x satisfying x = f(λ1x) is 0.95 and

that satisfying x = f(λ2x) is 0.94. Therefore, if all agents in
C1 start with opinion 0.2 and all agents in cluster 2 start with
opinion 0.8, we predict from proposition 3 that νC1

− ≥ 0.95

and νC2
+ ≥ 0.94 in the metastable state. Additionally, applying

proposition 4 yields νB1
− ≥ f(0.95 × 0.714) = 0.85, νB2

− ,≥
f(0.95×0.444) = 0.324 and νB2

+ ≥ f(0.94×0.444) = 0.315.



Fig. 3: Simulation of
∑
i∈S Qi(t) for S = C1, C2, B1, B2. We

see that C1 and C2 preserve their initial actions as given by
proposition 3. We also see that as B1 follows only C1, it’s
action is close to C1. As B2 follows both C1 and C2 who
have contradicting actions, it has a very mixed opinion which
keeps changing randomly in time.

Simulations of the continuous time Markov chain show that
our theoretical results are valid even when the cluster size
is 40. Figure 3 plots the population fraction of agents with
action 1 within a certain set for one simulation. We look for
this value in the clusters C1 and C2 as well as the sets B1

and B2. C1 and C2 are seen to preserve their actions which
are opposite to each other. Since B1 has a significant trust in
C1 alone, the opinion of C1 is propagated to B1. However,
as B2 trusts both C1 and C2, its opinion is influenced by the
two contradicting actions resulting in having some agents with
action 1 and the rest with action 0. We repeat this for several
simulations with the same graph structure and initial opinions
to validate our results. Table III compares the predictions based
on propositions 3 and 4 with the values obtained in three of
our simulations.

Set S νS+ = E[
∑

i∈S Qi] from
Propositions Simulation 1,2,3

C1 ≤ 0.05 0.002 0.004 0.002
C2 ≥ 0.94 0.994 0.995 0.995
B1 ≤ 0.15 0.008 0.006 0.005
B2 ≥ 0.315, ≤ 0.685 0.476 0.471 0.483

TABLE III: νS+ at equilibrium for the indicated set S. Simu-
lation values are calculated by time averaging over t = 100
to t = 1000 hours.

VII. CONCLUSION

In this paper, we have proposed a stochastic multi-agent
opinion dynamics model with binary actions. Agents interact
through a network and individual opinions are influenced by
neighbors action. Our analysis based on a Markov model of
opinion dynamics show a consensus like limiting behavior for
a finite number of agents. Whereas, when this number becomes
large enough, the stochastic system can enter into a quasi-
stationary regime in which partial agreements are reached.
This type of phenomenon has been observed in all-to-all and
cluster type topologies.
Currently, we have studied the dynamics of opinion without

any external control of the network. In the future, we will
extend this by accounting for an external entity who has a
preferred action (a company selling a product for example)
and tries to control the actions of the users in a social network
by controlling the opinion of a certain subset of agents. This
can be interpreted as a company advertising for its product in
order for the other agents in the social network to choose its
product over that of a rival company.
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