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Introduction

The aim of this paper is to give precise non-asymptotic estimates to the eigenvalues associated with the prolate spheroidal wave functions (PSFWs). They are defined as the eigenvectors of the time and band-limiting operator given by the sinc-kernel

Q c f (x) = 1 -1
sin c(y -x) π(y -x) f (y) dy.

Here, we recognize the Sinc convolution kernel which is the reproducing kernel of the Paley-Wiener space of c-bandlimited functions. From another perspective, this kernel is the well-known Dyson Sine kernel which is related to the Wigner-Mehta-Dyson universality conjecture about the local statistics of the eigenvalues of random Wigner matrices. The eigenvalues λ n (c) n corresponding to Q c play important roles in a wide range of scientific area such as signal processing, mathematicalphysics, random matrices, numerical analysis including spectral methods, etc. The PSFWs have been introduced into signal processing in the work of Landau, Pollak and Slepian [START_REF] Landau | Prolate spheroïdal wave functions, Fourier analysis and uncertainty II[END_REF][START_REF] Landau | Prolate spheroïdal wave functions, Fourier analysis and uncertainty III: The dimension of the space of essentially time-and band limited signals[END_REF][START_REF] Slepian | Prolate spheroidal wave functions, Fourier analysis and uncertainty I[END_REF]. They provide an orthonormal basis of the Paley-Wiener space that is optimally concentrated in the time domain. One striking result in this field is that Ω-band limited functions that have their energy concentrated in an interval of length T are well represented by the its expansion restricted to the first 4ΩT coefficients in that basis. The heuristics of this result is predicted by Shannon's sampling theorem. Lately, the PSWFs have been used in numerical analysis [START_REF] Xiao | Prolate spheroidal wavefunctions, quadrature and interpolation[END_REF], including the numerical schemes for solving certain PDEs (see e.g. [START_REF] Wang | A Review of Prolate Spheroidal Wave Functions from the Perspective of Spectral Methods[END_REF]).

For random matrices, Dyson [START_REF] Dyson | Statistical theory of the energy levels of complex systems[END_REF], (see also the work of de Cloizeaux and Mehta [START_REF] Cloizeaux | Asymptotic behavior of spacing distributions for the eigenvalues of random matrices[END_REF][START_REF] Mehta | Random matrices[END_REF]) showed that the repulsion between eigenvalues of the Gaussian unitary ensemble (the GUE) could be described asymptotically in terms of the determinantal point process associated with the sine kernel. In particular, it is well known, see for example [START_REF] Mehta | Random matrices[END_REF][START_REF] Tao | Random Matrices: The Universality Phenomenon for Wigner Ensembles[END_REF] that if M n is an n × n random matrix from the GUE and if A n = √ nM n is the fine scaled version of M n , and if E n 2 (0, c) is the probability that there is no eigenvalues of A n in an interval of length πc and located near the centre of the bulk region of the spectrum, then E n 2 (0, c) converges as n → +∞ to the Fredholm determinant

(1.1) E 2 (0, c) = det(Id -Q πc/2 ) = ∞ j=0 1 -λ j πc/2 .
For more details on the contributions of the PSWFs on these and other applications, the reader is refereed to [START_REF] Hogan | Duration and Bandwidth Limiting: Prolate Functions, Sampling, and Applications. Applied and Numerical Harmonic Analysis Series[END_REF] and the relevant references therein.

Nowadays, there exists a rich literature devoted to the asymptotic behaviour as well as the numerical computation of the eigenvalues λ n (c) n , to cite but a few [START_REF] Bonami | Spectral Decay of Time and Frequency Limiting Operator[END_REF][START_REF] Fuchs | On the eigenvalues of an integral equation arising in the theory of band-limited signals[END_REF][START_REF] Kuznetsov | On eigen-functions of an integral equation, Mathematical problems in the theory of wave propagation[END_REF][START_REF] Landau | The eigenvalue behavior of certain convolution equations[END_REF][START_REF] Slepian | Some asymptotic expansions for prolate spheroidal wave functions[END_REF][START_REF] Widom | Asymptotic behavior of the eigenvalues of certain integral equations[END_REF]. These works show that the eigenvalues exhibit three kinds of behaviours, defined by the following three distinct regions of the spectrum via a critical index n c = 2 π c:

• The slow evolution region, where for n c -n log(c), the change in the λ n (c)'s is very slow. For most of the values of these n, we have λ n (c) ≈ λ 0 (c) ≈ 1 when c is large enough.

• The fast decay region, where for n -n c log(c) we have λ n (c) → 0 at a super-exponential speed.

• The plunge region, which is a transition region between the two previous ones. It is defined for those values of n, with |n -n c | log(c). Thus the width of this region is ≈ log(c) for c large.

Let us give more details on the literature concerning the asymptotic behaviours of the λ n (c)'s inside the three different regions. Widom in [START_REF] Widom | Asymptotic behavior of the eigenvalues of certain integral equations[END_REF] has given an asymptotic formula for the superexponential decay rate of the λ n (c). Moreover, Fuchs in [START_REF] Fuchs | On the eigenvalues of an integral equation arising in the theory of band-limited signals[END_REF] has shown that for fixed integer n ≥ 0, the eigenvalue λ n (c) converges to 1 at an optimal exponential rate. Also, Landau and Widom in [START_REF] Landau | Eigenvalue Distribution of Time and Frequency Limiting[END_REF] have given a precise asymptotic estimate, valid for c ≫ 1 of the number of eigenvalues lying in the plunge region. As a consequence of this estimate, one also has an asymptotic estimate for the eigenvalues decay inside the plunge region, as well as a precise estimate of the width of this region. More details on these different asymptotic results will be given in the next section.

Later on, we study in more details each of the previous regions. In particular, we give some precise details on the slow, medium and rapid changes in the spectrum, along the previous three regions.

While the knowledge of the asymptotic behaviour of the λ n (c)'s (either with respect to n or with respect to c for fixed n) is sufficient in some applications, recent applications of the PSWFs require the knowledge of a non-asymptotic behaviour of the λ n (c)'s within the previous regions of the spectrum. This issue is rarely explored in the literature. Recently, Israel and Osipov in [START_REF] Israel | The Eigenvalues Distribution of Time-Frequency Localization Operators[END_REF][START_REF] Osipov | Certain upper bounds on the eigenvalues associated with prolate spheroidal wave functions[END_REF] provided some non-asymptotic behaviours of the spectrum in a neighbourhood of the plunge region. More precisely, in [START_REF] Osipov | Certain upper bounds on the eigenvalues associated with prolate spheroidal wave functions[END_REF], the author has shown that

|Λ ε | ≤ 2c π + K(log c) 2 ,
where K is a constant independent of c and ε. Recently, in [START_REF] Israel | The Eigenvalues Distribution of Time-Frequency Localization Operators[END_REF], an improved non-asymptotic estimate of the eigenvalues λ n (c) in the gauge

Λ ′ ε = {k ∈ N : ε < λ k (c) ≤ 1 -ε}, ε ∈ (0, 1/2),
has been recently given. More precisely, it is shown in [START_REF] Israel | The Eigenvalues Distribution of Time-Frequency Localization Operators[END_REF] that for each η ∈ (0, 1/2],

|Λ ′ ε | ≤ 2c π + K η log(log(c) • ε -1 ) 1+η • log(c • ε -1 ),
for some constant K η , depending only on η. The present work is a new contribution in the direction of the non-asymptotic behaviours of the spectrum of Q c within its three distinct regions and not only in the neighbourhood of the plunge region.

Let us now describe the results of this paper. The first part of the paper consists in obtaining new and rather sharp estimates of the decay rate of the λ n (c)'s. Our main result in this direction may be summarized as follows:

Theorem. Under the previous notation, we have:

-For any c > 0 and any 0 ≤ n < 2c 2.7 ,

(1.2) 1 - 7 √ c (2c) n n! e -c ≤ λ n (c) < 1.
-For any c ≥ 22 and η = 0.069, we have, for

2c π + log c + 6 ≤ n ≤ c, (1.3 
) λ n (c) ≤ 1 2 exp - η n -2c π log c + 5 .
-For any c > 0 and any n ≥ max ec 2 , 2 ,

(1.4) λ n (c) ≤ exp -(2n + 1) log 2 ec (n + 1) .
The actual results are slightly more precise. The result (1.2) is obtained by exploiting the min-max theorem tested on Hermite functions. The second form of the min-max theorem also allows to derive (1.4). A more precise estimate can be obtained at the price of much more involved computations by exploiting our previous work [START_REF] Bonami | Spectral Decay of Time and Frequency Limiting Operator[END_REF]. This method can be pushed almost to the plunge region and leads to (1.3).

In the second part of this paper, we exploit these bounds in two directions. First, for ǫ > 0, we consider the best constant Γ 2 (n, ε) in Remez type inequalities: for every polynomial P of degree at most n,

[-ε/2,ε/2] |P (e it )| 2 dt ≥ Γ 2 (n, ε) [-π,π] |P (e it )| 2 dt.
We show that 2λ n (c) ≥ Γ 2 n, 2c/(n + 1) from which we deduce a new upper bound for Γ 2 . Also, we give a lower bound for the constant A appearing in the Turàn-Nazarov concentration inequality that relates for 0 ≤ q ≤ 2, the two quantities P L q (E) and P L q (T) , where P is a trigonometric polynomial over the torus and E is a measurable subset of T.

Finally, we use our lower bound of the λ n (c)'s, given by (1.2), and give an estimate of the hole probability E 2 (0, c), given by (1.1).

The remaining of the paper is organized as follows. In the next section, we introduce the necessary notation and mathematical preliminaries that we will use. Section 3 is devoted to results that we obtain through the min-max principle while Section 4 is devoted to the precise estimates of λ n (c) built on our previous work. Finally Section 5 is devoted to the applications of those estimates.

Mathematical Preliminaries

2.1. Notation. As precise constants are computed, it is important to be precise with the normalizations used in this paper. The Fourier transform is defined for

f ∈ L 1 (R) ∩ L 2 (R) by f (ξ) := F[f ](ξ) := R f (x)e -ixξ dx. Parseval's theorem then reads R |f (x)| 2 dx = 1 2π R | f (ξ)| 2 dξ
and Fourier inversion when f ∈ L 1 (R) reads

f (x) = 1 2π R f (ξ)e ixξ dξ := F -1 [ f ](x).
The operators F and F -1 are then extended to L 2 (R) in the usual way. We then consider the time-band limiting operator Q c , c > 0 as

Q c f = 1 [-1,1] F 1 [-c,c] F -1 [1 [-1,1] f ] when seen as an operator L 2 (R) → L 2 (R) or simply Q c f = F -1 1 [-c,c] F[f ] when seen as an operator L 2 ([-1, 1]) → L 2 ([-1, 1]
). Note also that, applying Parseval's identity,

Q c f L 2 (-1,1) ≤ f L 2 (-1,1)
. It is not hard to see that this operator is given as a Hilbert-Schmidt operator via a sinc-kernel

Q c f (x) = 1 -1 sin c(y -x) π(y -x) f (y) dy.
We define the finite Fourier transform

F c : L 2 ([-1, 1]) → L 2 ([-1, 1]) as F c [f ](x) = 1 -1 f (y)e -icxy dy = F[1 [-1,1] f ](cx)
and then

F * c : L 2 ([-1, 1]) → L 2 ([-1, 1]
) is given by

F * c [g](x) = 1 -1
g(y)e icxy dy.

A simple computation then shows that

Q c = 2c π F * c F c
. This shows that Q c is self-adjoint, positive and compact. Its eigenvalues (λ n (c)) n≥0 are then arranged as follows,

1 ≥ λ 0 (c) > λ 1 (c) > • • • > λ n (c) > • • •
In [START_REF] Slepian | Prolate spheroidal wave functions, Fourier analysis and uncertainty I[END_REF], D. Slepian and H. Pollack have pointed out the crucial property that the operator Q c commutes with a Sturm-Liouville operator L c , defined on

C 2 ([-1, 1]) by (2.1) L c (ψ) = - d d x (1 -x 2 ) dψ d x + c 2 x 2 ψ.
Consequently, both operators have the same infinite and countable set of eigenfunctions ψ n,c (•), n ≥ 0, called prolate spheroidal wave functions (PSWFs). The eigenvalues of the differential and integral operators L c and Q c are denoted by χ n (c) and λ n (c), so that for any integer n ≥ 0, we have

(2.2) L c (ψ n,c )(x) = χ n (c)ψ n,c (x), Q c (ψ n,c )(x) = λ n (c)ψ n,c (x), x ∈ [-1, 1].
Note that the eigenvalues χ n (c) and λ n (c) are simple. Moreover, a straightforward application of the variational formulation of the eigenvalues of the self-adjoint operator L c shows that

(2.3) n(n + 1) = χ n (0) ≤ χ n (c) ≤ n(n + 1) + c 2 , n ≥ 0.
For more details, see [START_REF] Slepian | Prolate spheroidal wave functions, Fourier analysis and uncertainty I[END_REF]. Also, note that in the special case c = 0, the ψ n,c are reduced to the well-known Legendre polynomials P n . Since λ n (c) is the n + 1-th eigenvalue of Q c , the min-max theorem asserts that for

I = [-1, 1], we have (2.4) λ n (c) = min Sn max f ∈S ⊥ n Q c f, f L 2 (I) f 2 L 2 (I) = min Sn max f ∈S ⊥ n 2c π F c f, F c f L 2 (I) f 2 L 2 (I)
, where S n is a set of n-dimensional subspaces of L 2 (I). On the other hand, for f ∈ L 2 (R),

Q c f, f L 2 (I) = F 1 (-c,c) F -1 [1 (-1,1) f ] , 1 (-1,1) f L 2 (R) = 1 2π 1 (-c,c) F -1 [1 (-1,1) f ], F -1 [1 (-1,1) f ] L 2 (R) = F -1 [1 (-1,1) f ] 2 L 2 (-c,c) 2π .
Thus, if we identify S m with the set of m-dimensional subspaces of the subspace of L 2 (R) consisting of functions with support in [-1, 1], then the min-max Theorem implies that

λ n (c) = sup V ∈S n+1 min f ∈V \{0} F -1 [1 (-1,1) f ] 2 L 2 (-c,c) 2π 1 (-1,1) f 2 L 2 (R) = sup V ∈V n+1 (1) min g∈V \{0} g 2 L 2 (-c,c) g 2 L 2 (R)
where V m (a) is the set of m-dimensional subspaces of the Paley-Wiener space of a-bandlimited functions c,c) and

B a := {g = F -1 [f ] : f ∈ L 2 (R), Supp f ⊂ [-a, a]}. Let g ∈ B 1 and g c (x) = c 1/2 g(cx). Then g c L 2 (R) = g L 2 (R) , g c L 2 (-1,1) = g L 2 (-
g c = F -1 [f c ] where f c (y) = c -1/2 f (y/c) ∈ L 2 (R) with support in [-c, c], thus g c ∈ B c . We thus get (2.5) λ n (c) = sup V ∈V n+1 (c) inf f ∈V \{0} f 2 L 2 (-1,+1) f 2 L 2 (R)
, n ≥ 0.

In particular, λ 0 (c) is the largest constant such that the inequality

C f 2 L 2 (R) ≤ f 2 L 2 (-1,1)
holds for some c-band limited function f . A compacity argument shows that there exists

f 0 ∈ B c \ {0} such that λ 0 (c) f 0 2 L 2 (R) ≤ f 0 2 L 2 (-1,1) . But then λ 0 (c) = 1 would imply that f 0 is supported in [-1, 1]
which is impossible since f 0 = 0 is band-limited thus an entire function. As a consequence, λ 0 (c) < 1.

Previous estimates on λ n (c).

In the sequel, we denote by K and E, the elliptic integrals of the first and second kind, given respectively, by (2.6)

K(t) = 1 0 ds (1 -s 2 )(1 -s 2 t 2 ) E(t) = 1 0 1 -s 2 t 2 1 -s 2 ds, 0 ≤ s ≤ 1.
We first recall from the literature, some decay results of the sequence of the eigenvalues (λ n (c)) n .

The first asymptotic behaviour of these eigenvalues has been given by Widom, see [START_REF] Widom | Asymptotic behavior of the eigenvalues of certain integral equations[END_REF],

(2.7)

λ n (c) ∼ ec 4(n + 1 2 ) 2n+1 = λ W n (c).
An important result that describes the asymptotic behaviour of the spectrum inside its slow evolution region and plunge region, is given by the following Landau-Widom asymptotic eigenvalues counting formula. More precisely, for ε ∈ (0, 1/2), let

Λ ε = {k ∈ N : λ k (c) ≥ ε}, ε ∈ (0, 1/2).
Then, in [START_REF] Landau | Eigenvalue Distribution of Time and Frequency Limiting[END_REF], the authors have shown that for c ≫ 1, we have

(2.8) |Λ ε | = 2c π + 1 π 2 log 1 -ε ε log(c) + o(log c).
On the other hand,Fuchs in [START_REF] Fuchs | On the eigenvalues of an integral equation arising in the theory of band-limited signals[END_REF] has shown that in the slow evolution region of the spectrum, for a fixed integer n ≥ 0, the eigenvalue λ n (c) converges exponentially to one, with respect to c. More precisely, Fuchs asymptotic formula states that

(2.9) 1 -λ n (c) ∼ 4 √ π 8 n n! c n+1/2 e -2c , c ≫ 1.
Recently, in [START_REF] Bonami | Spectral Decay of Time and Frequency Limiting Operator[END_REF], the authors have given a precise explicit approximation formula for λ n (c), which is valid for πn 2 -c larger than some multiple of ln n. This formula gives also the precise asymptotic super-exponential decay rate of the spectrum of Q c . More precisely, let us denote by Φ the inverse of the function Ψ : t → t E(t) , then this approximation formula is given by (2.10)

λ n (c) ∼ λ n (c) = 1 2 exp   - π 2 (n + 1 2 ) 2 1 Φ 2c π(n+ 1 2 ) 1 t(E(t)) 2 dt   .
As a consequence, from Corollary 3 of [START_REF] Bonami | Spectral Decay of Time and Frequency Limiting Operator[END_REF], there exist three constants δ 1 ≥ 1, δ 2 , δ 3 , ≥ 0 such that, for n ≥ 3 and c ≤ πn 2 ,

(2.11)

A(n, c) -1 ec 2(2n + 1) 2n+1 ≤ λ n (c) ≤ A(n, c) ec 2(2n + 1) 2n+1 . with A(n, c) = δ 1 n δ 2 c c + 1 -δ 3 e + π 2 4 c 2 n .
Moreover from Proposition 4 of [START_REF] Jaming | The approximation of almost time-and band-limited functions by their expansion in some orthogonal polynomials bases[END_REF], we have the following lower decay rate of the λ n (c), (2.12)

λ n (c) ≥ 7 1 - 2c nπ 2 c 7πn 2n-1 , n > 2 π c.
This lower decay rate is obtained by combining the Min-Max characterization of the λ n (c), and the Turàn-Nazarov concentration inequality [START_REF] Nazarov | Complete Version of Turàn's Lemma for Trigonometric Polynomials on the Unit Circumference[END_REF].

3. Min-Max technique and non-asymptotic behaviour of the spectrum of the Sinc kernel operator.

In this section, we first give a simple proof of a fairly tight upper bound of the super-exponential decay rate of the eigenvalues of the Sinc-kernel operator. This simple proof is based on the use of the Min-Max characterisation of the eigenvalues of a self-adjoint compact operator. Then, this last technique is used to provide us with a lower bound of the eigenvalue λ n (c), with n ≥ 0 not too large. We should mention that this Min-Max theorem based method has the advantage to be relatively simple to apply. Nonetheless, when used to estimate the super-exponential decay rate of the λ n (c), this method has the drawback to be valid only sufficiently far from the plunge region around n c = 2c π . This is given by the following theorem.

Theorem 3.1. Let c > 0 be a real number, then for any integer n ≥ max 2, ec 2 , we have

(3.1) λ n (c) ≤ exp -(2n + 1) log 2 ec (n + 1) .
Proof. Recall from (2.4) that

λ n (c) = min Sn max f ∈S ⊥ n Q c f, f f 2 L 2 (I) = min Sn max f ∈S ⊥ n 2c π F c f, F c f f 2 L 2 (I)
,

where the S n are n-dimensional subspaces of L 2 (I).

Recall that the Legendre polynomials normalized by P n (1) = 1 are defined by the Rodrigues formula

P n (x) = 1 2 n n! d n dx n (1 -x 2 ) n
and that, if we renormalize them by P k = k + 1/2P k , then P n , n ≥ 0 form an orthonormal basis of L 2 (I). We will take the following special choice of S n in (2.4):

S n = Span{ P 0 , . . . , P n-1 }. Hence, if f ∈ S ⊥ n , then f = ∞ k=n a k P k . We may assume that f 2 L 2 (I) = 1, so that ∞ k=n a 2 k = 1. It follows that F c f = ∞ k=n k + 1/2a k F c P k (x)
and

F c f = ∞ k=n k + 1/2|a k | F c P k ≤ ∞ k=n |a k | 2 1/2 ∞ k=n (k + 1/2) F c P k 2 1/2 ≤ ∞ k=n (k + 1/2) F c P k 2 1/2 .
Combining this with (2.4), we obtain

(3.2) λ n (c) ≤ 2c π ∞ k=n (k + 1/2) F c P k 2 .
On the other hand, it is known that, see for example [START_REF] Olver | NIST Handbook of Mathematical Functions[END_REF] (3.3)

F c P k (x) = 1 -1 e icxy P k (y) dy = i k 2π cx J k+ 1 2 (cx), x ∈ I,
where J α is the Bessel function of the first type and order α > -1.

Further, the Bessel function J α has the following fast decay with respect to the parameter α,

|J α (z)| ≤ z 2 α Γ(α + 1) ,
where Γ(•) is the Gamma function (see e.g. [START_REF] Olver | NIST Handbook of Mathematical Functions[END_REF]). Combining this with the classical estimate of the Gamma function

Γ(x + 1) ≥ √ 2e x + 1 2 e x+ 1 2
we obtain

|J k+1/2 (cx)| 2 ≤ 1 2(k + 1) ec 2(k + 1) 2k+1 |x| 2k+1 .
From this, we deduce that

F c P k 2 ≤ π c(k + 1) ec 2(k + 1) 2k+1 1 -1 |x| 2k dx = 2π c(k + 1)(2k + 1) ec 2(k + 1) 2k+1 .
Injecting this into (3.2), we obtain

λ n (c) ≤ 2 ∞ k=n 1 (k + 1) ec 2(k + 1) 2k+1 ≤ 2 (n + 1) ∞ k=n ec 2(k + 1) 2k+1 .
We recall that ec ≤ n so that for k ≥ n,

ec 2(k + 1) 2k+1 ≤ ec 2(n + 1) 2n+1 n 2(n + 1) 2(k-n) . So we have λ n (c) ≤ 2 n + 1 ec 2(n + 1) 2n+1 ∞ k=n n 2(n + 1) 2(k-n) ≤ ec 2(n + 1) 2n+1 as claimed.
In the remaining of this section, we use a second version of the Min-Max theorem to get some fairly precise lower bound for the first eigenvalues λ 0 (c), . . . , λ n (c) when n ≤ c 2.7 .

Theorem 3.2. For n an integer such that 0 ≤ n ≤ c 2.7 , we have

(3.4) λ n (c) ≥ 1 - 7 √ c (2c) n n! e -c .
Proof. In order to prove the theorem, we need some notation. Let Π c be the projection from

L 2 (R) on B c i.e. Π c f = F -1 1 (-c,c) F[f ] ,
and Π c = I -Π c the projection on the orthogonal of B c . Let H n be the n-th Hermite polynomial given by

H n (t) = (-1) n e t 2 d n dt n e -t 2 and ϕ n (t) = α n H n (t)e -t 2 /2 with α n = 1 π 1/4 2 n/2 √ n! . It is then well known that (ϕ n ) n∈N is an orthonormal basis of L 2 (R) of eigenfunctions of the normalized Fourier transform, 1 √ 2π F[ϕ n ] = i -n ϕ n .
Further, we check the following probably known result

(3.5) |H n (x)| ≤ 2 n |x| n , ∀ |x| ≥ √ 2n -2.
From the parity of the Hermite polynomials, it suffices to check the previous inequality for x ≥ √ 2n -2. It is well known that if z i denotes the largest zero of the Hermite polynomial

H i (x), then √ 2n -2 ≥ z n > z n-1 > • • • > z 1 = 0.
We prove by induction that |H n (x)| ≤ 2 n |x| n for x > z n . This is valid for H 1 (t) = 2t. Then, assuming that it is valid for k -1 and since

H ′ k (x) = 2kH k-1 (x), the inequality for H k follows immediately from the fact that H k (x) = 2k x z k H ′ k-1 (t)dt.
Hence, by using (3.5), one gets

(3.6) |ϕ n (t)| ≤ 2 n/2 π 1/4 √ n! |t| n e -t 2 /2 , ∀ |t| ≥ √ 2n -2.
Next, we note that for α > 1 and a > √ α -1, we have

(3.7) +∞ a t α e -t 2 dt ≤ a α-1 e -a 2 .
In fact, under the previous conditions on a and α, the function t → t α-1 e -t 2 /2 is decreasing on (a, +∞) and consequently

+∞ a t α e -t 2 dt ≤ a α-1 e -a 2 /2 +∞ a te -t 2 /2 dt = a α-1 e -a 2 .
Applying (3.6), we deduce that for k ≤ a 2 -1 2 ,

(3.8) |t|≥a ϕ 2 k (t) dt ≤ 2 k+1 π 1/2 k! +∞ a t 2k e -t 2 dt ≤ 2 k+1 π 1/2 k! a 2k-1 e -a 2 .
Next, using the fact that R ϕ 2 k (t) dt = 1, we get (3.9)

|t|≤a ϕ k (t) 2 dt ≥ 1 - 2 π 1/2 a (2a 2 ) k k! e -a 2 .
Further, we define ϕ

(c) n (t) = c 1/4 ϕ n ( √ ct) and note that (ϕ (c) n ) n∈N is still an orthonormal basis of L 2 (R). Let V n (c) = Span{Π c ϕ (c) 0 , . . . , Π c ϕ (c) n }. From (2.5) we know that, λ n (c) ≥ inf f 2 L 2 (-1,1) f 2 L 2 (R) : f ∈ V n (c) = inf    f 2 L 2 (-1,1) f 2 L 2 (R) : f = n j=0 γ j Π c ϕ (c) j , n j=0 |γ j | 2 = 1    . (3.10)
Now, take a sequence (γ j ) j=0,...,n with n j=0

|γ j | 2 = 1. Define F = n k=0 γ k ϕ (c) k and f = Π c F .
As Π c is an orthonormal projection on B c , which is a closed subspace of L 2 (R), then we have

f L 2 (R) ≤ F L 2 (R) = n k=0 |γ j | 2 = 1.
and

F 2 L 2 (R) = F -Π c F 2 L 2 (R) + Π c F 2 L 2 (R) , Π c = I -Π c .
Consequently, we have

f 2 L 2 (-1,1) = Π c F 2 L 2 (-1,1) = F -Π c F 2 L 2 (-1,1) ≥ F -Π c F 2 L 2 (R) -F -Π c F 2 L 2 R\(-1,1) ≥ F 2 L 2 (R) -Π c F 2 L 2 (R) -F -Π c F 2 L 2 R\(-1,1) ≥ 1 -3 Π c F 2 L 2 (R) -2 F 2 L 2 R\(-1,1) . (3.11)
We now estimate the error terms. They will be obtained through the same computation, which we do first for F 2

L 2 R\(-1,1)
. We have the following inequalities.

F 2 L 2 R\(-1,1) = |x|>1 n j=0 γ j ϕ (c) j (x) 2 dx = |x|>c 1/2 n j=0 γ j ϕ j (x) 2 dx ≤ n k=0 |x|>c 1/2 |ϕ k (t)| 2 dt.
We have used the inequality of Cauchy-Schwarz and the fact that n k=0 |γ k | 2 = 1. By using (3.6), we obtain the inequality (3.12)

F 2 L 2 R\(-1,1) ≤ 2 π 1/2 c 1/2 n k=0 (2c) k k! e -c .
Now, when n ≤ c 2.7 , we get

(3.13) n k=0 (2c) k k! ≤ (2c) n n! ∞ k=0 n 2c k ≤ 1.23 (2c) n n! .
Finally, we have

(3.14) F 2 L 2 R\(-1,1) ≤ 2.46 π 1/2 c 1/2 (2c) n n! e -c . Next, Πc F 2 L 2 (R) = 1 2π F[ Πc F ] 2 L 2 (R) = 1 2π |ξ|≥c |F[F ](ξ)| 2 dξ. But 1 √ 2π F[F ](ξ) = 1 √ 2π n k=0 γ k F[ϕ (c k ](ξ) = n k=0 c -1/4 γ k 1 √ 2π F[ϕ k ](c -1/2 ξ) = n k=0 c -1/4 i -k γ k ϕ k (c -1/2 ξ).
As we have done for the bound of F 2

L 2 R\(-1,1)
, given by (3.14), one gets

1 2π F[ Πc F ] 2 L 2 (R) = |ξ|≥c n k=0 c -1/4 i -k γ k ϕ k (c -1/2 ξ) 2 dξ = |η|≥c 1/2 n k=0 i -k γ k ϕ k (η) 2 dη ≤ n k=0 |x|>c 1/2 |ϕ k (t)| 2 dt ≤ 2.46(2c) n e -c π 1/2 √ cn! .
Parseval's equality thus implies that

(3.15) Πc F 2 L 2 (R) = 1 2π F[ Πc F ] 2 L 2 (R) ≤ 2.46 (2c) n e -c π 1/2 √ cn! .
By combining (3.15), (3.14) and (3.11), we get

f 2 L 2 (-1,1) ≥ 1 - 12.3 π 1/2 √ c (2c) n n! e -c ≥ 1 - 7 √ c (2c) n n! e -c .
Finally, as f L 2 (R) ≤ 1, we get the desired inequality (3.4).

Remark 1. The previous theorem gives a better estimate than Landau's Theorem only when the bound below, given by (3.4) is larger than 1/2. We will content ourselves to verify that the bound below given for λ n (c) has a positive sign. This is given by the following lemma.

Lemma 3.3. For any c ≥ 4 and any integer 0 ≤ n ≤ c 2.7

, we have

(3.16) 1 - 7 √ c (2c) n n! e -c > 0.
Proof. We first rewrite the inequality (3.16) as follows

(3.17) n log(2c) -c < 1 2 log c -log 7 + log(n!).
Moreover, since n! = Γ(n + 1) and for x ≥ 0, Γ(x + 1) ≥ √ 2e

x+ 1 2 e x+ 1 
2 , then the previous inequality is satisfied whenever

-c ≤ n log n + 1/2 2c -n + 1 2 log(c(n + 1/2)) -1 + log(2e) -2 log 7 .
Since n ≥ 0 and c ≥ 4, then elementary computations show that this last inequality holds true whenever

n log n + 1/2 2c -n > -c.
It is elementary to verify this inequality for n ≤ c 2.7 , using monotonicity of x → x log

x + 1/2 2c -x on [0, c].
We have chosen the constant 2.7 for this purpose.

4. The Sinc kernel operator: Non-Asymptotic decay rate of the spectrum.

In this section, we need to introduce a new function related to the elliptic function E defined in (2.6): let Φ(•) the function defined on [0, 1] as the inverse of the function t → Ψ(t) = t E(t) . We will show that the rapid decay starts shortly after 2c π + log c. Also, by using Landau's asymptotic formula for the number of eigenvalues λ n (c) that are greater than a threshold 0 < ε < 1/2, we check that our asymptotic decay rate in the previous part of the plunge region is optimal with respect to the parameter c. We give three different statements depending on how n compares to c: Theorem 4.1. Let c ≥ 22 be a real number, η = 0.069 and η ′ = 0.12.

-For any integer n such that 2c π + log c + 6 ≤ n ≤ c, we have the inequality

(4.1) λ n (c) ≤ 1 2 exp - η(n -2c π ) log(c) + 5 . -Let 2 π ≤ δ ≤ 1.
Under the assumption that n ≥ max( 2c π + log c + 6, 2c δπ ), we have the estimate

(4.2) λ n (c) ≤ 1 2 Φ(δ) 0.069n
.

In particular,

λ n (n) ≤ 1 2 e -0.015n .
-For any any integer n ≥ c such that π 2 (n -log n -9) ≥ c, we have

(4.3) λ n (c) ≤ exp -η ′ (n -c) .
Remark 2. The assumption that c ≥ 22 guarantees that there exists an integer n such that 2c π + log c + 6 ≤ n ≤ c. This condition can be relaxed with the right hand replaced by 2c, for instance, which allows to have such an estimate for smaller values of c. But the constant η is smaller. Remark 3. In view of (4.1) one may replace the condition on n by the condition n ≥ 2c π +δ(log c+6). This is possible as long as δ > 2/π. As one expects, the constant η will increase with δ. This constant is certainly far from being optimal. But the decrease in n is optimal.

Proof. We use a series of results of [START_REF] Bonami | Uniform approximation and explicit estimates of the Prolate Spheroidal Wave Functions[END_REF][START_REF] Bonami | Spectral Decay of Time and Frequency Limiting Operator[END_REF]. We recall that from Theorem 2 of [START_REF] Bonami | Uniform approximation and explicit estimates of the Prolate Spheroidal Wave Functions[END_REF], we have

(4.4) ψ n,c (1) ≥ (χ n (c)) 1/4 π 2K( √ q n ) 1 - 3 (1 -q n ) χ n (c) , q n = c 2 χ n (c)
,

whenever the condition (1 -q n ) χ n (c) ≥ 4
is satisfied. Here, we recall that χ n (c) is as given by (2.2) and satisfying (2.3). Also, from [3, Lemma 3], the previous condition is satisfied whenever

n > 2c π + 2 π (log(n) + 6) ,
or equivalently, for any

(4.5) 0 < c < c * n := πn 2 -log(n) -6.
So, under this condition, we have

(4.6) (ψ n,c (1)) 2 ≥ π 32 χ n (c) K( √ q n ) = π 32 c √ q n K( √ q n ) .
Next, recall that Φ(•) denotes the inverse of the function t → Ψ(t) = t E(t) . From [2, Theorem 1], we get

(4.7) Φ 2c π(n + 1) < √ q n < Φ 2c πn .
Since the function K(•) is increasing on [0, 1), we deduce from (4.6) that

(4.8) (ψ n,c (1)) 2 c ≥ π 32 1 Φ 2c πn K Φ 2c πn .
Note that from [START_REF] Landau | The eigenvalue behavior of certain convolution equations[END_REF], we have

λ n (c * n ) ≤ 1 2
. Moreover, from the differential equation

∂ τ log(λ n (τ )) = 2 (ψ n,τ (1) 
) 2 τ and by substituting c by τ in (4.8), one gets for 0

< c < c * n , λ n (c) ≤ 1 2 exp -2 c * n c (ψ n,τ (1)) 2 τ dτ ≤ 1 2 exp - π 16 c * n c dτ Φ 2τ πn K Φ 2τ πn := 1 2 exp - π 16 I 1,n . (4.9) 
At this point we fix n and c ≥ 22 such that n ≥ 2c π + log c + 6. Because of the fact that there exists such an n which is bounded by c, for all such values of n we have the inequality c < c * n , so that we can use the previous formula.

To estimate the integral I 1,n , we use a computational technique that we have developed in [START_REF] Bonami | Spectral Decay of Time and Frequency Limiting Operator[END_REF].

More precisely, we consider the substitution

t = Φ 2τ πn , that is Ψ(t) = 2τ πn . Since Ψ ′ (t) = K(t) E(t) 2 ,
see [START_REF] Bonami | Spectral Decay of Time and Frequency Limiting Operator[END_REF], then we have

I 1,n = πn 2 Φ 2c * n πn Φ( 2c πn ) dt t E(t) 2 .
We have immediately the bound below (4.10)

I 1,n ≥ πn 2 Φ 2c * n πn -Φ 2c πn E(Φ 2c πn )
We can replace the denominator by the constant E(Φ(2/π)) -2 . Next, note that K is increasing and E is decreasing, thus Ψ ′ is increasing and therefore Ψ is convex and Φ is concave. Hence, if s < s * < 1, using the fact that Φ(1) = 1, we have

Φ(s * ) -Φ(s) s * -s ≥ 1 -Φ(s) 1 -s .
Up to now we did not use the assumption on n, which we do now. We have chosen n sufficiently far from c * n compared to the distance between c * n and the cutoff value 2c πn so that, when

s * = 2c * n πn , s = 2c πn , one has the inequality 1 -s * 1 -s ≤ 2/π.
So the previous inequality can be replaced by

(4.11) Φ(s * ) -Φ(s) ≥ (1 - 2 π )(1 -Φ(s)).
It remains to prove that (4.12)

1 -Φ 2c πn ≥ 1 -2c πn log c + 5 .
Assume that x := 1 -

1-2c

πn log n+5 , so that (4.12) can also be written as

(4.13) 1 -Ψ(x) ≤ 1 - 2c πn .
We then use Inequality (25) of [START_REF] Bonami | Uniform approximation and explicit estimates of the Prolate Spheroidal Wave Functions[END_REF], which we recall here:

E(x) -1 ≤ (1 -x) log 1 1 -x + 4 .
It follows that

(4.14) 1 -Ψ(x) ≤ (1 -x) log 1 1 -x + 5 .
We conclude for (4.13) by using the elementary inequality

log 1 1 -x = log n(log c + 5) n -2c π ≤ log n,
which is a consequence of the assumption that n -2c π ≥ log c + 5. We have obtained (4.1) with the constant

η = π 2 32 × (1 -2 π ) × E(Φ(2/π)) -2
. The numerical constant given in the statement is obtained from the approximations Φ(2/π) ≈ 0.8 and E(Φ(2/π)) ≈ 1.276.

The proof of (4.2) is a slight modification of the last one. Instead of (4.10) we write the a priori better estimate (4.15)

I 1,n ≥ πn 2 log Φ 2c * n πn -log Φ 2c πn E(Φ 2c πn ) 2 .
The function -log(Φ(•)) is convex since Φ is concave and as before the numerator is bounded below by (1

-2 π )(-log Φ 2c πn . But -log Φ 2c πn ≥ -log Φ(δ)
. We conclude at once.

Let us finally prove (4.3). First, the condition π 2 (n -log n -9) ≥ c is necessary to be able to use Theorem 1 in [START_REF] Bonami | Uniform approximation and explicit estimates of the Prolate Spheroidal Wave Functions[END_REF]. Next, we now consider integrals from c to n. We use the same notations for the new quantities involved. In particular (4.15) is replaced by

I 1,n ≥ πn 2 log Φ 2 π -log Φ 2c πn E(Φ 2c πn ) 2 .
The denominator can only be bounded by π 2 /4. For the numerator, we use again the convexity of the function

-log(Φ(•)). It follows that log Φ 2 π -log Φ 2c πn 2 π -2c πn ≥ -log Φ 2 π 1 -2 π .
The constant η ′ may be taken equal to -π 2 log(0.8) 16(π -2) ≈ 0.12. One can conclude easily for the validity of (4.3).

Remark 4. Methods given in the proof of this theorem may be used for other corollaries of the estimates of [START_REF] Bonami | Spectral Decay of Time and Frequency Limiting Operator[END_REF]. The same method can be used to find bounds below of eigenvalues, as in [START_REF] Bonami | Spectral Decay of Time and Frequency Limiting Operator[END_REF]. It is one way to see that results are optimal.

We should mention that a decay estimate which is similar, but weaker than the one given by (4.1) can be obtained from the non-asymptotic estimate of the cardinal of the subset Λ ε of N, given by Λ ε = {k ∈ N : λ k (c) ≥ ε}, ε ∈ (0, 1/2).

In [START_REF] Osipov | Certain upper bounds on the eigenvalues associated with prolate spheroidal wave functions[END_REF], the author has shown that

|Λ ε | ≤ 2c π + K(log c) 2 log 1 ε = β(ε),
where K is a constant independent of c and ε. Since the eigenvalues λ n (c) are arranged in the decreasing order, then the previous inequality implies that λ β(ε) (c) ≤ ε, or equivalently

(4.16) λ n (c) ≤ β -1 (n) = exp - n -2c π K log(c) 2 , n ≥ 2c π + K(log 2) log(c) 2 .
Note that for sufficiently large c and comparing to our non-asymptotic decay rate, given by (4.1), the previous decay rate is weaker because of the power 2 on log(c). Note that the optimal upper bound for the cardinal of the set Λ ε is given by (2.8). By comparing (4.1) and (2.8), one concludes that our non-asymptotic decay estimate of the λ n (c) given by (4.1) is optimal, in the considered part of the plunge region of the spectrum.

Applications

In this paragraph, we describe two applications of our non-asymptotic estimates of the spectrum of the Sinc-kernel operator. The first application is related to the estimate of constants, associated with two concentration inequalities. The second application concerns the probability of a hole in the spectrum of a fine scaled random matrix from the GUE.

Estimates of constants in Remez and Turàn-Nazarov concentration inequalities.

We first recall that for f a 2π-periodic function, we have

f L 2 (T) = 1 2π π -π |f (t)| 2 dt 1/2
.

We consider the n + 1-th eigenvalue λ n (c) for n > 0. According to the min-max principle, we have

λ n (c) = sup V ∈Vn(c) inf f ∈V \{0} f 2 L 2 (-1,+1) f 2 L 2 (R)
, where V n (c) is the set of n + 1-dimensional subspaces of B c . By invariance by dilation and modulation, for every M > 0 and every interval I of length |I| = 2M c, this quantity is equal to sup

V ∈Vn(I) inf f ∈V \{0} f 2 L 2 (-1/M,+1/M ) f 2 L 2 (R)
, where V n (I) is the set of n + 1-dimensional subspaces of B I := {f ∈ L 2 (R) : supp f ⊂ I}. Now choose M so that 2M c ≥ n + 1. Take ϕ to be a fixed L 2 function such that supp ϕ ⊂ [-1/2, 1/2] and let V n,ϕ = {P (e it )ϕ : P ∈ P n } where P n is the set of all polynomials of degree at most n. Note

that, if f ∈ V n,ϕ then f = n k=0 P (k)e ikt ϕ(t) so that f (ξ) = n k=0 P (k) ϕ(ξ -k).
In particular, supp f ⊂ [-1/2, 1/2 + n], an interval of length n + 1 = 2M c. Further,

f 2 L 2 (R) = 1 2π f 2 L 2 (R) = 1 2π n k=0 | P (k)| 2 ϕ 2 L 2 (R) = P 2 L 2 (T) ϕ 2 L 2 (R) = 1 2π P (e it ) 2 L 2 (-π,π) ϕ 2 L 2 (R) .
On the other hand

f 2 L 2 (-1/M,1/M ) = 1/M -1/M n k=0 P (k)e ikt 2 |ϕ(t)| 2 dt ≥ min [-1/M,1/M ] |ϕ(t)| 2 P 2 L 2 (-1/M,1/M ) .
We choose ϕ by setting ϕ(ξ) = 1 [-1/2,1/2] cos πξ so that

ϕ 2 L 2 (R) = 1 2π 1/2 -1/2 cos 2 πξ dξ = 1 4π and ϕ(x) = 1 4π 1/2 -1/2 e i(π+x)ξ + e i(-π+x)ξ dξ = 1 2π sin(π + x)/2 π + x + 1 2π sin(-π + x)/2 -π + x =      cos x/2 π 2 -x 2 if x = ±π 1 4π if x = ±π . Next, let M ≥ 1 π , i.e. n + 1 ≥ 2 π c. Then, for x ∈ [-1/M, 1/M ], ϕ(x) ≥ ϕ(1/M ) ≥ ϕ(π) = 1 4π
. Therefore, for any Taylor polynomial P of degree at most n,

(5.1) 2λ n (M c) ≥ P (e it ) 2 L 2 (-1/M,1/M ) P (e it ) 2 L 2 (-π,π)
. Definition 1. Let Γ 2 (n, ε) be the best constant in the Remez type inequality

I |P (e it )| 2 dt ≥ Γ 2 (n, ε) 2π 0 |P (e it )| 2 dt,
for any P is a Taylor polynomial of degree n and any I interval of length ε.

We have just shown the following:

Proposition 5.1. Let c > 0 and n ≥ 2c π -1 be an integer, then 2 λ n (c) ≥ Γ 2 n, 4 c n + 1 or, equivalently, for 0 < ε < 2π Γ 2 (n, ε) ≤ 2 λ n n + 1 4 ε .
In particular, for 0 < ε < 4 and n ≥ 33,

Γ 2 (n, ε) ≤ exp -n 32 log 4 ε .
Remark 5.2. In the particular case where M = 1 π in the inequality (5.1) and since the Remez constant is then equal to 1 in this case, one concludes that

(5.2) λ n+1 π 2 (n + 1) ≥ 1 2 , which is the Landau's lower bound for λ n π 2 n .
This is related to the following Turàn-Nazarov inequality, see [START_REF] Nazarov | Complete Version of Turàn's Lemma for Trigonometric Polynomials on the Unit Circumference[END_REF]. Let T be the unit circle and let µ be the Lebesgue measure on T, normalized so that µ(T) = 1, then for every 0 ≤ q ≤ 2, every trigonometric polynomial

P (z) = n+1 k=1 a k z α k , a k ∈ C, z ∈ T,
and every measurable subset E ⊂ T, with µ(E) ≥ 1 3 , we have (5.3) P L q (E) ≥ e -A n µ(T\E) P L q (T) .

Here, A is a constant independent of q, E and n. It has been mentioned in [START_REF] Nazarov | Complete Version of Turàn's Lemma for Trigonometric Polynomials on the Unit Circumference[END_REF] that if moreover, the measurable subset E is not too large in the sense that µ(E) ≤ 1 -log n n , then the previous inequality holds also for q > 2.

To find a bound above for γ 2 (n, ε) = Γ 2 (n, ε), where Γ 2 (n, ε) is given by the previous definition, it suffices to note that from our previous analysis, we have for ε

= 2M -1 ≤ 8 e , γ 2 (n, ε) ≤ √ 2 λ n+1 n + 1 2 ε . But from (3.1), with c = n + 1 4 ε, one gets (5.4) γ 2 (n, ε) ≤ √ 2 exp -(n + 1/2) log 8 eε .
We compare the inequality (5.4) with (5.3) with the special cases, q = 2,

E = E M = {e it , t ∈ (-1/M, 1/M )}, 1 π ≤ M ≤ 3 π ,
is an arc of T. The upper bound on M is fixed by the requirement that µ

(E) = ε 2π = 1 πM ≥ 1/3. In this case, we have µ(T \ E) = 1 - ε 2π = 1 - 2 πM .
Consequently, the constant A appearing in (5.3) satisfies the inequality

-An 1 - ε 2π ≤ log( √ 2) -(n + 1/2) log 8 eε , ∀ 2π 3 ≤ ε ≤ 2π.
By straightforward computations, the previous inequality holds true whenever A ≥ 1 3 and n ≥ 2.

5.

2. An estimate of the hole probability in the spectrum of a random matrix from the GUE. We first recall that an n × n random Hermitian matrix M n = X jk 1≤j,k≤n is said to belong to the GUE, if the X jk are i.i.d. random variables with X kj = X jk , X jj ∼ N (0, 1) and Re(X jk ) ∼ N (0, 1/2), Im(X jk ) ∼ N (0, 1/2), if j = k. Following the notation used in [START_REF] Tao | Random Matrices: The Universality Phenomenon for Wigner Ensembles[END_REF], the coarse-scaled and the fine-scaled versions of the matrix M n from the GUE, are defined by

W n = 1 √ n M n , A n = √ nM n .
The famous Wigner's semi-circle law states that the empirical mea- In particular, in the centre of the bulk region, that is for u = 0 and ρ sc (0) = 1/π, the previous limiting probability that an interval of length πc has no eigenvalue is given by the following infinite product.

E 2 (0, c) = ∞ n=0 1 -λ n ( π 2 c) .
To get an upper bound for the previous probability, we first use the estimate (3.4) and write

1 -λ k π 2 c ≤ 7 2 πc (πc) k k! e -π 2 c .
Next, for η > 1, we consider the finite product (πc) k k! .

To bound the quantity A η , we note that k! = Γ(k + 1) ≥ √ 2e

k+ 1 2 e k+ 1 
2 , so that we have x log x dx - On the other, we already know that λ n (

π 2 c) ≥ 1 2
, for all n ≤ c. Consequently, we have In particular, for c ≥ 5, we have -βc log( √ πec/7) -1/2 + aγ β -1 7 log(βc) ≤ 0, so that E 2 (0, c) ≤ e -αc 2 , α ≈ 0.374. We have just proved the following proposition. Proposition 5.3. Let c ≥ 5, then a bound above of the probability E 2 (0, c) is given by (5.12) E 2 (0, c) ≤ e -αc 2 , α ≈ 0.374.

Note that an asymptotic expression of the probability E 2 (0, c), for c ≫ 1, has been given in [START_REF] Cloizeaux | Asymptotic behavior of spacing distributions for the eigenvalues of random matrices[END_REF] (5.13)

E 2 (0, c) ≃ κ exp - π 2 8 c 2 - 1 4 log(c) ,
for some positive constant κ. Our proposed non-asymptotic bound above of E 2 (0, c) is not optimal comparing to the previous asymptotic one, nonetheless, it is a bound above that is valid even for intervals with relatively small lengths c ≥ 5.

δ 4 -x 2 1 [- 2 , 2 ]

 4122 λ i (Wn) converges weakly in distribution to the semi-circle distribution function, given by ρ sc (x) = 1 2π (x). The bulk region of the spectrum of A n , the fine-scaled version of M n , corresponds to the eigenvalues of A n which are close to nu for a given u ∈ (-2, 2). It is well known, see for example [25] that for a, b ∈ R, the probability the interval nu + a ρsc(u) , nu + b ρsc(u) does not contain any eigenvalues of the matrix A n = √ nM n , converges as n → +∞ to the Fredholm determinant det(Id -Q s ) = ∞ n=0 1 -λ n (s) , s = π 2 (b -a).

(5. 6 ) 2 =

 62 A η ≤ (2e) -η/2 (2e) -η/2 B η .

  exp(-c a γ ).By combining (5.5)-(5.9) and taking into account that for all k ≥ 0, 1 -λ k π 2 c ≤ 1, one can easily check that (5.10)E 2 (0, c) ≤ F ηγ G ηγ ≤ e -αc 2 exp -βc log( √ πec/7) -1/2 + a γ β -
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