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Abstract—Setting an adequate operating power reserve (PR) to compensate unpredictable imbalances between generation and 8 

consumption is essential for power system security. Operating power reserve should be carefully sized but also ideally minimized and 9 

dispatched to reduce operation costs with a satisfying security level. Although several energy generation and load forecasting tools 10 

have been developed, decision-making methods are required to estimate the operating power reserve amount within its dispatch over 11 

generators during small time windows and with adaptive capabilities to markets, as new ancillary service markets. This paper 12 

proposes an uncertainty analysis method for power reserve quantification in an urban microgrid with a high penetration ratio of PV 13 

(photovoltaic) power. First, forecasting errors of PV production and load demand are estimated one day ahead by using artificial 14 

neural networks. Then two methods are proposed to calculate one day ahead the net demand error. The first perform a direct forecast 15 

of the error, the second one calculates it from the available PV power and load demand forecast errors. This remaining net error is 16 

analyzed with dedicated statistical and stochastic procedures. Hence, according to an accepted risk level, a method is proposed to 17 

calculate the required PR for each hour. 18 

Index Terms— Power reserve scheduling; renewable energy sources; forecast errors; uncertainty analysis; reliability.  19 

I.INTRODUCTION 20 

NCREASE of the electricity produced by renewable energy sources (RES) contributes to energy supply portfolio diversity and 21 

reduces the expanded use of fossil fuels. However, the energy production from RES is characterized by power intermittencies 22 

and production uncertainties, especially for PV and wind power. New operational challenges appear for grid operators like 23 

ramping and regulation requirements in addition to impacts on power system stability. Hence, grid codes evolve and in many 24 

European countries, renewable sources are more and more required to provide ancillary services for grid operators [1]. In order 25 

to maintain the security and reliability of grids with a high share of renewable generators, primary, secondary and tertiary 26 

regulation as well as spinning reserve are now required from renewable generators in more and more grid codes [2, 3]. This 27 

operating power reserve should be ideally minimized to reduce system costs with a satisfying security level.  28 

Typically, PV power generation forecasting is needed to optimize the operation and to reduce the cost of power systems, 29 

especially for the scheduling and dispatching of required hourly operating [4]. However, the predicted uncertainty associated 30 

with forecast cannot be eliminated even with the best model tools. In addition to the load demand uncertainty, the combination of 31 

power generation and consumption variability with forecast uncertainty makes the situation more difficult for power system 32 

operators to schedule and to set power reserve level. Therefore, the uncertainties from both generation and consumption must be 33 

taken into account by an accurate stochastic model for power system management. In addition, forecasting errors from system 34 

uncertainty analysis could be used to set power reserve [5]. 35 

Historically, most conventional utilities have adopted deterministic criteria for the reserve requirement: the operating rules 36 

required PR to be greater than the capacity of the largest on-line generator or a fraction of the load, or equal to some function of 37 

both of them. Those deterministic criteria are wildly used because of their simplicity and understandable employing. However, 38 
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these deterministic calculation methods are gradually replaced by probabilistic methods that respond to the stochastic factors 39 

corresponding to the system reliability. Several research works have been focused on calculating the total system uncertainty 40 

from all the variable sources. Based on dynamic simulations, the study in [8] is focusing on dynamic frequency control of an 41 

isolated system and the reduction of the impact due to large shares of wind and PV powers. However this work did not consider 42 

other aspects, such as variability and forecast accuracy. A deterministic approach is proposed in [9] to analyze the flexibility of 43 

thermal generation to balance wind power variations and prediction errors. A stochastic analysis could improve it in order to be 44 

able to quantify the power reserve with a risk index. A stochastic model was developed in [10] to simulate the operations and the 45 

line disconnection events of the transmission network due to overloads beyond the rated capacity. But the issue is clearly that 46 

analysis of the system states, in terms of power request and supply, are critical for network vulnerability and may induce a cascade 47 

of line disconnections leading to a massive network blackout. An insurance strategy is proposed in [11] to cover the possible 48 

imbalance cost that wind power producer may incur in electricity markets. Monte Carlo simulations have been used to estimate 49 

insurance premiums for further analysis excesses and so require a significant calculation time. 50 

Our previous works in [6, 7] showed that forecasting errors from system uncertainty analysis could be used for PR setting. 51 

Following these promising results and experiences, we have carried out further investigations on rigorous methods to quantify 52 

the required PR. The task is to calculate it by considering uncertainties from PV prediction and load forecast or with uncertainty 53 

estimation. In the second part of this paper, PV power and load uncertainty and variability are analyzed. Then, the artificial 54 

neural network based prediction methods are applied to forecast PV power, load demand and errors. In the third part, the Net 55 

Demand (ND) Forecasted uncertainty is obtained, for each hour of the next day, as the difference between the forecasted 56 

production uncertainty and the forecasted load uncertainty. Two methods are detailed to calculate the ND forecast errors. An 57 

hourly probability density function of all predicted ND forecasted errors has been used for the error analysis. In the fourth part, a 58 

method is explained to assess the accuracy of these predictions and to quantify the required operating PR to compensate the 59 

system power unbalancing due to these errors. Power reserve is obtained by choosing a risk level related to two reliability 60 

assessment indicators: loss of load probability (LOLP), and expected energy not served (EENS). Finally, this management tool is 61 

proved through an illustrative example.   62 

II.METHODOLOGY 63 

A.PV Power and Load Uncertainty Analysis 64 

The PV power variability is the expected change in generation while PV power uncertainty is the unexpected change from 65 

what was anticipated, such as a suddenly cloud cover. The former depends on the latitude and the rotation of Earth, while the 66 

latter is mostly caused by uncertainty conditions, such as cloud variations over the PV. The movement of clouds introduces a 67 

significant uncertainty that can result in rapid fluctuations in solar irradiance and therefore PV power output. However, the 68 

influence of a moving cloud and, hence, the shading of an entire PV site depends on the PV area, cloud speed, cloud height and 69 

many other factors. Data from solar installations covering a large spatial extent have an hourly temporal dynamic, while 70 

individual zones have instantaneous dynamics as in local distribution networks or micro grids. 71 

The daily operation of a power system should be matched to load variations to maintain system reliability. This reliability 72 

refers to two areas:  73 

- system adequacy, which depends on sufficient facilities within the system to satisfy system operational constraints and 74 

load demand, and 75 

- system security, which is the system ability to respond to dynamic disturbances.  76 
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When RES represent a significant part of the power generation, system operating power reserve must be larger to regulate the 77 

variations and maintain the security level. This additional power is required to stable the electrical network. Classically this 78 

power reserve is provided by controllable generators (gas turbines, diesel plant, ..). Today, the increasing of balancing power 79 

reserves leads to a significant increase in the power system operating cost and so system may limit the PV power penetration is 80 

due to the variability and uncertainty over short time scales.  81 

There are different ways to manage variability and uncertainty. In general, system operators and planners use mechanisms 82 

including forecasting, scheduling, economic dispatch, and power reserves to ensure performances that satisfy reliability 83 

standards with the least cost. The earlier system operators and planners know what kind of variability and uncertainty they will 84 

have to deal with, the more options they will have to accommodate it and cheaper it will be. The key task of variability and 85 

uncertainty management is to maintain a reliable operation of the power system (grid connected or isolated) while keeping down 86 

costs. 87 

Energy management of electrical systems is usually implemented over different time scales. One day ahead, system operators 88 

have to balance the load demand with electrical generation by planning the starting and set points of controllable generators on 89 

an hourly time step. Risks are also considered and thus a power reserve has also to be hourly planned. During the day, 90 

unexpected PV power lack is compensated by injecting a primary power reserve. The PV variability can be separated into 91 

different time scales associated with different impacts, onto the grid management and costs. Consequently, more capacity to 92 

compensate errors in forecasts or unexpected events must be accommodated. 93 

The instantaneous PV power output is affected by many correlated external and physical inputs, such as irradiance, humidity, 94 

pressure, cloud cover percentage, air/panels temperature and wind speed. The per unit surface power output is modeled by [12]: 95 

) )25)((. - 1 ( ).(. .  =)( tT CtIAtP prPV   (1) 96 

where ߟ	is the power conversion efficiency of the module (%), A is the surface area of PV panels (m2), Ir is the global solar 97 

radiation (kW/m2) and T is the outside air temperature (°C), pC  is the cell maximum power temperature coefficient (equal to  98 

0.0035 but it can varies from 0.005 to 0.003 per °C in crystalline silicon). 99 

The PV power, solar irradiance and temperature of our lab PV plant have been recorded during three continuous days 100 

(22/06/2010 - 24/06/2010) and are presented respectively in Fig. 1. The PV power variability is highly correlated with irradiance, 101 

so as to the temperature, while the PV power uncertainty is almost caused by the irradiance change. Sensed PV power data points 102 

can be drawn according to sensed irradiance and temperature data points in order to highlight correlations (Fig. 2).  103 

 104 
Fig. 1. PV power, solar irradiance and temperature in three continuous days. 105 
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 106 
Fig. 2. Irradiance and Temperature vs. Power correlation. 107 

The local load consumption demand is also highly unpredictable and quite random. It depends on different factor, such as the 108 

economy, the time, the weather, and other random effects. However, for power system planning and operation, load demand 109 

variation and uncertainty analysis are crucial for power flow study or contingency analysis. As for PV production, load demand 110 

variations exist in all time scales and system actions are needed for power control in order to maintain the balancing.  111 

B.Power Forecasting Methodology  112 

1)PV Power Forecasting  113 

In recent decades, several forecasting models of energy production have been published [13-17]. For PV power, one method 114 

consists in forecasting solar radiation and then forecasting PV power with a mathematical model of the PV generator. A second 115 

one proposes to directly predict the PV power output from environmental data (irradiance, temperature, etc.). Statistical analysis 116 

tools are generally used, such as linear/multiple-linear/non-linear regression and autoregressive models that are based on time 117 

series regression analysis [18]. These forecasting models rely on modeling relationships between influent inputs and the 118 

produced output power. Consequently, mathematical model calibration and parameters adjustment process take a long time. 119 

Meanwhile, some intelligent based electrical power generation forecast methods, as expert systems, fuzzy logic, neural networks, 120 

are widely used to deal with uncertainties of RES power generation and load demand [13,19].  121 

In daily markets, the hourly PV power output for the next day (day D+1) at time step h is represented as the sum of a day 122 

ahead hourly forecast PV power (
hvP

~ ) and the forecast error (εh
Pv):   123 

Pv
hhh vPPv ~

 =  (2) 124 

2)Load Demand Forecasting  125 

For load demand forecast, numerous variables affect directly or indirectly the accuracy. Until now, many methods and models 126 

have already been tried out. In [19], several long-term (month or year) load forecasting methods are introduced and are very 127 

important for planning and developing future generation, transmission and distribution systems. In [27], a long term probabilistic 128 

load forecasting method is proposed with three modernized elements: predictive modeling, scenario analysis, and weather 129 

normalization. Long-term and short-term load forecast play important roles in the formulation of secure and reliable operating 130 

strategies for the electrical power system. The objective is to improve the forecast accuracy in order to optimize power system 131 

planning and to reduce costs.  132 

The day ahead actual load demand at time step h (
hL ) is assumed to be the sum of the day ahead forecasted load (

hL
~ ) and an 133 

error (εh
L): 134 

L
hhh LL ~

 =  (3) 135 
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3)Net Demand Forecasting 136 
Knowing the PV power forecasting and the load demand forecasting, the net demand forecasting (

hDN
~ ) for a given time step 137 

h is expressed as:  138 

hhh vPLDN
~~~   (4) 139 

The real net demand (NDh) is composed of the forecasted day ahead ND and a forecast error (εh
ND): 140 

ND
hhh DNND ~

 =  (5) 141 

C.Application of Back-Propagation ANN to Forecast  142 

In order to predict the net demand errors, as well as PV and load forecast errors, we have developed several back-propagation 143 

(BP) Artificial Neural Networks (ANN) [22]. Compared with conventional statistical forecasting schemes, ANN has some 144 

additional advantages, such as simplicity in adaptability to online measurements, data error tolerance and lack of any excess 145 

information. Since the fundamentals of ANN based predictors can be found in many sources, it will not be recalled again.  146 

III.NET DEMAND UNCERTAINTY ANALYSIS 147 

A.Net Demand Uncertainty 148 
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 149 
Fig. 3. Net demand uncertainty calculation from ND error forecast. 150 

 151 

In order to simplify the study, the uncertainties coming from conventional generators and network outages are ignored and 152 

only load and PV power uncertainties are considered. Then the error of the ND forecasting is representing the ND uncertainty. 153 

Two possible methods are proposed to calculate the forecasted net demand error.     154 

1)First Method: Forecast of the Day-ahead Net Demand Error  155 

The real ND is the difference of the sensed load and the sensed PV power. Based on the historical sensed and forecasted 156 

database of the load demand and PV production, the past forecasted ND is calculated as the difference between past forecasted 157 

load and past forecasted PV power at time step h. Then by using past real ND ( 1,...,24  hNDhND ) and also past forecasted ND  (158 

1
~

,...,24
~

 hDNhDN ), the last 24h prediction ND errors are obtained ( ND
h

ND
h 1,...,24   ). Hence these data are used to calculate the day-159 
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ahead forecast of ND errors ND
h

~  (D+1) (Fig. 3). The obtained ND error forecast can be characterized by the mean and variance 160 

(respectively, ND
h and ND

h ). 161 

2)Second Method: Calculation from the PV Power and the Load Forecast Errors Estimation   162 

A second method is to define the ND uncertainty as the combination of PV power and load uncertainties. It is generally 163 

assumed that PV power and load forecast errors are unrelated random variables. So, firstly the day-ahead PV power and load 164 

forecasting errors ( PV
h~ and L

h~ ) are estimated independently. Then, last 24-hour load forecast errors and PV power forecast 165 

errors are calculated as the difference of the sensed load and PV power, and forecasted load and PV power, respectively (Fig. 4). 166 

The mean values and standard deviations of those forecasting errors can be obtained. Then the ND forecasting error can be 167 

attained as a new variable which comes from those two independent variables. The new obtained pdf is also a normal distribution 168 

with the following mean and variance [20, 21]: 169 

PV
h

L
h

ND
h    (6) 170 

22 )()( PV
h

L
h

ND
h    (7) 171 

µh
L and µh

PV are respectively the mean values of load and PV power forecast errors prediction at time step h, σh
L and σh

PV are 172 

respectively the standard deviation square of the load and PV power forecasted errors prediction. 173 
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Fig. 4. Net demand uncertainty calculation from PV power and load forecasting errors prediction. 175 

B.Assessment of the Forecasting Uncertainty 176 

The predicted errors ( ND
h

~ ) of the ND forecast ( ND
hDN

~ ) can be obtained with the normal probability density function (Fig. 5).  177 
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 (8) 178 

The forecasting uncertainty can be represented as upper and lower bound margins around the ND forecast. Bound margins 179 

(B) are extracted by a normal inverse cumulative distribution function for a desired probability index x (Fig. 5): 180 
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Fig. 5 Net uncertainty calculation at hour h with a given probability. 183 

 184 

IV.POWER RESERVE QUANTIFICATION  185 

A.Reliability Assessment  186 

Resulting from the uncertainty assessment, the pdf of the forecasted ND errors in a given time step is considered for the 187 

calculation of the power reserve [23]. To estimate the impact of forecast ND uncertainty, two common reliability assessment 188 

parameters are used: the loss of load probability (LOLP) and the expected energy not served (EENS) [24-26]. LOLP represents the 189 

probability that the load demand (Lh) exceeds PV power (Ph) at time step h:   190 





Rhhh pdfPLprobLOLP  )d()0( =  (10) 191 

prob(Lh-Ph>0) is also the probability that the power reserve (R) is insufficient to satisfy the load demand in the time step h.  192 

Meanwhile, EENS measures the magnitude of the load demand not served:  193 

)()0( = hhhhh PLPLprobEENS   (11) 194 

where (Lh-Ph) is the missed power in the time step h. 195 

In this situation, the grid operator can either disconnect a part of loads or use the power reserve to increase the power production.  196 

After obtaining each of the next 24 hours forecast ND pdfs, an hourly day ahead reliability assessment can be attained. Electrical 197 

system operators can use this reliability to calculate the system security level.  198 

B.Risk-constrained Energy Management 199 

A reserve characteristic according to a risk level and for each time step can be obtained. With a fixed risk index, the operator 200 

can then easily quantify the power reserve [9]. As shown in Fig. 6, the sum of the shaded areas represents the accepted risk of 201 

violation with x % of LOLP. R is the needed power reserve to compensate the remaining power unbalance. So, the reliability 202 

assessment can be done with the hourly cumulative distribution function (cdf) obtained from the normal difference distribution of 203 

ND errors. Then the cdf represents the probability that the random variable (here the ND error) is less or equal to x.  204 

This assessment has been made under the assumption of a positive hourly forecasted ND. Otherwise, if the forecasted ND is 205 

negative, the reserve power for the same reliability level will be unnecessary (the power generation is more than the load demand). 206 

So the reliability has been assessed by considering only positive forecasted ND errors (Lh-Ph) for each time step. Then, LOLP is 207 

deduced with: 208 



 

8 
 

 


R
hhh pdfPLprobLOLP  )d(-10)(-1 =  (12) 209 

When the LOLP equals to the risk index x %, the reserve power (R) covers the remaining probability that the load demand 210 

exceeds the PV power generation (blue part in Fig. 6).  211 

 212 

Fig. 6. Calculation of power reserve requirements (R) based on forecast ND uncertainty ( ND
h~ ) with x% of LOLP, at time step h. 213 

V.ILLUSTRATIVE CASE STUDY 214 

A.Presentation and Data Collection 215 

The studied urban microgrid is a 110 kW load peak and is powered with 17 kW PV panels and three micro-gas turbines 30 216 

kW, 30 kW and 60 kW each. Sensed data from our 17 kW PV plant located on the lab roof have been recorded in 2010 and 217 

2013. For the load forecasting, past daily French power consumptions have been scaled to obtain per unit values of locally power 218 

consumption with the same characters and dynamics. A part of this database has been used to design the ANN based forecasting 219 

tool, a part to assess the estimation quality and a third one to implement the application of the proposed method in a real situation 220 

[15]. 221 

The ANN has been trained with past recorded data from the training set to predict hourly PV output power. The efficiency of the 222 

proposed method is validated by analyzing the normalized Root Mean Square Error (nRMSE) and normalized Mean Absolute 223 

Error (nMAE) between predicted values (
ky~ ) and measured values ( yk ): 224 

  n
i kk yy

n
nRMSE

1
2)~(

1
 =  (13) 225 

  n
i kk yy

n
nMAE

1
~1

 =  (14) 226 

B.ANN Based Power Forecast and Net Demand Forecast  227 

1)ANN based PV Power Forecasting  228 

A three-layer ANN has been developed for the PV power generation prediction with: 229 

- one input layer including last n hours of measured PV power, of irradiance and of forecasted average temperature (obtained 230 

from our local weather information service) (Fig. 7);  231 

- one hidden layer with 170 neurons; 232 

- one output layer with  the 24 predicted PV power points (for each hour).  233 

Various hidden layer neurons have been tested until getting an nRMSE inferior to 5%. First, 60% of previously sensed data 234 

(representing one year of data) have been used for training the ANN based PV power forecasting tool. Next 20% of sensed data 235 

are used to create a validation pattern set in order to assess the prediction quality. The test set (with the remaining 20% data) is 236 

used to implement the forecast error calculation. Obtained nRMSE and nMAE for next 24 hours PV power predictions are given 237 
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in Table I. Predicted errors for 120 test days are given in Fig. 8. Absolute values are less than 0.4 p.u. of the PV power output. 238 

The largest errors are in the middle of the day when the PV power production is the highest.  239 
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 240 
Fig. 7. PV power, load forecasting and errors prediction with ANN. 241 

 242 
Fig. 8.  PV power prediction errors on 120 test days. 243 

TABLE I. Errors of the PV Power Forecast with ANN 244 

 nRMSE [%] nMAE [%] 
Training Set 4.67 2.69 

Validation Set 5.58 3.13 
Test Set 5.95 3.12 

 245 

2)ANN based Load Forecasting  246 

Another neural network has been used for load forecast. The load demand prediction model includes: an input layer with last 247 

48 hours load demand measurements and predicted temperatures for next 24 hours, one hidden layer with 70 neurons (in order to 248 

get an nRMSE inferior to 4%) and an output layer that predicts next 24 hours load demand. 60% of available data are used for the 249 

neural network training, 20% for the validation and 20% for tests. The predicted errors for 120 test days are shown in Fig. 9. As it 250 

can be seen, the largest forecast error occurs at 8:00 and 18:00. Yet the total absolute errors are less than 0.2 p.u. of the load 251 

demand. Obtained results of nRMSE and nMAE are listed in Table II. 252 

 253 
Fig. 9. Load prediction on 120 test days. 254 
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 nRMSE [%] nMAE [%] 
Training Set 3.18 2. 45 

Validation Set 3.57 2.76 
Test Set 3.67 2.84 

 256 

3)Net Demand Uncertainty  257 

a) First Method: Direct Net Demand Forecast 258 

Following the method highlighted in Fig. 3, another ANN is applied for ND errors forecast: an input layer with last 24 hours 259 

predicted net demand errors, one hidden layer with 70 neurons and an output layer that predicts next 24 hours forecasted net 260 

errors.  261 

Application of the first method (Fig. 3) for the time step at 12 am gives: 1.781   0.1282,- 1212  NDND   and the frequency 262 

distribution is shown on Fig 10(a). 263 

b) Second Method: Calculation of the PV Power and the Load Forecast Errors 264 

Two additional three-layer ANN are used to forecast the errors of PV power and load forecasts. Outputs are the predicted 265 

forecasting errors corresponding to the hourly predicted PV power and load, while inputs are the last 24 forecasting errors of PV 266 

power and loads.  267 

For each hour, the mean and standard deviation have been calculated and the corresponding normal pdf has been computed. 268 

As example, the distributions and normal pdf of predicted errors of PV power and load errors forecast at 12 am are shown 269 

respectively in Fig. 10(b) with obtained parameters: 0.01571    0.0353,- 1212  PVPV   for the PV forecast error ( PV
h 12 ) and in 270 

Fig. 10(c) with obtained parameters: 0.01571    0.0353,- 1212  LL   for the load forecast error ( L
h 12 ).   271 
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 272 
Fig. 10. Frequency distribution histograms and fitted Gaussian functions at 12 am. 273 

C.Forecasting Uncertainty Assessment   274 

By applying both proposed methods, the uncertainties of PV power forecasting, load forecasting  and net forecasting with 275 

various probability indices (from 90% to 60%) in a random day are represented as a function of the forecasting data and the 276 

predicted errors of forecasting. In order to simplify the explanation, results are given with the second method (corresponding to 277 

Fig. 5).  278 

As shown in Fig. 11, the uncertainty of PV power forecasting is higher in the middle of the day, when the PV system generates 279 

the highest power. While in the morning (from 6:00  to 10:00) and afternoon (from 17:00 to 21:00), the uncertainty is smaller. 280 

Obviously, PV power forecasting uncertainty increases, and decreases with PV power increase and decrease respectively. Also, 281 

the uncertainty is increased when the time horizon is larger. For example, at 10:00 and at 17:00 power outputs are almost at the 282 
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same level (about 6.5 kW), but uncertainty is larger at 17:00  then at 9:00. The load forecasting has the same variation trend (Fig. 283 

12).  284 

Fig. 13 depicts the obtained ND uncertainty with the first method. If the forecasted ND is positive, then additional power 285 

sources have to be programmed to cover the difference. Otherwise, if forecasted ND is negative then three actions must be 286 

considered to meet the low forecasted demand: 287 

- A part of PV power generators must be switched off (or can work at a sub-optimal level). 288 

- Controllable loads (as electrical vehicles, heating loads.) must be switched on to absorb excess available power. 289 

-  Export the available excess energy to the main grid. 290 

 291 
Fig. 11. PV forecasting with uncertainty (a random day). 292 

 293 
Fig. 12. Load forecasting with uncertainty  (a random day). 294 

 295 

Fig. 13. Next 24 hours NFD with uncertainty (a random day). 296 

D.Power Reserve Calculation with Fixed Risk Indices 297 

The forecasted ND uncertainty assessment has been done with the hourly cumulative distribution function (cdf) obtained from 298 

the ND forecast errors. Then, the hourly risk/reserve curve takes into account all the errors from the cdfs. Since the forecast ND 299 

errors can be expressed as an x % of the rated power, the PR can be drawn according to the LOLP. Fig.  shows the required PR 300 

variation according to LOLP and EENS (with the second method in Section III). Therefore, an operating PR under x % of LOLP 301 

would cover a part of the forecast ND uncertainty. For example, with 10% of LOLP, the reserve power will be 7 kW and the 302 
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EENS will be 0.2 kW. In general, this operating reserve is limited not only by the risk indices but also by the availability of micro-303 

gas turbines.  304 
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 305 
Fig. 14.  Risk/reserve curve for LOLPh+12 and EENSh+12 at 12:00. 306 

On Fig. 15, an assessment of hourly reserve power required with the second method for different LOLP has been deduced. 307 

Much more reserve will be needed when the LOLP rate is very low, which means a high security level. While less reserve power 308 

will be needed with a high LOLP rate, but then the risk will be higher. For example with 1% of LOLP, the necessary PR will be 309 

14 kW (EENS is almost zero) at 12:00 am, while the necessary reserve power will be 7 kW with a 10% of LOLP and EENS 310 

increases to 0.25 kWh. 311 

If a constant LOLP rate is set, the power reserve for each hour can be obtained. As shown in Fig. 16, with a 1% of LOLP, more 312 

power reserve is needed in the middle of the day when larger PV power is generated. Moreover, power reserve with the second 313 

method is higher than the method with direct ND forecast. The most likely explanation of this result is because the load forecast 314 

uncertainty and PV forecast uncertainty are not totally independent. Sharing a common temperature, integrated PV power 315 

uncertainty and load uncertainty is greater than the direct ND forecast uncertainty. This result can be used for power dispatch 316 

management. 317 

 318 
Fig. 15. Required power reserve for each hour with x% LOLP. 319 
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 320 
Fig. 16. Hourly power reserve with two different methods (1% of LOLP). 321 

VI.CONCLUSION 322 

This work proposed a new technique to quantify the power reserve of a microgrid by taking into account the PV power 323 

forecasting uncertainty and load forecasting uncertainty. In order to assess these uncertainties, a three-layer BP ANN is used to 324 

estimate errors of PV power and load forecastings.  Two methods are proposed to obtain the ND forecast uncertainties. With the 325 

first method, a probabilistic model is proposed to forecast ND uncertainty distribution by integrating the uncertainties from both 326 

PV power and load. The other method is desired to directly forecast the ND errors. The power reserve quantification results 327 

demonstrate that with a fixed risk index, the power reserve for next day or next 24 hours can be evaluated to cover the risk.   328 

As the uncertainty from forecasting errors increases with time horizon, future research works are oriented toward the 329 

implementation of the intraday adjustment. The dispatch of the calculated power reserve onto micro-gas turbines, controllable 330 

loads and also new “PV based active power generators”  is also an interesting way to pave.  331 
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