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Abstract 

The joint modelling of brain imaging information and genetic data is a promising 

research avenue to highlight the functional role of genes in determining the 

pathophysiological mechanisms of Alzheimer’s disease (AD). However, since 

genome-wide association (GWA) studies are essentially limited to the exploration of 

statistical correlations between genetic variants and phenotype, the validation and 

interpretation of the findings is usually non trivial and prone to false positives.  

To address this issue, in this work we investigate the genetic functional mechanisms 

underlying brain atrophy in AD by studying the involvement of candidate variants in 

known genetic regulatory functions. This approach, here termed functional 

prioritization, aims at testing the sets of gene-variants identified by high-dimensional 

multivariate statistical modelling with respect to known biological processes, in order 

to introduce a biology-driven validation scheme. When applied to the ADNI cohort, 

the functional prioritization allowed identifying a link between TRIB3 (tribbles 

pseudokinase 3) and the stereotypical pattern of grey matter loss in AD, which was 

confirmed in an independent validation sample, and that provides novel evidence 

about the relation between this gene and known mechanisms of neurodegeneration.  
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Significance Statement 

In this study we employ a novel experimental imaging-genetics approach for 

investigating the genetic underpinnings of brain atrophy in Alzheimer’s disease. We 

successfully combined state-of-art imaging-genetics methods and experimental gene 

expression data to uncover novel biology in brain atrophy. 

The novel experimental paradigm highlighted a significant role of TRIB3  (tribbles 

pseudokinase 3) in modulating the typical pattern of Alzheimer’s brain pathology. 

This result corroborates through rigorous data-driven statistical methods evidence 

emerging from previous studies about the role of TRIB3 in modulating known 

mechanisms of neurodegeneration, such as neuronal death, cellular homeostasis, and 

interaction with established genes causing autosomal dominant Alzheimer’s disease: 

APP and PSEN1. The developed integrated statistical-experimental methodology 

could serve as a roadmap for investigations in other disorders. 
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\body 

Introduction 

Alzheimer’s disease (AD) is a devastating neurodegenerative disorder and its 

aetiology still remains largely concealed. In the anticipation of increasing prevalence 

of AD and other dementias, there is an urgent need for improving the understanding 

of the disease processes that underlie neurodegeneration. Whilst the knowledge about 

the genetic and environmental risks underpinning AD is steadily advancing, our 

understanding of how these factors interact to lead to the complex pathophysiology 

that results in dementia is less understood.  

 

Advances in imaging technologies have led to non- or minimally-invasive imaging 

biomarkers that capture various aspects of the disease process including amyloid 

deposition [1], tau pathology [2], functional decline [3] and neuronal loss [4]. 

Combining such imaging information with genetic measurements – so called 

imaging-genetics – provides the means for investigating the effect of genetic variation 

on underlying biological mechanisms [5].  

 

Genome-wide association studies (GWAS) query millions of single nucleotide 

polymorphisms (SNPs) individually for their association with either case-control 

status [6] or disease-specific quantitative phenotypes, e.g., in the case of AD, regional 

brain volumes [7] or brain amyloid burden [8]. Mass univariate analysis of genetic 

data is still the predominant method, in virtue of its ease-of-use and well-established 

theoretical framework, albeit suffering from significant limitations including the 

requirement for multiple testing, redundancies introduced by linkage disequilibrium 

(LD) and the lack of analysis of epistatic effects (e.g., SNP-SNP interactions), which 
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have to be explicitly modeled and searched for exhaustively [9]. Moreover, more than 

one quantitative phenotype can be derived from the available imaging data, e.g., 

dozens or hundreds of regional brain volumes, or hundreds of thousands of voxel-

level metrics [10]. This potentially large number of genotype-phenotypes features of 

interest generally complicates the problem of reliably detecting statistical 

associations, and thus hampers the identification of disease-relevant genetic markers 

by purely statistical means.  

  

Limitations of classical mass-univariate statistical methods have in recent years been 

overcome by employing multivariate approaches to data analysis in the context of 

neuroscience studies [11] and GWAS [12]. Likewise, in imaging-genetics meaningful 

genotype-phenotype interactions [13] are captured by simultaneously modeling sets of 

genetic variants that are jointly associated with a given imaging phenotype 

[14,15,16,17]. Multivariate GWAS have the potential to shed light on the complex 

genotype-phenotype relationship, and may thus highlight novel links between brain 

physiology and molecular and biological functions. However, although these methods 

have proven their ability to identify meaningful SNP combinations associated to brain 

imaging features, the interpretation and validation of the statistical findings remain 

very challenging tasks. These problems relate directly to the understanding of the 

functional role of sets of genetic variants, and to the difficulty of replicating the 

statistical results in unseen cohorts. 

 

We approach this technical bottleneck by leveraging multivariate approaches to 

explore high-dimensional datasets and to generate hypotheses, which are 

subsequently tested in downstream experiments. High-quality databases of matched 
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genotype and gene expression measurements such as GTEx1 [18] and BRAINEAC2 

[19] facilitate the quantification of effects of SNPs on gene expression in numerous 

tissues, including various brain tissues. Typically, these databases are used to detail 

the effect of a genetic variant at the very end of an analysis pipeline and to garner 

evidence for molecular mechanisms of the genetic locus.  However, functional 

information in ‘convenience’ databases can also be used at an earlier stage in the 

analysis in order to prioritize a few candidate hypotheses with a clear functional 

mechanism (e.g., expression quantitative trait loci; eQTL) for the validation phase and 

thus limit the multiple testing burden. 

 

In this work we apply this novel investigative approach to study the genetic functional 

mechanisms underlying brain atrophy in AD. The framework is comprised of two 

steps:  

i) Statistical discovery. Candidate genetic variants are initially identified through 

data-driven multivariate statistical analysis of the matched imaging and genetics data. 

This is achieved by modeling the joint covariation between 1.1 million SNPs and the 

cortical and subcortical atrophy represented by 327,684 cortical and 27,120 sub-

cortical thickness values of 639 individuals (either healthy older controls or patients 

with AD) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort; 

 ii) Functional prioritization. The candidate genetic variants are subsequently 

screened for functional relevance by querying high-dimensional gene expression 

databases such as GTEx.  

The resulting small set of genetic loci, which are shown to modify gene expression, is 

then validated in an independent sample of 553 individuals from ADNI diagnosed 

with mild cognitive impairment (MCI), a proportion of whom progressed to AD. 
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Compared to previous approaches our work (i) analyses the whole genome and whole 

brain in a hypothesis free fashion, i.e., without preselecting SNPs or brain regions and 

(ii) uses a functional prioritization step in order to select genetic loci for validation in 

an independent cohort.  

Starting from the initial ~1.1 million SNPs, the multivariate statistical analysis 

allowed the identification of a relatively small number of genetic loci that are 

statistically associated with the typical pattern of AD brain pathology. The subsequent 

functional prioritization step ultimately identified a significant role of TRIB3 (tribbles 

pseudokinase 3), a gene showing important connections to known mechanisms of 

neurodegenerative diseases. Indeed, although a role for TRIB3 in dementia has not 

been extensively explored, there are several aspects of TRIB3 function that have 

relevance to mechanisms related to neuronal death, cellular homeostasis, and of 

interaction with established AD genes, such as APP and PSEN1.  

This study ultimately offers an illustration of the potential of effectively combining 

multivariate statistical modeling in imaging-genetics with recent instruments available 

from computational biology, to lead to novel insights on the pathophysiology of 

neurodegeneration. 

 

Results 

Model training and estimated components 

Figures 2 and 3 show the relevant areas of the identified joint genetic and phenotype 

variation, respectively, for the first three PLS components through stability selection. 

The components were very robust (100% reproducible) during the stability selection 

procedure (Supplementary Methods). The fourth and fifth components did not present 
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any relevant locations (i.e., all bins have p<0.95) after stability selection for both the 

genetic modality and for the imaging modality.  

 

Genetic components  

The circular Manhattan plot (Circos v0.96 [20]) of Figure 2 shows the PLS weights 

and the selection frequency for the PLS genotype components, describing the 

importance of the genetic loci associated to cortical thickness variation for component 

1, 2 and 3. The plot shows the probability of a given genetic bin of size 10kb of being 

relevant in the PLS model, i.e., to contain a SNP that is ranked in the top 10% of the 

absolute weights of the genotype component. Spatially contiguous loci generally 

show similar importance values, which is caused by LD of these regions. The genes 

close to the important loci are listed in the innermost circle depending on their 

genomic position. 

In the genetic components 1 through 3 a total of 118 bins exceeded the selection 

frequency threshold (61, 50, 7 for component 1,2 and 3, respectively). From these 

bins 402 (196, 181 and 25) influential SNPs were extracted and annotated with 98 

genes through the computational VEP analysis. The extended APOE locus comprising 

APOE and TOMM40 was selected as the highest scoring region in component 1. A 

total of 3,956 candidate SNP-gene pairs were considered for the GTEx-based eQTL 

analysis in six tissues. However, a few genes did not show sufficient expression levels 

in some tissues and these combinations were excluded from the analysis, resulting in 

1,598 unique SNP-gene-tissue tests, of those 104 were significant at the Bonferroni 

corrected p-value threshold (p=3.1e-5) (Table S1) linking to 14 genes (Table S2; 

Figure S5): CAPN9, CRYL1, FAM135B, IL10RA, IP6K3, ITGA1, KIN, LAMC1, 

LINC00941, LYSMD4, RBPMS2, RP11-181K3.4, TM2D1, and TRIB3.  
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The independent validation of those 14 genes in the MCI cohort confirmed TRIB3 

(p=0.0034) (Table 2). Three additional genes were (close to) nominal significance: 

TM2D1 (p=0.053), LAMC1 (p=0.062), and RP11-181K3.4 (p=0.053) (Table 2). Of 

note the top eQTL SNP for TRIB3 rs4813620 received a p=0.06175 in stage I of a 

large AD GWAS [6]. However, rs62191440, a SNP in strong LD with rs4813620 

(D’=0.8469; r2=0.6559) in the European population [21], received a p-value of 

0.00601 (Figure S6) and also constitutes an eQTL for TRIB3 in various tissues in 

GTEx including brain tissues cortex and caudate ganglia (Figure S7). Interestingly, 

when estimating the PLS components on the sub-cohort of 279 training individuals 

with positive CSF amyloid (Table 1) we identified compatible validation results on 

the independent testing MCI group. Within this setting, TRIB3 still leads to 

marginally significant differences (p=0.0134) between progressing and stable MCI, 

although not significant after correction for multiple comparison (Table S3).  

 

Morphometric components  

Figure 3 shows the PLS phenotype components 1 through 3 (top), as well as the 

associated selection frequency describing the loci of brain atrophy associated with 

genetic variation (bottom). The selection frequency colors indicate the probability of 

each cortical mesh points of being relevant in the PLS model, i.e., to be ranked among 

the top 10% of the absolute weights of the phenotype component.  

 

The first component is mainly associated to the thinning of the cortical mantle, and is 

localized in temporal and posterior cingulate cortices (Figure 3). The relevant areas at 

the subcortical level are primarily associated with amygdalae and thalami. The second 
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component is mostly associated to the thinning of the subcortical areas (hippocampi 

and amygdalae), and to the cortical thinning of the temporal areas at the cortical level. 

The third component is similar to component 2, and describes a sub-cortical thickness 

pattern prevalent in hippocampi, amygdalae, and thalami. At the cortical level, the 

component is associated with the thinning of frontal cortices, and to isolated spots 

located in the parahippocampal gyrus.  

 

Discussion 

In this work we modeled high-dimensional genome-wide SNP data and brain-wide 

cortical thickness data via joint multivariate statistical modeling and functional 

prioritization of genes through bioinformatics annotation and a large eQTL database.  

Our study ultimately identified a link between TRIB3 (tribbles pseudokinase 3) and 

the stereotypical pattern of grey matter loss in AD (cortical thinning in temporal and 

posterior cingulate regions and subcortical atrophy). TRIB3 is a pseudokinase which 

acts as a regulator of several signaling pathways. For example it can interact directly 

with Akt and inhibit the pro-survival pro-survival Akt pathway [22].  TRIB3 

expression is induced during neuronal cell death [23] and recently increased levels of 

the TRIB3 protein were found in dopaminergic neurons of the substantia nigra pars 

compacta in patients with Parkinson’s disease [24]. TRIB3 expression is stress 

induced and increases in response to nerve growth factor (NGF) deprivation; 

endoplasmatic reticulum (ER) stress, and amino acid deprivation [23]. Although a 

role for TRIB3 in dementia has not been extensively explored, there are several 

aspects of TRIB3 function that have relevance to known mechanisms of 

neurodegenerative disease. TRIB3 can interact directly with P62 to modulate 

autophagic flux [25], an important process in maintaining cellular homeostasis that is 
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known to be disrupted in neurodegeneration [26]. Knockdown of TRIB3 modulates 

PSEN1 stability [25] and a yeast two-hybrid screen identified progranulin as a direct 

interaction partner of TRIB3 [27].   Intriguingly, it has recently been demonstrated 

that TRIB3 induces both apoptosis and autophagy in Aβ-induced neuronal death, and 

silencing of TRIB3 was strongly neuroprotective [28]. These links warrant further 

investigation for a functional role of TRIB3 in neuronal death in dementia.  

These earlier findings align with our eQTL analysis where carriers of the minor allele 

show increased TRIB3 expression (Figure S5), which potentially lowers the threshold 

to TRIB3 mediated neuronal cell death. TRIB3 expression was modulated by the 

identified SNP in various other tissues including the caudate (Figure S7), a region 

affected in PD and Huntington’s disease. A recent study of Trib3 expression in mice 

concluded that “Trib3 has a pathophysiological role in diabetes” [29]; diabetes itself 

is a known risk factor for dementia [30] perhaps through shared metabolic processes 

with AD [31]. Interestingly, one of the three SNPs (rs1555318) selected in the PLS 

model and attributed to TRIB3 showed a strong association with type-2 diabetes in 

stage 1 of a large GWAS (p=4.4e-4; Figure S8) [32]. Other GWAS showed links 

between TRIB3 and information processing speed (p=1.7e-7) [33] and AD (p=0.006; 

[6]). An earlier genetic study on AD in Swedish men found an association in TRIB3 

as well (p=0.044; [34]), which was replicated in a Canadian cohort (p<0.001 ; [35]). 

Lastly, TRIB3 was reported to physically interact with APP [36] and it shares 

numerous functional annotations for biological processes regarding lipid metabolism 

with APOE.  

 

The functional prioritization component of the analysis successfully reduced the set of 

candidate genetic variants for the independent validation, however, this prioritization 
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has a shortcoming: it hypothesizes that identified SNPs alter the expression of a 

nearby gene. Although, this scheme led to the identification of TRIB3 in the cortical 

thickness phenotype, it did miss a long-established AD risk gene: APOE. SNPs 

belonging to APOE (rs429358 and rs7412) were selected as highest scoring SNPs in 

component 1. However, none of them was detected as an eQTL and thus APOE was 

excluded from the downstream analysis. Other types of functional prioritizations 

based on exonic function prediction may have retained APOE and other genes in the 

pipeline. However, SNPs data typically features only a few non-synonymous exonic 

variants and their high frequency (MAF >5%) renders them unlikely to receive 

significant ‘damaging’ scores in these predictions. Thus, for this scenario the use of 

these function predictions would be limited.  

 

The list of genes we identified contains other interesting candidates. For instance, 

IL10RA (interleukin 10 receptor subunit alpha) is a receptor for interleukin 10 (IL10), 

a cytokine that controls inflammatory response [37]. Carriers of the minor allele show 

increased IL10RA expression (Figure S5) and Il10ra expression is increased in 

affected brain regions with increasing age and presence of AD pathology in 

transgenic mouse models of AD (MOUSEAC; [38] Figure S9). Moreover, a link 

between downregulation of IL10RA and TRIB3 in TRIB3-silenced	HepG2	cells	was	

reported	in	[25],	along	with	increased	abundance	of	Presenilin	1,	ApoE3,	and	

Clusterin.	Finally,	blocking IL10 response was recently suggested as a therapeutic 

mechanism in AD [39]. A gene that showed a statistical trend in the validation sample 

was TM2D1 (TM2 domain containing 1), which is a beta-amyloid binding protein and 

may be involved in beta-amyloid-induced apoptosis [40]. Further, MEF2A (Myocyte 

Enhancer Factor 2A), like APOE, was filtered out by the functional prioritization. 
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However, MEF2A is a paralog of MEF2C, which is an established AD gene [6]. 

Noteworthy, bins covering MEF2C only barely missed the selection threshold in 

component 2 for further analysis (max p=0.926; Figure 2). 

 

Methodological Considerations 

The experimental setting proposed in this study is based on the investigation of 

potential genetic candidates in the AD and healthy training population, and on their 

testing in the MCI cohort. This experimental choice was motivated by clinical and 

practical considerations.  

 

From the clinical point of view, although we cannot exclude that the imaging-genetics 

association patterns could be modulated by state-specific factors throughout the 

development of the disease [41], the heterogeneity of the MCI label is likely to lead to 

the inclusion in the discovery dataset of individuals with non-AD pathologies. Thus, 

including MCIs in the discovery cohort bears the risk of diluting the gene finding 

(especially considering the relatively low sample size of the study cohort). Likewise, 

GWAS in AD carried out to date focus on comparing CT and AD. Moreover, the 

paradigm proposed in this study is rather conservative since it explores associations 

present throughout the progression of the pathology, i.e., associations were discovered 

by comparing CT and AD subjects and validated on disease progression in the 

intermediate MCI cohort. This consideration, while being more conservative, may 

play in favor of the robustness of the reported results. From a practical point of view, 

the proposed scheme allowed the validation of the model on a clinically relevant 

testing cohort by taking advantage of the full sample available in the ADNI dataset. 

Splitting the available AD and CT subjects into discovery and validation cohort, 
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would have dramatically reduced the sample size, thus increasing the uncertainty of 

the PLS findings.  

 

Concerning the number of components analyzed in the PLS model, we limited the 

study to the exploration of the first five eigen-modes. As shown in the experimental 

results, the stability of PLS parameters of the high-order components was generally 

quite low and did not lead to any significant results after permutation testing. For this 

reason, we believe that extending the analysis to higher-order components (e.g., 

components six to ten) would not change the proposed analysis and subsequent 

results. 

 

The relevance assessment procedure proposed in this study relies on the choice of 

statistical significance thresholds, such as the 10% cutoff on the magnitude of the PLS 

weights, and p<0.05 for the selection frequency over the 1,000,000 folds. These 

thresholds were not optimized to maximize specific statistical outcome (e.g. the ratio 

between true and false positives). Indeed, the optimization of these parameters may 

lead to important methodological issues such as overfitting and selection bias [42], 

and ultimately lead to poor generalization of the statistical findings. This is 

particularly true in the challenging setting proposed in this work, characterized by 

large dimensions and low sample size. For this reason, we chose to use standard 

cutoffs for significance assessment as a compromise between minimizing this 

important source of bias while still identifying meaningful genotype and phenotype 

features. Furthermore, we believe that the ultimate approach to assess the validity of 

the findings is through testing on genuinely independent data, such as on the MCI 

cohort proposed in this study. 
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Conclusions 

This study illustrates the potential of effectively combining multivariate statistical 

modeling in imaging-genetics with recent instruments available from computational 

biology, to lead to novel insights on the disease pathophysiology. Thanks to the ever-

growing data-driven knowledge based on the vast quantities of information now 

available to the research community, the paradigm proposed in this study may 

represent a promising avenue for linking imaging-genetics findings to the current 

knowledge on functional genetics mechanisms involved in neurodegeneration. 

 

Materials and methods 

Study Participants 

Data used in the preparation of this article were obtained from the ADNI database   

(http://adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private 

partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal 

of ADNI is to test whether serial magnetic resonance imaging, positron emission 

tomography, other biological markers, and clinical and neuropsychological 

assessment can be combined to measure the progression of MCI and early AD. For 

up-to-date information, see www.adni-info.org. This research mainly involves further 

processing of previously collected personal data. We have explicit authorization for 

the use of the ADNI dataset, and we have signed the relevant papers guaranteeing that 

we abide to the ethics standards. The ADNI protocol details on page 30-31 the 

informed consent for imaging data (section d.5.d) and the procedures to maintain 

confidentiality of the data (section D.5.e). 
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We selected genotype and phenotype data available in the ADNI-1/GO/2 datasets for 

1,192 subjects. Summary socio-demographic, clinical and genetic information are 

available in Table 1. At time of study entry subjects were diagnosed as healthy 

individuals (N=401), MCI (N=553) or AD (N=238). A total of 212 (38.3%) MCI 

patients subsequently converted to AD over the course of the study (6 years). All 

participants were non-Hispanic Caucasian, with a prevalence of males across the 

considered groups. AD and MCI groups show significant cognitive decline measured 

by MMSE and ADAS-COG as compared to the healthy individuals (p<1e-2, two 

sample t-test for group-wise comparison). There was also a significant increase of 

individuals with pathological levels of Aβ1-42  in the CSF (Aβ1-42  <192pg/ml) across 

the clinical groups, with proportions ranging from 43% for healthy individuals to 93% 

for AD patients (p<1e-2).  Similarly, we observed a higher prevalence of APOE4 

carriers in AD and progressing MCI individuals when compared to healthy and MCI 

stable groups.  

In what follows, the 639 healthy and AD subjects form the discovery set, while the 

MCI converters and non-converters form the independent validation set.  

 

Data processing 

The imaging phenotype comprised the baseline brain cortical thickness maps 

estimated with FreeSurfer 5.3 [43] and the bilateral radial thickness maps for 

hippocampi, amygdalae, thalami, caudate, putamen, globus pallidus and nucleus 

accumbens. In detail, radial thickness of each subcortical surface model was based on 

the distance to a medial curve. We fit the medial curve using curve evolution 

individually for each shape [44]. Surfaces are then registered parametrically to 

achieve point-to-point correspondence by matching curvature and medial curve-based 
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features [45,46]. The procedure resembles the cortical surface registration on the 

sphere performed in FreeSurfer. Finally, the full imaging component comprises 

327,684 cortical and 27,120 subcortical features per subject.  

 

SNP genotype data (Illumina Human610-Quad BeadChip for ADNI-1, and Illumina 

Human Omni Express for ADNI-GO/2) was downloaded from the ADNI website and 

preprocessed with PLINK [47]. Standard quality control (QC) parameters were used 

to filter SNPs: minor allele frequency (MAF) < 0.01, genotype call rate <95% and 

Hardy-Weinberg equilibrium (HWE) p-value < 1x10-6. Finally, genotyped SNPs 

passing QC were used to impute SNPs in the HapMap III reference panel. Imputed 

SNPs underwent a separate QC regarding minor allele frequency (MAF > 0.01) and 

imputation quality (imputation R-squared > 0.3) in order to exclude poorly imputed 

SNPs. For the analysis the individuals' minor allele counts for each of the resulting 

1,167,126 SNPs in the 22 autosomes were used. 

 

Statistical Discovery 

The joint relationship between the genetic and imaging modalities was investigated 

through partial least squares (PLS) modeling [48,49,50,51,52,53]. Among the several 

PLS versions proposed in the literature we focus on the symmetric formulation of 

PLS computed through the singular value decomposition (SVD) of the cross 

covariance matrix (Figure S1) [51,52,54]. Within this setting, the aim of PLS is to 

estimate the latent components that maximize the global covariance between the two 

input modalities. Each input feature receives a weight in the latent component that 

represents its relative importance for describing the global joint multimodal 
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relationship. Analyzing these weights helps identifying SNPs that are linked to the 

patterns of cortical thinning in the brain. 

 

In this study we applied a robust approach for the stable estimation and interpretation 

of PLS weights in genome-wide genotyping data, aimed at promoting sparsity (i.e., 

selecting only few features for simplified interpretation) and regularity (by 

aggregating SNPs within the same genetic neighborhood). This is achieved through a 

stability selection procedure in which the reproducibility and robustness of the PLS 

parameters is assessed through a split-half cross-validation based scheme on 

1,000,000 repetitions of the models on randomly sampled subgroups (Figure 1 and 

supplementary Methods).  

 

By considering a pre-defined partition of each chromosome into contiguous loci of 

size 10kb, the procedure leads to the estimation of a confidence measure taking values 

ranged between 0.0 and 1.0 indicating the probability of each genetic loci to contain 

highly reproducible PLS weights, and therefore serving as a measure of importance of 

the genomic location (Figure 2). 

A similar procedure was employed to assess the importance of the phenotype 

component (Figure 1). However, no regional binning was employed (Figure 3). 

The procedure was applied to assess the parameter reproducibility of the first five 

PLS modes; subsequent analyses were performed only on components with relevant 

genetic and brain regions (i.e., reproducible PLS weights with selection frequency 

>95%).  PLS components and probability measures will be made available at the 

author’s website. 
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Gene identification 

We analyzed the 10kb bins (genetic loci) with the selection frequency exceeding 0.95, 

i.e., bins selected in 95% or more of the 1,000,000 replications. Within these bins we 

then identified the influential SNPs: a SNP was declared influential if it was 

associated with the weights of greatest magnitude in the PLS components estimated 

on the full data sample, i.e., SNPs with absolute weights exceeding the 99th quantile 

of all weights in the component. These weights are the ones contributing to the high 

selection frequency in the split-half procedure, and are representative of the 

significant variation modeled in the data. Focusing on the features associated with 

these weights allows us to restrict the functional prioritization on a SNPs subset of 

reduced dimensionality, by focusing only on the most representative elements. 

In order to link SNPs to corresponding genes we used the Ensembl Variant Effect 

Predictor (VEP) for GRCh37 (date accessed: 17th October 2016) [55] with the 

GENCODE gene annotation. SNPs tagged as ‘regulatory’ were manually investigated 

and annotated with the nearby genes. 

 

Functional prioritization 

All SNPs successfully annotated with a gene were subjected to functional 

prioritization through expression quantitative trait loci (eQTL) analysis based on the 

Genotype-Tissue-Expression project (GTEx) data. The sample size in GTEx for 

relevant brain tissues in AD was rather small (e.g., N=81 for hippocampus). 

Therefore, we added five more tissues with large samples sizes that were more 

distantly relevant to AD: nerve tibial (N=256) was added as a proxy for nervous 

tissue; whole blood (N=338) and artery tibial (N=285) were included to cover blood-

based changes and effects on blood vessels [56] adipose subcutaneous (N=298) was 
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selected due to links between AD and obesity, type-2 diabetes and metabolic disease 

[57,58]. Finally, transformed fibroblasts (N=272) were included as a general-purpose 

cell line. P-values were corrected for multiple testing using the Bonferroni method. 

 

Model validation in independent MCI subjects 

The genes that were found to be under expression control by the identified SNPs were 

validated for their capacity to predict clinical conversion in MCI subjects. To this end, 

for each identified gene we applied the PLS weights estimated on the discovery set on 

the validation set, with the genetic component restricted to SNPs +/- 20kb of the gene 

borders. The identified latent projections (i.e., a weighted sum of SNPs) results in one 

score per subject per gene. For each gene the association of the projection score with 

conversion status was assessed by statistically comparing the scores distribution 

between healthy individuals and AD patients, and between MCI converters and non-

converters (Kruskal-Wallis non parametric test for two sample comparison, 

Bonferroni correction for multiple comparisons). 
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Figure 1. Cross-validation scheme for the assessment of the genetic loci of maximal 

genotype-phenotype correlation identified by the PLS model. The whole procedure is 

repeated 1,000,000 times, and the resulting array is further analyzed. a) PLS is 

applied in a split-half setting. For each of the two non-overlapping randomly sampled 

groups, the PLS components of joint phenotype and genotype variation are 

independently estimated. b) Left. Each chromosome is partitioned in bins of 10k 

base-pairs size, which are labeled 1 if they contain a SNP associated to the largest 

PLS weights (top 10% of absolute values), or 0 otherwise. To obtain stable estimates 

of the loci of maximal weights, the resulting binary arrays independently estimated in 

the two groups are merged (bin-wise AND operation). The same procedure is applied 

on the mesh-based PLS weights associated to the phenotype component. c) Steps a) 

and b) are repeated across 1,000,000 folds, and the results are subsequently averaged 

to obtain the confidence maps associated to genetic and phenotype components 

(figures 2 and 3).  

 
Figure 2. PLS genotype component: the outer circular plots show the probability of a 

given genetic locus to be associated with the phenotype components shown in Figure 

3. The plots show the probability of a given genetic bin of size 10kb of being relevant 

in the PLS model, i.e., to contain a SNP that is ranked in the top 10% of the absolute 

weights of the genotype component. Spatially contiguous loci generally show similar 

importance values, which is caused by LD of these regions. The genes close to the 

important loci (p>0.95) are listed in the innermost circle depending on their genomic 

position; genes with eQTLs are highlighted by red font. The inner circular plots show 

the PLS weights associated to each genetic locus (red: positive, blue: negative). Loci 

with large absolute weight value are usually characterized by high relevance. The red 

radial lines are located in correspondence of known AD genes: ABCA7, APOE, APP, 
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BIN1, CASS4, CD2AP, CD33, CELF1, CLU, CR1, DSG2, EPHA1, FERMT2, HLA-

DRB5, INPP5D, MAPT, MEF2C, MS4, NME8, PICALM, PSEN1, PSEN2, PTK2B, 

SLC24A4, SORL1, ZCWPW1. High-resolution circular plots for each component are 

provided in Supplementary Figures S2, S3 and S4. 

 

Figure 3. PLS Phenotype component: the figures in the top row show the 

topographical distribution of the PLS weights associated to the cortical and 

subcortical brain areas. The absolute value of the weights is proportional to the 

importance of the underlying brain areas. The relevance of the brain areas is 

quantified in the bottom row. The colours (red to white) indicate the probability of a 

brain area to be associated with the genotype component shown in Figure 2, and 

quantify the probability of each cortical mesh points of being relevant in the PLS 

model, i.e., to be ranked among the top 10% of the absolute weights of the phenotype 

component.   
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