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Abstract 

Cracking initiation and propagation are frequently recognized as main causes leading to failure of 
timber structures. Since the kinematics of both processes is largely influenced by environmental 
conditions, a comprehensive reliability assessment of notched structures should take into account such 
environmental factors. The main purpose of this paper is to propose a methodology for reliability 
assessment and updating of notched timber components based on mechanical (A-integral formulation) 
and reliability (simulation and Bayesian networks) methods, and experimental data. The A-integral 
formulation is used to estimate energy release rates in modes I and II by taking into account thermal 
effects; but its numerical implementation is time-consuming for uncertainty propagation. In order to 
deal with this problem, Bayesian networks were used for reliability assessment and updating. The 
experimental data used for updating purposes were obtained from measurements of deflection, 
temperature and relative humidity on a notched beam (Douglas Fir specie) exposed to outdoor 
environment and constant loading. The whole proposed methodology was illustrated with the 
reliability assessment and updating of the studied notched beam. The results indicated that the 
proposed approach is able to integrate measurements of temperature and deflection for reliability 
updating.  

Keywords: timber; Bayesian network; reliability; updating; mixed mode fracture; viscoelasticity  

 

1. Introduction  

Timber is a traditional material that has been widely used for various types of structures. For example, 
there are about 27,000 timber bridges over a total of 40,000 bridges in Australia [1]. By observing 
historical buildings around the world, it can be seen that timber structures guarantee a long-term 
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service life with a high durability level. However, in timber structures, cracking initiation and 
propagation are frequently recognized as main causes leading to structural failure [2,3]. Hansson [4] 
provided a comprehensive survey and analysis of failures in 127 timber structures in Sweden. This 
author found that crack initiation and propagation play an important role in timber structural failure. 
Mechanical behavior of notched timber structures is affected by environmental conditions (moisture, 
temperature, etc.) [5,6] that could produce a higher risk of crack growth in timber structures [7,8]; as a 
consequence, the lifetime assessment of notched timber structures should take into account the 
influence of these environmental conditions.  

Rational reliability and lifetime assessments require a realistic modeling of the mechanical behavior. 
Concerning crack growth initiation, many numerical methods have been developed to characterize 
mechanical fields at the crack tip vicinity [9,10]. Among them, the most popular energy methods 
enable an evaluation of fracture parameters such as energy release rate and stress intensity (J-integral 
[11] and Noether's Theorem [12]). These methods however are inefficient when solving mixed-mode 
crack growth problems that require separating the displacement fields into symmetric and asymmetric 
parts. To deal with this problem, the M-integral [13] separates fracture modes based on a bilinear form 
of the strain energy density by introducing real and virtual mechanical fields according to Sih's 
singular forms. Unfortunately, these tools remain mathematically limited to simple loadings and 
simple boundary conditions. This work, considers an extension of the T-integral formulation called A-
integral to take into account the effect of thermal loading and therefore improve the estimation of the 
fracture parameters, such as stress intensity factors and energy release rates (see [2,14,15] for more 
information on the definitions and formulations of T and A-integrals). 

Several authors [16–23] used reliability theory and methods to evaluate the structural safety of new or 
existing timber structures. Brites et al. [16] used reliability analysis based on Monte Carlo simulations 
to evaluate the safety of the timber truss system subjected to decay. Köhler et al. [19] focused on the 
development of comprehensive probabilistic models of timber material properties including spatial 
variability. More recently, Köhler and Svensson [20] worked on a probabilistic representation of the 
duration of load effects. Sørensen [21] provided a theoretical framework for robustness assessment of 
timber structures on the basis of structural system reliability and risk analysis. Kirkegaard et al. [22] 
studied system reliability of timber structures considering its ductile behavior. The results of such a 
study showed that considering the ductile behavior of timber materials could increase the reliability of 
a structural timber system. Other authors [1,18,24] assessed the structural safety of existing timber 
structures by using reliability analysis and measured data (from inspection results and non-destructive 
tests) for updating purposes. However, these studies did not account for some aspects that might lead 
to inaccurate assessments such as the presence of notches and the interaction between environmental 
conditions and mechanical behavior.  

A Bayesian based approach is a suitable tool that could incorporate all these issues for reliability 
assessment. In the form of multi-events, it turns in the form of Bayesian network (BN) for describing 
the relationship between random variables. This approach has been used for reliability updating in 
some previous studies related to chloride-ingress into concrete [25–28]. Within this context, the 
objective of this study is to propose a methodology for reliability assessment and updating of cracked 
timber structures from experimental data by coupling mechanical (A-integral formulation) and 
probabilistic (simulation and BN) methods. The proposed framework is modeled by a BN that 
represents the structural performance, provides an estimation of the failure probability and could be 
updated by introducing experimental information. With respect to previously mentioned works on 
reliability assessment [1,18,24] [16–23] [16] [19] [20] [21] [22],  Analytical formulations, numerical 
tools and experimental data presented in this paper were developed within the framework of the 
JCJC2013 CLIMBOIS (effects of climatic and mechanical variations on the durability of timber 
structures) research project (funded by the French National Research Agency). 

The paper starts describing the experimental setup and the inspection data that will be used for 
reliability updating (section 2). Section 3 summarizes the A-integral formulation as well as the 
considerations for its numerical implementation in the finite element software Cast3M. Section 4 
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introduces the methods for reliability propagation, assessment and updating. Finally, the proposed 
methodology is applied to the notched beam and the results are presented and discussed in section 5. 

2. Experimental setup 

2.1. General description 

This section summarizes the experimental setup considered in this study. The tests were carried out on 
notched beams of Douglas fir (Pseudotsuga menziesii) specie, dimensioned as presented in Figure 1 
according to the Eurocode 5 [29]. Three beams (D3, D6 and D9) have been loaded during this period 
but only the beam D9 has been studied in this paper. The beams D3 and D6 were broken 2 and 4 hours 
respectively after the beginning of the experiment. Since this work focuses on environmental effects of 
climate and loading conditions on the time response of cracked timber beams and the data for beams 
D3 and D6 is scarce, we will only focus on the results for the beam D9. The initial crack size, 𝑎!"!, 
had a length of 25mm. The beams were subjected to two constant loads, 𝑃, induced by concrete blocks 
applied in two points. Before the experiment, the beams were conserved under controlled room 
environmental conditions (relative humidity 𝑅𝐻 = 40%, and temperature 𝑇 = 22ºC). Some defects 
were observed on the beams: knots and annual rings not oriented in the direction of the grain. They 
were placed at the Clermont Auvergne University (Clermont-Ferrand, France) and subjected to 
outdoor climatic conditions (Figure 1).  

Before applying the load, comparators and a linear graduated line were placed on the two faces of each 
notched beam to follow the crack opening and propagation during the test campaign (Figure 1). In 
addition, an LVDT sensor placed on the middle of the beam followed the evolution of the deflection at 
this point during the test. In parallel, a neighboring weather station provided information about the 
climatic conditions during the experiment. Indeed, the evolutions of Relative Humidity (RH) and 
Temperature (T) are continually and automatically recorded (all the 5min) and provided by the 
Laboratory of physical meteorology of Clermont University, which is at 100 m from the experimental 
device, during the experimental phase. In summary, this experimental setup allows us to obtain a 
regular follow-up of the evolution of the following parameters: opening of crack, length of the crack, 
deflection and environmental conditions. Among the available data, only deflection and climate 
measurements will be used in this study for updating the probability of failure of the beam. 

2.2. Experimental results 

The results presented in this section concern one beam of Douglas fir that was tested until breaking 
from June to July 2016. The results of this beam will be used in this paper to illustrate the proposed 
methodology for reliability assessment and updating. Evolution of measurements (deflection (𝑤) and 
climate parameters (𝑇 and 𝑅𝐻)) is shown in Figure 2. According to this figure, it is observed that in 
the long term the absolute value of the defection increases until the end of the experiment by a coupled 
interaction between creep and crack propagation processes. For short time periods, it is also noted that 
there are direct relationships between the cycles of 𝑇 and 𝑅𝐻 and the deflection during the test. For 
example, in the period from 300 to 400 hours, the absolute value of deflection increases during drying 
and heating phases (Figure 2).  

The experimental observations presented in this section highlighted the larger influence of climate 
conditions on deflection. Consequently, it is paramount to include these environmental effects 
combined with experimental measurements for improving reliability assessment. Since tests presented 
in this section are time-consuming, a comprehensive numerical model is also required for the efficient 
understanding of fracture phenomena subjected to mechanical and environmental loading. Such a 
model is able to consider only temperature effects and is summarized in section 3. The experimental 
data (geometry, loading, material properties, temperature and deflection) will be used afterwards for 
reliability assessment purposes by considering the Bayesian framework proposed in section 4. 
Particularly, temperature variations and deflection measurements will be used to update the 
instantaneous probability of failure (section 5). 
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3. Mixed-mode fracture formulation and numerical implementation 

This section first summarizes the mathematical formulation of the A-integral [14]; afterwards, it 
describes the considerations for its numerical implementation in a Finite Element Analysis (FEA) 
software that will be used to propagate uncertainties. 

3.1. A-integral formulation 

In order to implement the A-integral in a FEA software, it is easier to take into account a surface 
domain integral. Within this context, the curvilinear path is transformed into surface domain by 
introducing a vector field 𝜃 as shown in Figure 3. This mapping function is continuously differentiable 
and takes these values:  𝜃 =  (1, 0) inside the ring S, and: 𝜃 =  (0, 0) outside it, Figure 3. Hence, the 
use of the Gauss-Ostrogradsky theorem [7,14] enables us to obtain the following A-integral given by: 

𝐴 =
1
2
𝜎!",!!  𝑢! − 𝜎!"!  𝑣!,! 𝜃!,!𝑑S

!
−

1
2
𝛾𝜗!𝛿!"𝑣!,!"∆𝑇,! 𝜃!,!𝑑S

!

+
1
2
𝐹!  𝑣!,! 𝜃!𝑑𝑥!

!!
 

(1) 

where 𝐹! = 𝑝 and 𝐹! = 𝑞 represent the loads applied to the upper crack edge, and 𝐹! = −𝑝 and 
𝐹! = −𝑞 the loads applied to the lower crack edge. 𝜎!"! and 𝜎!"! are stress tensor components deduced 
from the real displacement field 𝑢 and the virtual displacement field  𝜗, respectively. 𝜃 is a continuous 
and derivable scalar field. It forms a crown around the crack tip as shown in Figure 3. The factor 𝛾 
introduces the elastic modulus versus temperature variation ∆𝑇 in plane strain. For the orthotropic 
material, the value of γ depends on the direction of the material, since the engineering constants are 
not the same for all directions. 𝛿 is the Lagrangian representation of the bilinear form of strain energy 
density. The first term of eq (1) is the classical term of the Mθ-integral [14,15], which facilitates the 
separation of the contribution of each fracture mode, without resorting to separate the displacement 
field into symmetric and antisymmetric parts. The second term of the A-integral deals with the 
temperature effect, including temperature gradients inducing thermal dilatation and contraction. The 
last term of the A-integral represents the effect of pressures 𝑝 and 𝑞 applied perpendicularly to the 
cracked lips, where 𝐿! is the integration path. Note that, the mechanical load applied on the cracked 
lips can be induced by fluid action or contact between the crack lips during the crack growth process. 
The only restriction is the non-existence of friction or shear effects in the cracked lips. 

In the orthotropic case, the mechanical behavior of an anisotropic material is described by the stress-
strain relationship ϵ! = 𝐸!"! 𝜎!" +  𝛼!! ∆𝑇, where 𝐸!" are the contracted notations of the 
compliance tensor 𝑆!"#$ that depend on modulus and Poisson coefficients in longitudinal, transversal, 
radial directions; and 𝛼! are thermal expansion coefficients in longitudinal (𝛼!) and transversal (𝛼!) 
direction of wood. In the case of two-dimensional anisotropic elasticity problems, the components 𝜗! 
and 𝜗! of the near tip displacement field are expressed as [15]: 

𝜗! =  𝐾!  
2𝑟
𝜋

 ℜ 
1

𝜇! − 𝜇!
𝜇!𝑝! 𝑐𝑜𝑠𝜑 + 𝜇! 𝑠𝑖𝑛𝜑 − 𝜇!𝑝! 𝑐𝑜𝑠𝜑 + 𝜇! 𝑠𝑖𝑛𝜑  

      + 𝐾!!  
2𝑟
𝜋

 ℜ 
1

𝜇! − 𝜇!
𝑝! cos𝜑 + 𝜇! sin𝜑 − 𝑝! cos𝜑 + 𝜇! sin𝜑  

(2) 
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𝜗! =  𝐾!  
2𝑟
𝜋

 ℜ 
1

𝜇! − 𝜇!
𝜇!𝑞! 𝑐𝑜𝑠𝜑 + 𝜇! 𝑠𝑖𝑛𝜑 − 𝜇!𝑞! 𝑐𝑜𝑠𝜑 + 𝜇! 𝑠𝑖𝑛𝜑  

      + 𝐾!!  
2𝑟
𝜋

 ℜ 
1

𝜇! − 𝜇!
𝑞! cos𝜑 + 𝜇! sin𝜑 − 𝑞! cos𝜑 + 𝜇! sin𝜑  

(3) 

where (𝑟,𝜑) represents the polar coordinate system of a point 𝑃! in the neighborhood of the crack tip. 
𝑘 is a coefficient such as 𝑘 = 3 − 4 𝜗 in plane strain and 𝑘 =  !!! !

!! !
  in plane stress. 𝜇! and 𝜇! 

designate the roots of the characteristic equation, which is given in the following general form, in the 
case of elastic anisotropic material: 

E!!𝜇! − 2 E!"𝜇! + 2 E!" +  E!! 𝜇! − 2 E!"𝜇 +  E!! = 0 (4) 

The parameters 𝑝! and 𝑞! , (𝑗 = 1,2) in eqs. (2) and (3) are given respectively by: 

𝑝! = E!!𝜇!! +  E!"  −  E!"µ! (5) 

𝑞! = E!"µ! +
 E!!
µ!

−  E!" (6) 

Knowing the material properties, the singular stress field near the crack tip can be easily obtained from 
the near tip displacement field defined by equation (1), and the stress-strain governing the mechanical 
behavior of the material. 

According to the definition of the energy release rate 𝐺, the superposition principle [2,15], the virtual 
stress tensor components 𝜎!"!  are proportional to the virtual thermal stress intensity factors 𝐾!!!  and 
𝐾!!! , which characterize the virtual open and shear modes, respectively. Moreover, the A-integral, 

like the M-integral, can be physically interpreted as a particular definition of real stress intensity 
factors 𝐾!!!  and 𝐾!!!! . The mixed-mode separation can then be obtained by performing two distinct 
computations of 𝐾!!!  and 𝐾!!!!  for special values of 𝐾!!!  and 𝐾!!! , such as: 

𝐾!!!  = 8
𝐴 𝐾!!!  = 1, 𝐾!!!!  = 0

𝐶!
;    𝐾!!!!  = 8

𝐴 𝐾!!!  = 0, 𝐾!!!!  = 1
𝐶!

 (7) 

where 𝐶! and 𝐶! indicate the reduced elastic compliances in the opening and shear modes, 
respectively. The thermal energy release rates, in each specific fracture mode 𝐺!!  and 𝐺!!! , are 
ultimately given by the following expression: 

𝐺!! = 𝐶!
𝐾!!! !

8
    and   𝐺!!! = 𝐶!

𝐾!!!! !

8
 (8) 

𝐺!!  and 𝐺!!!  will be used in section 4 in the reliability analysis to determine the probability of failure. 

3.2. Numerical implementation 

Figure 4 summarizes the steps followed to estimate fracture parameters and deflection based on the 
implementation of the A-integral procedure in a FEA software. The process starts with a fine mesh at 
the vicinity of the cracks. Two procedures are after launched in parallel after assigning material 
properties and boundary and loading conditions. They aim at estimating real and auxiliary mechanical 
fields that are finally used to determine the fracture parameters and deflection at the interest points. 
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The A-integral formulation described previously was numerically implemented in the FEA software 
Cast3m. FEA was applied to model the notched timber beam subjected to the static concentrate loads 
and environmental conditions described in section 2 (Figure 1). Taking into account the symmetry of 
the problem and to reduce the computational effort, we modeled one half of the notched beam 
subjected to one concentrate load (Figure 5). Note that the density of the mesh increases at the vicinity 
of the crack. The numerical model of the cracked beam accounts for the same geometry, load and 
material properties than the real timber beam. These similar conditions will allow us to integrate 
experimental data for structural reliability updating (section 4).  

The input parameters (geometry, load and material properties of the beam) for the FEA are presented 
in Table 1. It is supposed that the timber fibers are oriented horizontally. Table 1 also includes the 
random variables considered in the study (𝑃, 𝐸!, 𝐸!, and 𝐺!"). We assumed that the applied load 
follow a normal (N) distribution with a mean value (µ) estimated according to the theoretical weight of 
the concrete blocks and considering a coefficient of variation (COV) of 10%. We considered that the 
timber material properties (𝐸!, 𝐸!, and 𝐺!") follow a lognormal (LN) distribution based on the 
recommendations provided in [19]. Their mean values and coefficients of variations were defined 
based on experimental tests for the Douglas Fir specie used in the experiment. With respect to the 
values or COV given in [19] (0.13 for all parameters), we found a larger variability on the assessment 
of the longitudinal modulus for this specie. The other deterministic parameters reported in Table 1 
were also determined from the experimental campaign carried out within the framework of the 
CLIMBOIS project. 

4. Uncertainty propagation and failure probability updating  

4.1. Reliability analysis 

The reliability analysis consists of computing the probability of failure under prescribed loading 
conditions [30,31]. The failure condition is defined by the limit state function 𝑔 𝐗  separating the 
operating space into two regions: the safe domain, where 𝑔 𝐗 > 0; and the failure domain where 
𝑔 𝐗 ≤ 0. In this study, the reliability analysis is carried out with respect to a crack propagation 
criterion defined as [32]: 

𝑔 𝐗 = 1 −
𝐺!! (𝐗)
𝐺!"

+
𝐺!!! (𝐗)
𝐺!"#

 (9) 

where 𝐺!" and 𝐺!"# are the critical energy release rates for modes Ι and ΙΙ, respectively, obtained by 
testing (deterministic values in Table 1); 𝐺!! (𝐗) and 𝐺!!! (𝐗) are the applied energy release rates for 
these two cracking modes due to external loading obtained by solving the formulations described in 
section 3; and 𝐗 is the vector of random variables (e.g., 𝑃, 𝐸!, 𝐸!, and 𝐺!" in Table 1). This study 
assumes that the strength variables, 𝐺!" and 𝐺!"#, are independent of the loading variables, 𝐺!! (𝐗) and 
𝐺!!! (𝐗). For this limit state function, the probability of failure, 𝑝!, indicates that crack propagation 

started and is evaluated by integrating the joint density function of the random variables 𝑓 𝐗  over the 
failure domain:  

𝑝! = 𝑃 𝑔 𝐗 ≤ 0 = 𝑓 𝐗 𝑑𝐗
!(𝐗)!!

 (10) 

The evaluation of the above integral becomes a numerical challenge because of the complexity of the 
mechanical models described section 3. In addition, as one of the aims of this paper is to update the 
failure probability from real data, we develop the Bayesian Network framework described in the 
following section that is able to deal with both aspects.  
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4.2. Bayesian Network modeling 

4.2.1. Basics of BN 
BN is Direct Acyclic Graph (DAG) consisting of a set of nodes (parents and children) that are 
connected by edges to illustrate their dependencies. Nodes in BN are graphical representations of 
objects and events that exist in the real world and can be modeled as continuous or discrete random 
variables. A conditional Probability Density Function (PDF), 𝑓 𝑋|𝐩𝐚(𝑋)  or Probability Mass 
Function (PMF), 𝑝 𝑋|𝐩𝐚(𝑋)  is assigned to each child node, where 𝐩𝐚(𝑋) are the parents of 𝑋 in the 
DAG. An edge may represent causal relationships between the variables (nodes) but this is not a 
requirement. The graphical structure of a BN encodes conditional independence assumption among 
the random variables. Hence, a BN is a compact model representing the joint PDF or PMF among 
random variables. In this study, only BNs with discrete random variables are considered. Figure 6 
illustrates a simple BN that consists of three nodes representing three discrete random variables 𝑋!, 𝑋! 
and 𝑋! in which 𝑋! and 𝑋! are children of the parent node 𝑋!. For each node in the BN, its PMF 
defines conditional dependences on its parents and the joint PMF of the BN presented in Figure 6 is 
formed as a product of these conditional probabilities: 

𝑃 𝑋!,𝑋!,𝑋! = 𝑃 𝑋! 𝑃 𝑋! 𝑋! 𝑃 𝑋! 𝑋!  (11) 

where 𝑃 𝑋!|𝑋!  denotes the conditional probability of 𝑋! given 𝑋!. 

BNs allow introducing new information (evidences) from the observed nodes to update the 
probabilities in the network. For example, if we have some evidences 𝜊 to introduce to node 𝑋! 
(𝑋! = 𝑜), this information propagates through the network and the joint PMF of the two other nodes 
can be recalculated as: 

𝑃 𝑋!,𝑋!|𝜊 =
𝑃 𝑋!, 𝜊,𝑋!

𝑃 𝜊
=
𝑃 𝑋! P 𝜊|𝑋! P 𝑋!|𝑋!

𝑃 𝑋! P 𝜊|𝑋!!!
 (12) 

4.2.2. BN configurations for reliability assessment and updating 
This section describes the proposed methodology for reliability assessment and updating of timber 
structures that combines mechanical and probabilistic methods (Figure 7). A FEA on Cast3m is used 
for modeling the cracked timber beam subjected to external random loads 𝑃 according to the 
formulations presented in section 3. In order to propagate uncertainties throughout the FEA, random 
inputs were generated from 10,000 Latin Hypercube based simulations for each random variable. The 
outputs of the FEA are the deflection at the middle of the timber beam 𝑤, the release energy rates 
( 𝐺!! (𝐗) and 𝐺!!! (𝐗)) and the evaluation of the limit state 𝑔(𝐗). The input and output simulations are 
used to construct the BN presented in Figure 7 that can be used to estimate and update the structural 
reliability from deflection and temperature measurements. 

The BN configuration representing for the performance of the timber beam is described in Figure 7. 
The random input parameters (𝐸!, 𝐸!, 𝐺!", and 𝑃) and the outdoor temperature 𝑇 are modeled as 
parent nodes. Note that the initial temperature (𝑇!) necessary to estimate the temperature gradient 
Δ𝑇 = 𝑇 − 𝑇! in eq. (1), is assumed to be the mean value of temperature during the exposure time. The 
outputs from FEA processing (𝑤, 𝐺!  ! and 𝐺!!! ) and the limit state are the child nodes. The 
relationships between child and parent nodes are defined by Conditional Probability Tables (CPTs). 
For example, node 𝑤 (deflection) is the child node of its five parent nodes (𝐸!, 𝐸!, 𝐺!", P and 𝑇); 
therefore its CPT is defined by 𝑝 𝑤|𝐸!,𝐸!,𝐺!",𝑃,𝑇 . Input and output data from simulations are used 
to estimate the CPTs for all child nodes. Once the BN is constructed, it allows introducing 
observations at some nodes to update probabilities of other nodes. With assumption that all nodes are 
discrete, the probability of deflection 𝑝 𝑤  is given by: 
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𝑝 𝑤 = 𝑝 𝑤|𝐸!,𝐸!,𝐺!",𝑃,𝑇 𝑝 𝐸!,𝐸!,𝐺!",𝑃,𝑇  (13) 

By considering that 𝐸!, 𝐸!, 𝐺!", P and 𝑇 are independent variables, the joint probability of 𝐸!, 𝐸!, 
𝐺!", P and 𝑇 can be rewritten as 𝑝 𝐸!,𝐸!,𝐺!",𝑃,𝑇 = 𝑝 𝐸! 𝑝 𝐸! 𝑝 𝐺!" 𝑝 𝑃 𝑝 𝑇 . The joint 
probability mass function of BN defined in Figure 7 can be written as follows: 

𝑝 𝐸!,𝐸!,𝐺!",𝑃,𝑇,𝑤, 𝐺!  ! , 𝐺!!  ! ,𝑔
= 𝑝 𝑤|𝐸!,𝐸!,𝐺!",𝑃,𝑇 𝑝 𝐺!  ! |𝐸!,𝐸!,𝐺!",𝑃,𝑇 𝑝 𝐺!!  ! |𝐸!,𝐸!,𝐺!",𝑃,𝑇  𝑝 g| 𝐺! , 𝐺!!  !  !  (14) 

Let us focus on how to use experimental data for updating the distribution of parent nodes. For 
example for 𝐸!, assuming that we have observations of deflection that will be introduced at node 𝑤, 
we aim at computing the a posteriori distribution 𝑝 𝐸!|𝑤  as: 

𝑝 𝐸!|𝑤 = 𝑝 𝐸!,𝐸!,𝐺!",𝑃,𝑇|𝑤
!!,!!",!,!

 (15) 

where: 

𝑝 𝐸!,𝐸!,𝐺!",𝑃,𝑇|𝑤 =
𝑝 𝐸!,𝐸!,𝐺!",𝑃,𝑇,𝑤

𝑝 𝑤
 (16) 

Then a posteriori of node 𝐸! is determined by marginalising the joint probability in Eq. (14) to obtain 
the joint distribution of the subsets of variables: 

𝑝 𝐸!,𝐸!,𝐺!",𝑃,𝑇,𝑤 = 𝑝 𝐸!,𝐸!,𝐺!",𝑃,𝑇,𝑤, 𝐺!  ! , 𝐺!!  ! ,𝑔
!! ! , !!! ! ,!

 (17) 

The posteriori distributions of other parent nodes can be computed by similar calculations. After 
updating BNs, statistical moments (mean, standard deviation) of interest nodes could be determined 
from their posterior distributions.  

We only consider in this study nodes discretized into a number of finite states. Table 2 presents the 
discretization of nodes in the BN. Each node is divided into a number of states in pre-defined 
boundaries. The boundaries should be large enough to cover most part of possible values. The number 
of states could be adjusted to obtain more accurate results. For example, temperature (𝑇) and 
deflection have more states (20 and 30 states, respectively) than other nodes (10 states) to be able to 
capture the effects of small changes in observed values.  

5. Results 

The first past of this section starts presenting the results of a deterministic study of the influence of 
temperature variations on the fracture parameters, deflection and limit state function (section 5.1). 
After propagating uncertainties into the mechanical model, section 5.2 discuses the effects of 
accounting temperature variations on the assessment of the probability of failure. Section 5.3 performs 
a sensitivity analysis focusing on studying the influence of introducing several evidences for updating 
the BN outputs of interest. Finally, the results of failure probability updating with real data are 
presented and discussed in section 5.4. 

5.1. Deterministic influence of temperature 

This section studies the effects of temperature on release energy rates, deflection and limit state 
function (eq. (9)). Input random variables (𝐸!, 𝐸!, 𝐺!", and 𝑃) in Table 1 are considered as 
deterministic parameters by fixing their values to their corresponding means. Figure 8 presents the 
influence of the temperature gradient ∆𝑇 on the release energy rates ( 𝐺!!

 and 𝐺!!! ) with different 
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initial temperatures (𝑇!). It is noted that an increase in ∆𝑇 can lead to larger release energy rate in 
modes I and II (Figure 8a). For example, rising ∆𝑇 by 10°C (from 0°C to 10°C), values of 𝐺!!

 and 
𝐺!!!  can increase up to 10%. On the other hand, initial temperature (𝑇!) gives an opposite trend but 

with less influence. When 𝑇! varies from 0°C to 30°C, values of 𝐺!!
 and 𝐺!!!  reveal a reduction of 

less than 3%. Hence, the influence of initial temperature on 𝐺!!
 and 𝐺!!!  could be neglected.  

Figure 9a presents the relationship between temperature and deflection for the beam. It is observed 
that when the temperature variation increases, the beam deflection is reduced. This behavior can be 
related to the thermal expansion of the whole beam and was also observed experimentally in Figure 2. 
By comparing the experimental deflection at the beginning of the experiment (Figure 2) with the 
presented in Figure 9a, it can be noticed that the order of magnitude in both cases is very close. 

The effects of ∆𝑇 on 𝐺!!
 and 𝐺!!!  explain the dependency of the limit state function (eq. (9)) on the 

beam on the outdoor temperature variation (Figure 9a) where higher temperature variation will lead to 
smaller values of limit state. As a result, the probability of failure (𝑝!) defined from this limit state will 
increase for larger ∆𝑇.  

5.2. Assessment of prior failure probability 

Table 3 presents the prior mean values of deflection, energy release rates and failure probability 
calculated from BN. Two cases are investigated corresponding to the A-integral without temperature 
effects and A-integral with Δ𝛵 = 10°C. For both cases Δ𝛵 is considered as deterministic and therefore 
the BN used to estimate these results did not include temperature as a parent node. As discussed in 
previous section, by introducing a temperature variation of 10ºC, the deflection of the beam decreases 
meanwhile the release energy rates in both modes increases significantly. This temperature variation 
increases the probability of failure by almost twice with respect to the case where Δ𝛵 = 0ºC. It is also 
worth noting that by introducing the uncertainties the prior mean values of 𝑤, 𝐺!!

 and 𝐺!!!  are higher 
than those obtained from deterministic approach (section 5.1). For example, with Δ𝛵 = 0ºC, the 
deflection without uncertainty is about –11.33mm (Figure 9a) which is lower than the value presented 
in Table 3. These differences are related to the non-linear propagation of uncertainties throughout the 
mechanical model. 

5.3. Sensitivity analysis of updating values 

This section studies the sensitivity of the BN when it is updated with different evidences. We consider 
seven cases presented in Table 4. For each case, the evidence introduced at the studied node is 10% 
higher or smaller than its mean prior values. This sensitivity study does not consider combined effects 
of several parameters at the same time. The sensitivity analysis will focus on the updated values of the 
outputs (𝑤, 𝐺!! , 𝐺!!! , and 𝑝!) and the relative errors with respect to their prior values.  

By updating the BN by a value of 𝐸! increased 10% with respect to its mean value (case 1), the 
deflection of the beam decreases 7% (Table 4). This trend is expected because in the mechanical 
behavior, the defection of the beam is reduced when the longitudinal modulus (𝐸!) increases. Larger 
values of the longitudinal modulus reduce the release energy rates and therefore the probability of 
failure but at low level.  

On the other hand, transversal modulus has more influence on the mechanical behavior of the cracked 
beam (Table 4). An increase of 𝐸! by 10% leads to an approximately 10% reduction of release energy 
in both modes and more than 90% reduction of 𝑝! (case 2). This is because the transversal modulus 
makes a large contribution in creating a crack edge in xy-plane. Moreover, it is obvious that 𝐸! almost 
has no influence on the deflection in the xy-plane.  

In case 3, increasing shear modulus (𝐺!") has more influence on the cracking behavior in mode II 
(shear mode) by a decreasing of 𝐺!!!  by about 4% (Table 4). The shear modulus also impacts the 
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deflection and cracking in mode I (open mode) but at a low level, being only 1.4% of reduction for 
each parameter.  

It is clear that the load (𝑃) has important influence on both deflection and cracking (Table 4). In case 
4, when 𝑃 increases by 10%, all the output parameters (𝑤, 𝐺!! , 𝐺!!! , and 𝑝!) reveal important 
increases by 7%, 16%, 15% and 25% respectively. An opposite trend is observed when the load 
decreases by 10% in case 6.  

In case 5 and case 7, we study the dependence between deflection and cracking mechanisms for the 
beam (Table 4). An increasing in the deflection will lead to higher values of release energy rates in 
both modes and vice versa. These findings justify that the BN is able to represent the mechanical 
behavior for updating purposes; consequently, their implementation is of interest for further 
applications in this study when the deflection is used for updating the reliability of the timber beam. 

5.4. Updating of instantaneous failure probability 

This section presents the results of the failure probability updating of the timber beam presented in 
section 1 from measurement data. The reliability of the timber beam is evaluated from the limit state 
function defined in eq. (9), which is based on the release energy rates in modes I and II. In real 
practice, these two parameters are difficult to obtain; hence, the alternative approach is to update the 
reliability of the timber beam from other parameters that are easy to measure (temperature, deflection). 
During the experiment, temperature and deflection were automatically recorded for every 5 minutes 
(section 1). The values used for updating purposes correspond to the averages of measurements during 
1 hour. Figure 1 provided the variation of temperature and deflection during 689 hours of experiment. 
It can be seen that the temperature reveals a large fluctuation meanwhile the deflection shows an 
increasing trend with smaller variation during the experiment. The instantaneous probability of failure 
of the beam will be updated every hour by introducing the observations of temperature and deflection 
into the BN shown in Figure 7. This section will analyze first the effects of updating temperature and 
deflection separately to finalize studying the combined effect of updating both parameters. 

Figure 10a presents the updating of instantaneous 𝑝! with evidences from temperature measurements 
only. The initial temperature (𝑇!), which is the average temperature during the experiment, is 21°C. 
Therefore, temperature variation varies within the range ∆𝑇 = −11°𝐶; 16°𝐶 . It can be seen that the 
temperature variation during the test is considerable large, however its influence on reliability is 
relatively low as observed in Figure 10a. The maximum value of 𝑝! (0.06) is obtained at 608 hours of 
experiment where the temperature reached its maximum value (37°C). During the experiment, the 
updated values of 𝑝! are lower during the periods with small temperature (e.g., periods of (180h; 
240h) and (420h; 520h)) and vice versa. This trend is due to the dependency between temperature and 
cracking mechanisms which was previously analyzed from FEA in section 5.1.  

On the other hand, Figure 10b shows that deflection variations have more influence on reliability of 
the beam. The maximum updated instantaneous 𝑝! in this case was 0.016. The evolution of 𝑝! follows 
an increasing trend in accordance with the rise in deflection measured during the experiment. The 
variation of deflection is small leading to the same values of 𝑝! obtained for some periods of 
experiments. For example, the same reliability of the beam was obtained (𝑝! = 0.1) during period of 
(260h; 360h) when the deflection varies in the range (15; 15.7) mm. For such small variations, the 
obtained observations during that period will correspond to the same states of deflection node in BN 
leading to the same updated values.  

Figure 11 depicts the instantaneous probability of failure updated with temperature and deflection 
measurements. This combination leads to higher values of 𝑝! if the observations provide larger values 
of temperature and an increasing trend for deflection. For example, during the periods (320h; 400h) 
and (540h; 660), the maximum values of 𝑝! are about 0.2 and 0.35 respectively, which are higher than 
those obtained when only a single parameter was updated (Figure 10). In periods with low temperature 
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(e.g., (180h; 240h); (420h; 520h)), the instantaneous probability of failure is lower than the obtained 
when updating from deflection data only due to the effect of temperature. Therefore, it can be 
concluded that the updated values of 𝑝! are in accordance with observation data and the proposed 
methodology is useful to update reliability of the timber beam from measurements. 

6. Conclusions 

This paper proposed a methodology for reliability assessment and updating of notched timber 
components. It combines mechanical (A-integral formulation) and probabilistic (simulations and BN) 
approaches and it is able to represent in a simplified manner the structural performance of timber 
structures for a reliability analysis. The methodology was illustrated and tested with data obtained 
from a notched beam subjected to constant loading and outdoor environmental exposure. The 
experimental observations indicated that the deflection of the beam increases with time and is affected 
by outdoor environmental conditions. Deterministic and probabilistic studies based respectively on the 
numerical A-integral implementation and the BN also confirmed these relationships and highlighted 
the helpfulness of using measurements of temperature and deflection for reliability updating purposes.  

One of the limitations of this study is the use of a point-in-time analysis that provides the 
instantaneous probability of failure that neglects the history of the environmental and mechanical 
loading. Further developments of the A-integral formulation will include these time-dependent aspects 
and dynamic Bayesian networks could be used in future studies to overcome this limitation and 
improve the assessment and updating of time-dependent failure probability. A second aspect for the 
improvement of the proposed methodology will be the consideration of moisture variation effects. 
New mechanical models (that include crack propagation and moisture variation effects) are still under 
development. In addition, new experiments are being done to obtain additional experimental data. 
These models and data will be very useful to validate and improve the methodology for reliability 
assessment and updating.  
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Table 1: Inputs for FEA and probabilistic analysis 

Input Parameter Description Value 

Geometry 

𝐿 (mm) Length of the beam 3,900 

𝐻 (mm) Height of the beam 180 

𝑏 (mm) Width of the beam 60 

Load 𝑃 (N) Concentrate load N(𝜇=4150; COV=0.1) 

Material 

𝐸! (MPa) Longitudinal modulus LN (𝜇=13·103; COV=0.2) 

𝐸! (MPa) Transversal modulus LN(𝜇=650; COV=0.15) 

𝐸! (MPa) Radial modulus 1,000 

𝐺!" (MPa) Shear modulus LN(𝜇=745; COV=0.15) 

𝜈!"  Tangential Poisson coefficient 0.42 

𝜈!" Radial Poisson coefficient 0.38 

𝜈!" Poisson coefficient in transverse plane 0.31 

𝛼! (1/K) Longitudinal thermal expansion 
coefficient 2×10-6 

𝛼! (1/K) Transversal thermal expansion coefficient 5×10-5 

𝐺!" (N/mm) Critical release energy in mode I 0.42 

𝐺!!" (N/mm) Critical release energy in mode II 2.52 

 

 

Table 2: Discretization of nodes in BN 

Nodes Prior distribution 
Number of 

states Boundaries 

𝐸! (MPa) LN(µ =13×103 ; COV=0.2) 10 [0.5 ; 3]×104 

𝐸! (MPa) LN(µ =650 ; COV=0.15) 10 [3 ; 12]×102 

𝐺!" (MPa) LN(µ =745 ; COV=0.15) 10 [3 ; 14]×102 

𝑃 (N) N(µ =4150 ; COV=0.1) 10 [2 ; 7]×103 

𝑇 (°C) Uniform(10;40) 20 [10 ; 40] 

𝑤 (mm) - 30 [-30 ; 0] 

𝐺!!  (N/mm) - 10 [0 ; 0.5] 

𝐺!!!  (N/mm) - 10 [0 ; 2]×102 

𝑔 - Binary - 
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Table 3: Prior mean values of the outputs (without updating) 

Δ𝛵 (ºC) 𝑤 (mm) 𝐺!!  (N/mm) 𝐺!!!  (N/mm) 𝑝! 

0 –11.798 0.159 0.760 0.031 

10 –11.752 0.169 0.830 0.062 

 

 

 

 

Table 4: Results of the sensitivity analysis 

Case Description 
Mean values Sensitivity (relative error)  

𝑤  
(mm) 

𝐺!!  
(N/mm) 

𝐺!!!  
(N/mm) 

𝑝!  𝑤  
(mm) 

𝐺!!  
(N/mm) 

𝐺!!!  
(N/mm) 

𝑝!  

Prior Prior values -11.79 0.1577 0.7535 2.76×10-2 - - -  - 

Case 1 +10% 𝐸! -10.97 0.1540 0.7535 2.61×10-2 -7% -2% 0% -5% 

Case 2 +10% 𝐸! -11.75 0.1420 0.6653 1.50×10-3 -0.3% -10.0% -11.7% -94.6% 

Case 3 +10% 𝐺!" -11.63 0.1555 0.7225 1.50×10-2 -1.4% -1.4% -4.1% -45.7% 

Case 4 +10% 𝑃 -12.66 0.1829 0.8676 3.44×10-2 7.4% 16.0% 15.1% 24.6% 

Case 5 +10% 𝑤 - 0.1727 0.8007 4.85×10-2 - 9.5% 6.3% 75.7% 

Case 6 –10% 𝑃 -11.14 0.1380 0.6625 6.33×10-4 -5.5% -12.5% -12.1% -97.7% 

Case 7 –10% 𝑤 - 0.1477 0.7267 7.70×10-3 - -6.3% -3.6% -72.1% 
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Figure 1: Notched Douglas fir and experimental setup description. 
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Figure 2: Recorded evolutions of deflection, temperature and relative humidity. 

 

 

 

Figure 3: Integration domain 𝑆 on the notched beam and definition of the vector field θ. 
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Figure 4. Flowchart for computing the fracture parameters 
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Figure 5: Mesh of a half beam modeled in Cast3m. 

 

 

 

Figure 6: A Simple Bayesian Network. 
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Figure 7: Combined mechanical and probabilistic methods used for reliability assessment and 
updating. 

 

 

Figure 8 : Influence of ∆𝑇 on the release energy rate in mode 1 and mode 2. 

 

 

Figure 9 : Influence of ∆𝑇 on the deflection and the limit state 
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Figure 10: Updating of instantaneous probability of failure with evidences from: (a) Temperature 
variations only; (b) Deflection variations only. 

 

 

 

Figure 11: Updating of instantaneous probability of failure with evidences from temperature and 
deflection.  
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