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Visual odometry using a homography formulation with decoupled
rotation and translation estimation using minimal solutions

Banglei Guan1, Pascal Vasseur2, Cédric Demonceaux3 and Friedrich Fraundorfer4

Abstract— In this paper we present minimal solutions for
two-view relative motion estimation based on a homography
formulation. By assuming a known vertical direction (e.g.
from an IMU) and assuming a dominant ground plane we
demonstrate that rotation and translation estimation can be
decoupled. This result allows us to reduce the number of point
matches needed to compute a motion hypothesis. We then derive
different algorithms based on this decoupling that allow an
efficient estimation. We also demonstrate how these algorithms
can be used efficiently to compute an optimal inlier set using
exhaustive search or histogram voting instead of a traditional
RANSAC step. Our methods are evaluated on synthetic data
and on the KITTI data set, demonstrating that our methods
are well suited for visual odometry in road driving scenarios.

I. INTRODUCTION

Visual odometry and visual SLAM [14] play an im-
mensely important role for mobile robotics. Many different
approaches for visual odometry have been proposed already,
and for a wide variety of applications visual odometry has
been used successfully. However, reliability, long-term sta-
bility and accuracy of visual odometry algorithms are still a
topic of research as can be seen by the many contributions to
the KITTI visual odometry benchmark [4]. Most approaches
for visual odometry follow the scheme where first feature
correspondences between subsequent views are established,
then they are screened for outliers and then egomotion
estimation is done on inliers only [14]. The reliability and
robustness of such a scheme is heavily dependent on the
outlier screening step. In addition the outlier screening
process has to be fast and efficient. The use of RANSAC [2]
is widely accepted for this step.

However, the complexity of the RANSAC process being
exponentially related to the minimal number of points nec-
essary for the solution estimation, reducing this number is
very interesting. For instance, a standard solution for two-
views egomotion estimation is to use the essential matrix
with 5 matching points [11] in a RANSAC process to
increase the robustness. Nevertheless, the number of points
needed for estimating the parameters is really crucial for the
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RANSAC algorithm. Indeed, the runtime of the RANSAC
increases exponentially according to the number of points
we need. Thus, before estimating the parameters, we have to
be sure that we use the minimal number of points for that.
One such idea is to take motion constraints into account,
e.g. a planar motion (2pt algorithm) or the Ackermann
steering motion for self-driving cars (1pt algorithm [15]).
Another idea is to utilize an additional sensor like an inertial
measurement unit to improve this step. Traditional sensor
fusion methods [16] perform a late fusion of the individual
vision and IMU measurements. However, it is possible to
utilize the IMU measurements much earlier to aid the visual
odometry algorithm for outlier screening. This idea has
already been utilized in [3], [8], [10], [13] in which partial
IMU measurements have been used to design more efficient
motion estimation algorithms for outlier screening.

In this paper we follow this idea by proposing a low
complexity algorithm for unconstrained two-view motion
estimation that can be used for efficient outlier screening
and initial motion estimation. Our method assumes a known
gravity vector (measured by an IMU) and is based on a
homography relation between two views. In [13] a 2pt
algorithm has been proposed exactly for this case. In this
work we will improve on [13] and show that actually an
algorithm can be found that needs fewer than 2 data points
for a motion hypothesis. To achieve this, the first step is
to separate the rotation and translation estimation. This is
possible if the scene contains features that are far away.
Such features are only influenced by rotation and only the
x-coordinate of a single feature point is sufficient to find the
remaining rotational degree of freedom (DOF), so we call
this the 0.5pt method. After this the remaining 3 DOFs for
the translation tx, ty, tz are computed. We present a linear
solution that needs 1.5pt correspondences. However, more
important is our proposal of using a discrete sampling for
determining one of the remaining parameters and then use a
1pt algorithm for the remaining 2 parameters. This makes it
possible to completely determine a motion hypothesis from
a single point correspondence. Thus, we obtain an extremely
fast algorithm even within a RANSAC loop. The actual
motion hypotheses can be computed exhaustively for each
point correspondence and the best solution can be found by
a voting scheme.

The proposed methods are evaluated experimentally on
synthetic and real data sets. We test the algorithms under
different image noise and IMU measurement noise. We
demonstrate the proposed algorithms on KITTI [4] data set
and evaluate the accuracy compared to the ground truth.



These experiments also demonstrate that the assumptions
taken hold very well in practice and the results on the KITTI
data set show that the proposed methods are useful within
the self-driving car context.

II. RELATED WORK

With known intrinsic parameters, a minimum of 5 point
correspondences is sufficient to estimate the essential ma-
trix [11], and a minimum of 4 point correspondences is
required to estimate the homography if all the 3D points lie
on a plane [5]. Then the essential matrix or the homography
can be decomposed into the motion of the camera between
two views, i.e. a relative rotation and translation direction.

A reduction of the number of needed point correspon-
dences between views is important in terms of computational
efficiency and of robustness and reliability. Such a reduction
is possible if some additional information is available or
assumptions about the scene and camera motion are taken. If
for instance the motion is constrained to be on a plane, which
is typical for ground based robots or self-driving cars, 2 point
correspondences are only needed for computing the 3-DOFs
motion [12]. If further the motion is constrained by Acker-
mann steering typical for cars only 1 point correspondence is
necessary [15]. In contrast if additional information e.g. from
an IMU is available and the complete rotation between the
two views is provided by the IMU, the remaining translation
can be recovered up to scale using only 2 points [7].

Using this concept a variety of algorithms have recently
been proposed for egomotion estimation when knowing a
common direction [3], [6], [10]. The common direction
between the two views can be given by an IMU (measuring
the gravity direction) or by vanishing points extraction in
the images. All these works propose different algorithms for
solving the essential matrix with 3 point correspondences.
For this they start with a simplified essential matrix (due to
the known common direction) and then derive a polynomial
equation system for the solution.

To further reduce the number of point correspondences,
the homography relation between two views can be used
instead of the epipolar constraint expressed by the essential
matrix. Under the assumption that the scene contains a large
enough plane that is normal or parallel to the gravity vector
measured by an IMU (a typical case for indoor or road
driving scenarios) the egomotion can be computed from
2 point correspondences [13]. This idea however can be
extended even further which is what we propose in this work.

We start with the formulation of [13] where the cameras
are aligned to the gravity vector and the remaining DOFs
are one rotation parameter and three translation parameters.
We solve for rotation and translation separately. This uses
the fact that for far scene points, the parallax-shift (induced
by translation) between two views is hardly noticeable. The
motion of these far points is close enough to a pure rotation
case such that the rotation between two views can be esti-
mated firstly (and independent from translation) using these
far points. Every single point correspondence can produce a
hypothesis for the remaining rotation parameter which can

be used in a 1pt RANSAC algorithm for rotation estimation
or for histogram voting by computing the hypothesis from
all the point matches. This step also allows to separate the
correspondences into two sets, a far set and a near set. The
further processing for the translation estimation can then
be continued on the smaller near set only, as the effect of
translation is not noticeable in the far set. Such a configura-
tion is typical for road driving imagery. For estimating the
remaining translation parameters we propose a linear 1.5pt
algorithm. However, practically this solution does not give
a direct computational advantage over the 2pt algorithm of
Saurer et al. [13]. Instead we propose to use a combination
of discrete sampling and parameter estimation. The idea is
that 1 parameter of the remaining 3 is sampled in discrete
steps. For each sampled value it is possible to estimate the
remaining parameters from a single point correspondence.
This can be then done efficiently using a 1pt RANSAC
step or an exhaustive search to find the globally optimal
value. The great benefit about this approach is that instead of
performing 2pt RANSAC a sequence of 1pt RANSAC steps
with a constant overhead for bounded discrete sampling is
used. This exhaustive search gives us an efficient way to find
the globally optimal solution.

III. BASICS AND NOTATIONS

With known intrinsic camera parameters, a general homog-
raphy relation between two different views is represented as
follows [5]:

λxj = Hxi, (1)

where xi = [xi, yi, 1]
T and xj = [xj , yj , 1]

T are the
normalized homogeneous image coordinates of the points
in views i and j, λ is a scale factor. The homography matrix
H is given by:

H = R− 1

d
tNT , (2)

where R = RyRxRz and t = [tx, ty, tz] are respectively
the rotation and the translation from views i to j. Ry , Rx

and Rz are the rotation matrices along y-, x- and z-axis,
respectively. With the knowledge of the vertical direction
the rotation matrix R can be simplified such that R = Ry

by pre-rotating the feature points with RxRz , which can
be measured from the IMU (or alternatively from vanishing
points [1]). After this rotation, the cameras are in a config-
uration such that the camera plane is vertical to the ground
plane. d is the distance between the view i frame and the
3D plane. N = [n1, n2, n3]

T is the unit normal vector of the
3D plane with respect to the view i frame.

For this gravity aligned camera configuration the plane
normal N of the ground plane is [0, 1, 0]T . Consequently,
Equation 2 that only considers points on the ground plane
can be written as:

H =

 cos (θ) 0 sin (θ)
0 1 0

− sin (θ) 0 cos (θ)

− t

d

01
0

T

(3)



The homography relation is defined up to scale, so there
are 4 DOFs remaining being the rotation around the y-axis
and the translation parameters tx, ty, tz .

IV. 0.5PT ROTATION ESTIMATION METHOD

The rotation angle can be computed from a single point
correspondence. In fact, it can be computed from only the
x-coordinate of a single feature point. Rotation estimation
can be done independently from the translation estimation
if the scene contains far points. These points, that can
be considered at infinity, are not affected any more by a
translation. Consequently, the translation component is zero
for these points and the Equation 3 simplifies to a rotation
matrix:

H =

 cos (θ) 0 sin (θ)
0 1 0

− sin (θ) 0 cos (θ)

 (4)

In order to further eliminate the unknown scale factor λ,
multiplying both sides of Equation 1 by the skew-symmetric
matrix [xj ]×, yields the equation:

[xj ]×Hxi = 0. (5)

Substituting Equation 4 into the above equation and ex-
pand it: 0 −1 yj

1 0 −xj
−yj xj 0

 cos (θ) 0 sin (θ)
0 1 0

− sin (θ) 0 cos (θ)

xiyi
1

 = 0

(6)
By rewriting the equation, we obtain:

−xiyjsin(θ) + yjcos(θ)− yi = 0 (7)
(xixj + 1)sin(θ) + (xi − xj)cos(θ) = 0 (8)
−yjsin(θ)− xiyjcos(θ) + xjyi = 0 (9)

These equations are now derived for the case of points
that lie on a plane normal to the y-axis of the cameras
and which are infinitely far away. In this case, all the
points have to lie on the horizon, which means that the
y-coordinate of such a point in normalized coordinates is
0 (normalized coordinates are image coordinates in pixel
after multiplication with the inverse calibration matrix). This
equates Equation 7 and Equation 9 to zero. Only Equation 8
remains to be used. Considering the trigonometric constraint
sin2(θ) + cos2(θ) = 1, the rotation parameter sin(θ) can be
obtained:

sin(θ) = ± xi − xj√
xi2xj2 + xi2 + xj2 + 1

(10)

Due to the sign ambiguity of sin(θ), we obtain two
possible solutions for the rotation angle. For every point cor-
respondence a rotation hypothesis can be calculated. A 1pt
RANSAC loop can be utilized to find a consistent hypothesis
with only a few samples. Alternatively the globally optimal
solution can be computed by performing an exhaustive search
or histogram voting. The exhaustive search is linear in the
number of point correspondences and a hypothesis can be
computed for every point correspondence. The hypothesis

with the maximum number of inliers is the globally optimal
solution. To avoid computing the inliers and outliers for every
hypothesis a histogram voting method can be used. For this
all the hypothesis are collected in a histogram with discrete
bins (e.g. a bin size of 0.1 degree) and the bin with the
maximum count is selected as the best solution. Alternatively
the mean of a window around the peak can be computed for
a more accurate result.

The inliers of the pure rotation formulation belong to
scene points that are very far away and don’t influence
the translation. For further translation estimation these point
correspondences can be removed to reduce the number of
data points to process. Translation estimation only needs to
consider the outlier set of the rotation estimation.

V. TRANSLATION ESTIMATION METHOD

After estimation of the rotation parameter as described in
the previous section, the feature points in views j can be
rotated by the rotation matrix around the yaw axis:

x̃j = RT
y xj , (11)

This aligns both views such that they only differ in
translation t̃ = [t̃x, t̃y, t̃z] for xi ↔ x̃j . Equation 3 therefore
is written as:

H̃ =

1 0 0
0 1 0
0 0 1

− 1

d

t̃xt̃y
t̃z

01
0

T

(12)

In the following subsections we describe 4 different meth-
ods of how to estimate the translation parameters.

A. 1.5pt linear solution

This subsection describes a linear method to compute the
remaining translation parameters. Three equations from two
point correspondences are used to set up a linear equation
system to solve for the translation.

The camera-plane distance d is unknown but the trans-
lation can be known only up to scale. Therefore d can be
absorbed by t̃. We then obtain:

H̃ =

1 −t̃x 0
0 1− t̃y 0
0 −t̃z 1

 (13)

Substituting Equation 13 into the Equation 5, the homog-
raphy constraints between xi and x̃j can be expressed: 0 −1 ỹj

1 0 −x̃j
−ỹj x̃j 0

1 −t̃x 0
0 1− t̃y 0
0 −t̃z 1

xiyi
1

 = 0 (14)

By rewriting the equation, we obtain:
yit̃y − yiỹj t̃z = yi − ỹj
−yit̃x + x̃jyit̃z = x̃j − xi
yiỹj t̃x − x̃jyit̃y = xiỹj − x̃jyi

(15)

Even though Equation 15 has three rows, it only im-
poses two independent constraints on t̃, because the skew-
symmetric matrix [x̃j ]× has only rank 2. To solve for the



3 unknowns of t̃ = [t̃x, t̃y, t̃z], one more equation
is required which has to be taken from a second point
correspondence. In principle, an arbitrary equation can be
chosen from Equation 15, for example, the second and third
rows of the first point xi ↔ x̃j , and the second row of the
second point x′i ↔ x̃′j are stacked into 3 equations in 3
unknowns: 

−yit̃x + x̃jyit̃z = x̃j − xi
yiỹj t̃x − x̃jyit̃y = xiỹj − x̃jyi
−y′it̃x + x̃′jy

′
it̃z = x̃′j − x′i

(16)

The linear solution for t̃ = [t̃x, t̃y, t̃z] can be obtained
by:

t̃x =
xix̃
′
jy
′
i + x̃jyix̃

′
j − x̃j x̃′jy′i − x̃jyix′i

yix̃′jy
′
i − x̃jyiy′i

t̃y =
yix̃
′
jy
′
i + yiỹj x̃

′
j + xiỹjy

′
i − yiỹjx′i − x̃jyiy′i − ỹj x̃′jy′i

yix̃′jy
′
i − x̃jyiy′i

t̃z =
xiy
′
i + yix̃

′
j − x̃jy′i − yix′i

yix̃′jy
′
i − x̃jyiy′i

(17)
The translation t from views i to j can be obtained:

t = RT
y t̃. (18)

For finding the best fitting translation t̃ a RANSAC step
should be used. Here it is however possible to evaluate the
full point set. From the estimated rotation and translation
parameters an essential matrix can be constructed (E =
[t]×Ry) and the inliers can be tested against the epipolar
geometry. This test is not limited to points on the ground
plane and the final inlier set contains all scene points. For a
most accurate result a non-linear optimization of the Samp-
son distance on all the inliers is advised. The techniques of
constructing the epipolar geometry and performing the non-
linear optimization are also applicable to other translation
estimation methods.

B. 1pt method by discrete sampling of the relative height
change

Translation estimation as explained in the previous section
needs 1.5pt correspondences. However, if one of the remain-
ing parameters is known only a single point correspondence
is needed for computing the remaining two parameters. This
leads to 1pt algorithm for the translation. It is possible to
perform a discrete sampling of a suitable parameter within a
suitable bounded range. This allows to perform an exhaustive
search to find the global optimal solution which produces
the highest number of inliers. The time complexity of this
exhaustive search is linear in the number of point corre-
spondences if the number of discrete samples is significantly
smaller than the number of point correspondences.

In order to use the sampling method, Equation 12 can be
written as:

H̃ =

1 0 0
0 1 0
0 0 1

− t̃y
d

t̃x/t̃y1
t̃z/t̃y

01
0

T

(19)

In this variant the relative height change over ground a =
t̃y/d is sampled in discrete steps which leads to an equation
system with only 2 unknowns, b = t̃x/t̃y , c = t̃z/t̃y . Only
1pt is needed to compute a solution b and c for a given a.
In the same way, we can choose the second and third row
from Equation 15 to compute b and c:

b =
ax̃jyi + xiỹj − x̃jyi

ayiỹj

c =
abyi + x̃j − xi

ax̃jyi

(20)

Based on the value of b and c, we can recover t̃ = [b, 1, c]T

up to scale. Then the estimated translation t between views
i and j is also recovered up to scale by Equation 18.

C. 1pt method by discrete sampling for x-z translation
direction

The sampling method in the previous section worked by
discretizing the relative height change between two views. As
this can be up to scale there is no obvious value for the step
sizes and bounds. However, if one is to sample the direction
vector of the translation in the x-z plane this represents the
discretization of an angle between 0...360 degrees. In this
case a meaningful step size can easily be defined.

For this variant Equation 12 can be written as:

H̃ =

1 0 0
0 1 0
0 0 1

− √
t̃2x + t̃2z
d

 cos(δ)

t̃y/
√
t̃2x + t̃2z

sin(δ)

01
0

T

(21)

The translation direction can be represented as an angle δ
and e.g. can be sampled in steps of 1 degree from 0◦ to 360◦,
which leads to an equation system with only 2 unknowns,
a =

√
t̃2x + t̃2z/d, b = t̃y/

√
t̃2x + t̃2z . Only 1pt is needed to

compute a solution a and b for a given angle δ.
In the same way, we can choose the second and third row

from Equation 15 to compute a and b:
a =

x̃j − xi
x̃jyisin(δ)− yicos(δ)

b =
ayiỹicos(δ) + x̃jyi − xiỹj

ax̃jyi

(22)

Based on the vector [cos(δ), b, sin(δ)]T , we can recover t̃
up to scale. Then we obtain t by Equation 18.

D. 1pt method by discrete sampling of the in-plane scale
change

The method described in this section is another variant of
choosing a meaningful parameter for discrete sampling. For
easy explanation of this idea one should imagine a camera
setup with downward looking cameras with a camera plane
parallel to the ground plane. The previously aligned camera
setup with the camera plane normal to the ground plane
can easily be transformed into such a setup by rotating the
feature points about 90◦ around the x-axis of camera by
multiplication with a rotation matrix Rd.

Moving a camera looking downwards at a plane (e.g. the
street) up and down results in an in-plane scale change of



the image, i.e. the points will move inwards to or outwards
from the center. The scale change directly corresponds to
the effects of a translation in z-direction. This makes the
scale change a good parameter for discrete sampling, as the
in-plane scale change can be expressed in pixel distances.

In this approach discrete values for the scale change are
sampled and the remaining translation direction in the x-y
plane can be computed for every point correspondence from
a single point. Points lying on the same plane, have exactly
the same translation shift for all the feature matches. Now,
we derive the formula in detail.

We assume that (xi, yi, 1) ↔ (xj , yj , 1) are the normal-
ized homogeneous image coordinates of the points in down-
ward looking views i and j. The heights of the downward
looking views i and j are hi and hj , respectively. The ground
points can be represented in the camera coordinate system of
views i and j: Xi = hi ∗ [xi, yi, 1]T , Xj = hj ∗ [xj , yj , 1]T .
The translation between views i and j can be computed
directly:

t̃d = hj

xjyj
1

− hi
xiyi
1

 =

(xjhj − xihi)(yjhj − yihi)
hj − hi

 (23)

We set the in-plane scale κ = f ∗ (hi/hj), f is the focal
length. We substitute κ into the above equation. We can
obtain the translation vector directly as the difference of the
image coordinates:

t̃d =

fxj − κxifyj − κyi
f − κ

 (24)

By sampling the in-plane scale κ, we can compute the
translation vector t̃d using one point, and choose the solution
which has the maximum number of inliers. This sampling
interval is defined in pixels and allows setting a meaningful
step size (e.g. 1 pixel).

The final translation t between two views can be obtained:

t = RT
y R

T
d t̃d (25)

VI. EXPERIMENTS

We validate the performance of the proposed methods
using both synthetic and real scene data. The experiments
with synthetic scenes will demonstrate the behavior of our
derivations in the presence of image noise and IMU noise.
The experiments using the KITTI data set [4] will demon-
strate the suitability of the methods for use in road driving
scenarios. This experiments will also demonstrate that the
assumptions taken will hold for real scenarios.

A. Experiments with synthetic data

To evaluate the algorithms on synthetic data we choose
the following setup. The distance of the ground to the first
camera center is set to 1. The baseline between two cameras
is set to be 0.2 and the direction is either along the x-axis
of the first camera (sideways) or along the z-axis of the first
camera (forward). Additionally, the second camera is rotated

around every axis, three rotation angles varies from −90◦ to
90◦. The Roll angle (around z-axis) and Pitch angle (around
x-axis) are known. The generated scene points can be set to
lie on the ground plane or be distributed freely in space.

We evaluate the accuracy of the presented algorithms on
synthetic data under different image noise and IMU noise.
The focal length is set to 1000 pixels. The solutions for
relative rotation and translation are obtained by RANSAC or
histogram voting. We assess the rotation and translation error
by the root mean square error of the errors. We report the
results on the data points within the first two intervals of a 5-
quantile partitioning1 (Quintile) of 1000 trials. The proposed
methods are also compared against the 2pt method [13].

In all of the experiments, we compare the relative rotation
and translation between views i and j separately. The error
measure compares the angle difference between the true
rotation and estimated rotation. Since the estimated trans-
lation between views i and j is only known up to scale, we
compare the angle difference between the true translation and
estimated translation. The errors are computed as follows:
• Rotation error: ξR = arccos((Tr(RgtR

T )− 1)/2)

• Translation error: ξt = arccos((tTgtt)/(‖tgt‖ ‖t‖))
Rgt, tgt denote the ground-truth transformation and R, t

are the corresponding estimated transformations.
1) Pure planar scene setting (”PLANAR”): In this setting

the generated scene points are constrained to lie on the
ground plane. The scene points consist of two parts: near
points (0 to 5 meters) and far points (5 to 500 meters). Both
parts have 200 randomly generated points.

Figure 1(a) and (b) show the results of the 0.5pt method
and histogram voting for rotation estimation for gradually
increased image noise levels with perfect IMU data. It is
interesting to see that our method performs better for forward
motion than for sideways motion. The histogram voting has
an higher error, because of the binning which has more effect
than the image noise. Figure 1 (b) does not show a clear trend
with increased image noise levels. It seems that the influence
of the sideways motion is stronger than the influence of the
image noise. Figure 1(c)-(f) show the influence of increasing
noise on the IMU data while assuming image noise with 0.5
pixel standard deviation.

Figure 2 shows the results of the 1.5pt linear solution
method, 1pt method by sampling for x-z translation direction
and 2pt method, for gradually increased image noise levels
with perfect IMU data or increasing noise on the IMU
data while assuming image noise with 0.5 pixel standard
deviation. Note that we use the histogram voting method to
compute the rotation first, in order to compare the accuracy
of different translation estimation methods. The 1.5pt linear
solution method and the 1pt method by sampling for x-z
translation direction are robust to the increased image noise
and IMU data noise.

2) Mixed scene setting (”MIXED”): In this experiment
not all the scene points were constrained to lie on the ground
plane. Far points (from 5 to 500 meters distance) do not lie

1k-quantiles divide an ordered dataset into k regular intervals
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Fig. 1. Rotation error with ”PLANAR” setting: Evaluation of the 0.5pt
method, histogram voting and 2pt method. Left: forward motion, right:
sideways motion. (a) and (b) are with varying image noise. (c), (d), (e)
and (f) are under different IMU noise and constant image noise 0.5 pixel
standard deviation. (c) and (d) are with Roll angle noise. (e) and (f) are
with Pitch angle noise.

on the ground only. They are generated a heights that vary
from 0 to 10 meters. The near points however (from 0 to 5
meters distance) are constrained to lie on the ground plane.
Both sets, near points and far points consist of 200 randomly
generated points.

Figure 3 shows the results of the 0.5pt method and his-
togram voting for rotation estimation for gradually increased
image noise levels with perfect IMU data, or increasing noise
on the IMU data while assuming image noise with 0.5 pixel
standard deviation.

Figure 4 shows the results of the 1.5pt linear solution
method, 1pt method by sampling for x-z translation direction
and 2pt method, for gradually increased image noise levels
with perfect IMU data or increasing noise on the IMU
data while assuming image noise with 0.5 pixel standard
deviation. In Figure 4 (f) a sensitivity of the 1.5pt linear
solution method to noise in Pitch angle can be seen in
sideways motion.

The experiments on synthetic data validate the derivation
of the minimal solution solvers and quantify the stability
of the solvers with respect to image noise and IMU noise.
The synthetic data did not contain outliers. The use of the
methods within a RANSAC loop for outlier detection is part
of the experiments using real data.

B. Experiments on real data

Experiments on real data were performed on the KITTI
data set [4]. For the evaluation we utilized all the available
11 sequences which have ground truth data (labeled from 0
to 10 on the KITTI webpage) and together consist of around
23000 images. The KITTI data set provides a challenging
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Fig. 2. Translation error with ”PLANAR” setting: Evaluation of the 1.5pt
linear solution method, 1pt method by sampling for x-z translation direction
and 2pt method. Left: forward motion, right: sideways motion. (a) and (b)
are with varying image noise. (c), (d), (e) and (f) are under different IMU
noise and constant image noise 0.5 pixel standard deviation. (c) and (d) are
with Roll angle noise. (e) and (f) are with Pitch angle noise.

environment for our experiments, however, such a road
driving scenario does fit our method very well. In all the
images a large scene plane is visible (the road) and features
at far distances are present as well. For our experiments we
performed SIFT feature matching [9] between consecutive
frames. The ground truth data of the sequences is used to
pre-rotate the feature-points by RxRz , basically simulating
IMU measurements. Then the remaining relative rotation
and translation are estimated with our methods. We perform
3 sets of experiments with the KITTI data set. In a first
experiment we test the effectiveness of our proposed quick
test for rotation inliers. In the second experiment we compute
rotation and translation using all our proposed methods and
compare it to the ground truth. We also compare the results
to the 5pt method [11] and 2pt method [13]. In a third
experiment we test the quality of the inlier detection by using
the different methods.

1) Rotation estimation inlier selection using y-coordinate
test: The 0.5pt method for rotation estimation is working
under the assumption that a scene point is far away. Using
RANSAC or histogram voting the inliers of this assumption
can be found. However, even before computing rotation
hypothesis with the 0.5pt method the point correspondences
can already be checked if they stem from far points, to
remove all the near points. For a far point in this setting
the y coordinate of a point feature does not change. So
any point correspondence where the y coordinate changes
is a near feature that can be discarded for the rotation
estimation. This allows to significantly remove a big part of
feature points for the rotation estimation to make it more
efficient. Table I shows how many of the feature points
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Fig. 3. Rotation error with ”MIXED” setting: Evaluation of the 0.5pt
method, histogram voting and 2pt method. Left: forward motion, right:
sideways motion. (a) and (b) are with varying image noise. (c), (d), (e)
and (f) are under different IMU noise and constant image noise 0.5 pixel
standard deviation. (c) and (d) are with Roll angle noise. (e) and (f) are
with Pitch angle noise.

TABLE I
EFFECT OF THE Y-COORDINATE TEST FOR OUTLIER REMOVAL.

Sequences NumSIFT NumRemove Ratio
00 (4541 images) 634 463 74.15%
01 (1101 images) 398 213 52.26%
02 (4661 images) 648 508 78.74%
03 (801 images) 886 572 65.50%
04 (271 images) 561 421 74.83%
05 (2761 images) 672 450 69.82%
06 (1101 images) 539 383 71.32%
07 (1101 images) 750 446 63.97%
08 (4071 images) 658 460 71.65%
09 (1591 images) 581 434 75.27%
10 (1201 images) 652 454 73.35%

can be removed already based on this simple criteria. For
this test a feature was classified as a far feature if the y
coordinate does not change more than 1 pixel. NumSIFT
is the average number of point correspondences within a
sequence, NumRemove is the average number of outliers
removed, and Ratio = NumRemove/NumSIFT is the
average of the percentage of the removed outliers. It can be
seen that at least more than 52% feature matches can be
removed due to this criteria.

2) Comparison of rotation and translation estimation to
ground truth: In this experiment we compare the rotation and
translation estimates of our methods to ground truth and also
to the results of the 5pt method [11] and the 2pt method [13].
Table II lists the results of the rotation estimation and
Table III lists the results for the translation estimation. In this
experiment the relative rotations and translations between
two consecutive images are compared to the ground truth
relative poses. The tables show the median error for each
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Fig. 4. Translation error with ”MIXED” setting: Evaluation of the 1.5pt
linear solution method, 1pt method by sampling for x-z translation direction
and 2pt method. Left: forward motion, right: sideways motion. (a) and (b)
are with varying image noise. (c), (d), (e) and (f) are under different IMU
noise and constant image noise 0.5 pixel standard deviation. (c) and (d) are
with Roll angle noise. (e) and (f) are with Pitch angle noise.

TABLE II
ROTATION ERROR FOR KITTI SEQUENCES [DEGREES].

Seq. 0.5pt method Histogram voting 5pt 2pt
00 0.060 0.051 0.13 0.24
01 0.073 0.063 0.12 0.23
02 0.068 0.057 0.12 0.26
03 0.068 0.057 0.11 0.21
04 0.074 0.030 0.11 0.17
05 0.049 0.032 0.11 0.21
06 0.073 0.050 0.11 0.21
07 0.052 0.034 0.11 0.19
08 0.051 0.037 0.12 0.19
09 0.079 0.094 0.12 0.24
10 0.059 0.048 0.12 0.22

individual sequence. For rotation estimation the RANSAC
variant and the histogram voting scheme was tested. For the
RANSAC variant a fixed number of 100 iterations with an
inlier threshold of 2 pixels has been used. For the histogram
voting a rotation hypothesis is computed for every point
correspondence exhaustively and entered into a histogram.
The rotation value at the peak in the histogram is then
selected.

Both 0.5pt method and histogram voting method provide
better results than the 5pt method and 2pt method. The
histogram voting method is slightly more accurate than
the 0.5pt method. In subsequent experiments, we use the
histogram voting method to estimate the rotation first, then
estimate the translation using the different methods.

The translation error for all sequences is shown in Table
III. All the four methods for translation estimation, the
1.5pt linear solution method (1.5pt lin), the 1pt method by
discrete sampling of the relative height change (1pt h), the



1pt method by discrete sampling for x-z translation direction
(1pt d) and the 1pt method by discrete sampling of the in-
plane scale change (1pt s) are compared to ground truth.
The 1.5pt method is used within a RANSAC loop with a fix
number of 100 iteration and an inliers threshold of 2 pixel.
For the 1pt methods an exhaustive search is performed and
the solution with the highest number of inliers is used.

The table shows that all of our methods provide better
results than the 2pt method. The 1pt methods for translation
estimation and the 5pt method are more accurate than the
linear solution using 1.5pt. The 1pt d method offers the
best overall performance among all the translation estimation
methods.

TABLE III
TRANSLATION ERROR FOR KITTI SEQUENCES [DEGREES].

Seq. 1.5pt lin 1pt h 1pt d 1pt s 5pt 2pt
00 4.23 1.90 1.64 1.58 1.93 8.03
01 7.34 2.01 1.18 1.20 1.41 10.74
02 3.68 1.83 1.53 1.54 1.53 6.47
03 4.69 2.13 1.88 2.58 2.12 8.61
04 2.64 0.95 0.88 0.92 1.19 5.45
05 3.92 1.57 1.37 1.34 1.67 7.90
06 4.02 1.27 1.20 1.12 1.37 5.57
07 4.89 2.20 1.82 1.89 2.37 10.09
08 4.23 2.17 1.86 1.84 2.06 7.41
09 4.20 2.04 1.53 1.53 1.54 7.20
10 3.90 1.78 1.61 1.58 1.73 7.39

3) Inlier recovery rate: The main usage for our proposed
algorithms should be to efficiently find a correct inlier set
which can then be used for accurate motion estimation
using e.g. non-linear optimization (maybe also using our
motion estimates as initial value). We therefore perform an
experiment that tests how many of the real inliers (calculated
from the ground truth) can be found by our methods. This
inlier recovery rate is shown in Table IV as an average over
all sequences (an inlier threshold of 2 pixels). All of our four
methods can be used to find a correct inlier set, and provide
a more complete inlier set than the 2pt method. The inlier
recovery rate of 1pt d method is slightly better than the 5pt
method. Inlier detection using the 1pt d method is shown in
Figure 5.

TABLE IV
INLIER RECOVERY RATE FOR ALL KITTI SEQUENCES.

Seq. 1.5pt lin 1pt h 1pt d 1pt s 5pt 2pt
all 88.47% 96.97% 98.29% 96.51% 98.27% 84.37%

VII. CONCLUSION

The presented algorithms allow to compute motion esti-
mation and inlier sets by exhaustive search or by histogram
voting. This is an interesting alternative to the traditional
RANSAC method. RANSAC finds an inlier set with high
probability but there is no guarantee that it is really a good
one. Also, our experiments demonstrate that the assumptions
taken in these algorithms are commonly met in road driving
scenes (e.g. the KITTI data set), which could be a very
interesting application area for it.

(a) Ground truth

(b) 1pt_d method

Fig. 5. Inlier detection example, left: previous frame; right: current frame.
(a). Ground truth inliers: 885 matches; (b). Inliers detected by the 1pt d
method: 884 matches.
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Grands Réseaux de Recherche Haut-Normands.

REFERENCES

[1] J.C. Bazin, C. Demonceaux, P. Vasseur, and I.S. Kweon. Motion
estimation by decoupling rotation and translation in catadioptric vision.
Computer Vision and Image Understanding, 114(2):254 – 273, 2010.
Special issue on Omnidirectional Vision, Camera Networks and Non-
conventional Cameras.

[2] M. A. Fischler and R. C. Bolles. RANSAC random sampling concen-
sus: A paradigm for model fitting with applications to image analysis
and automated cartography. Communications of ACM, 26:381–395,
1981.

[3] Friedrich Fraundorfer, Petri Tanskanen, and Marc Pollefeys. A
minimal case solution to the calibrated relative pose problem for
the case of two known orientation angles. In Proc. 11th European
Conference on Computer Vision, pages 1–14, 2010.

[4] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for
autonomous driving? the kitti vision benchmark suite. In Conference
on Computer Vision and Pattern Recognition (CVPR), 2012.

[5] R.I. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge, 2000.

[6] Mahzad Kalantari, Amir Hashemi, Franck Jung, and Jean-Pierre
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