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Abstract. The asymptotic derivation of a new family of one-dimensional, weakly non-
linear and weakly dispersive equations that model the flow of an ideal fluid in an elastic
vessel is presented. Dissipative effects due to the viscous nature of the fluid are also taken
into account. The new models validate by asymptotic reasoning other non-dispersive sys-
tems of equations that are commonly used, and improve other nonlinear and dispersive
mathematical models derived to describe the blood flow in elastic vessels. The new sys-
tems are studied analytically in terms of their basic characteristic properties such as the
linear dispersion characteristics, symmetries, conservation laws and solitary waves. Unidi-
rectional model equations are also derived and analysed in the case of vessels of constant
radius. The capacity of the models to be used in practical problems is being demonstrated
by employing a particular system with favourable properties to study the blood flow in
a large artery. Two different cases are considered: A vessel with constant radius and a
tapered vessel. Significant changes in the flow can be observed in the case of the tapered
vessel.
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Figure 1. Sketch of the physical domain for a single vessel segment with elastic
and impenetrable wall.

1. Introduction

The study of the axisymmetric flow of an inviscid fluid in elastic vessels is important
on several accounts but especially because of its applications to the blood flow in arteries.
The mathematical modelling of arterial systems is based on the equations of continuum
mechanics for the flow of an incompressible fluid in vessels known as the Navier–Stokes
equations, [32]. The incompressible Navier–Stokes formulation of the blood flow has
the advantage of taking into account the dissipative effects of the flow due to viscosity.
On the other hand, the flow exhibits a rather complex structure due to the mechanical
interaction between the fluid and the vessel walls. Another very important factor that
influences the blood flow is the viscoelastic nature of vessel walls. For example, large
arteries deform under blood pressure and they are capable of storing elastic energy during
the systolic phase and release it during the diastolic phase. Modelling the elastic properties
of the vessels appears to have significant difficulties of mathematical and numerical nature,
[16, 32, 43, 50, 54, 58].

Several attempts to simplify the study of the blood flow have been made, especially
in the case of large vessels with elastic wall that are capable to deform under pressure.
In many recent studies the viscosity of the flow has been neglected since otherwise the
mathematical modelling becomes very complicated. To this end, the focus is mainly on
the inviscid, incompressible and radially symmetric fluid flow equations known to as the
Euler equations. These equations written in cylindrical coordinates take the form:

u t + uux + v u r + 1

ρ
px = 0 , (1.1)

v t + uvx + v v r + 1

ρ
p r = 0 , (1.2)

ux + v r + 1

r
v = 0 , (1.3)

where u = u (x, r, t) , v = v (x, r, t) are the horizontal and radial velocity of fluid
respectively, p = p (x, r, t) is the pressure of the fluid, while ρ is the constant density of
the fluid.
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A sketch of the physical domain of this problem is presented in Fig. 1, where the distance
of vessel’s wall from the centre of the vessel in a cross section is denoted by rw (x, t)
and depends on x and t while the radius of the vessel at rest is the function r0 (x) . In
general the deformation of the wall will be a function of x and t . If we denote the radial
displacement of the wall will by η (x, t) then the vessel wall radius can be written as
rw (x, t) = r0 (x) + η (x, t) .

The governing equations (1.1) – (1.3) combined with initial and boundary conditions
form a closed system. A compatibility condition is also applied at the centre of the vessel
(due to cylindrical symmetry). Specifically, we assume that

v (x, r, t) = 0 , for r = 0 . (1.4)

On the vessel wall the impermeability condition can be written in the form:

v (x, r, t) = η
t
(x, t) + (r0 (x) + η (x, t))x u (x, r, t) , for r = rw (x, t) , (1.5)

and expresses that the fluid velocity equals the wall speed v = rw
t . The second boundary

condition is actually Newton’s second law on the vessel wall written in the form:

ρw hη
t t
(x, t) = pw (x, t) − Eσ h

r 2

0
(x) η (x, t) , (1.6)

where ρw is the wall density, pw is the transmural pressure, h is the thickness of the
vessel wall, Eσ = E

1 − σ 2 where E is the Young modulus of elasticity with σ denoting
the Poisson ratio of the elastic wall. In this study we assume that E is a constant and
in general we will replace in the notation Eσ by E . It is noted that because the flow is
pressure-driven the effect of gravity is neglected. For more information about the derivation
of the Euler equations and the boundary conditions we refer to [16, 64]. It is noted that
assuming a laminar flow and small viscosity the Navier–Stokes equations can be reduced
to a modified system which is very similar to the Euler equations, [54], and therefore an
analysis on the Euler equations can easily be generalised to the specific simplified viscous
case.

Due to the complexity of the Euler equations several one-dimensional models have been
introduced, [1, 33, 45, 52, 55, 56, 59, 63]. The models include unidirectional, c.f. e.g. [14, 19,
26, 41, 62], and bidirectional models, c.f. e.g. [9, 15, 42]. Although these models usually
are neither asymptotic models nor dispersive, systematic comparisons between one and
three dimensional idealised arterial blood flow models showed a very good agreement, c.f.
e.g. [61]. Moreover, one-dimensional models can also be used to compute inflow boundary
conditions to three-dimensional models. However, one-dimensional models cannot handle
curved vessels unless the central axis is a graph of a function. For this reason three-
dimensional models cannot be totally replaced by the simple one-dimensional models, c.f.
e.g. [8, 28, 48, 57, 61]. It is noted that the literature is not limited in the above references
but is very extensive and we apologise if we do not include the complete literature in the
field.

In this paper we derive some new asymptotic one-dimensional model equations of Boussi-
nesq type (weakly non-linear and weakly dispersive) that approximate the system (1.1) –
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(1.3) with boundary conditions (1.4) – (1.6). The new systems describe inviscid and irrota-
tional fluid flow in elastic vessels of variable diameter and can be used as an alternative to
the Euler equations (1.1) – (1.3). We also derive dissipative Boussinesq equations from
the Navier–Stokes equations using standard arguments on the velocity profile, [54], and
extending the asymptotic reasoning of the inviscid case to the viscous case. The new mod-
els are generic and can be used to study the blood flow in large arteries while discarding
the dispersive terms then classical non-dispersive models can be recovered. For this rea-
son we validate the new mathematical models by studying the blood flow in ideal arterial
segments of the human body using a numerical method based on simple finite-difference
methods. The new model equations are of significant importance since they validate using
asymptotic reasoning standard 1D models commonly used to simulate blood flow in ar-
teries, they extend these models to more accurate weakly nonlinear and weakly dispersive
models, they can be integrated numerically efficiently, and also used to simulate fluid flows
in elastic tubes.

The paper is organised as follows: In Section 2 we review some recent 1D model equations
describing nonlinear and dispersive fluid flow in elastic vessels. In Sections 3 and 4 we
derive the new asymptotic models ignoring the viscosity of the flow. In Section 5 we
extend the new model equations by incorporating dissipative effects due to viscosity. In
Sections 6 and 7 we limit the analysis to vessels with constant initial radius. In Section 6
we derive unidirectional models and discuss some important characteristic properties of the
new models such as symmetries and conservation laws. In Section 7 we study the linear
dispersion relation of the derived systems and we discuss the existence and computation
of traveling wave solutions. We also present model equations with improved dispersion
characteristics. In Section 8 we employ a particular system which is characterised by its
simplicity and its accuracy and we validate the new models by numerical means in studies
of blood flow. We close this paper with some conclusions.

2. Review of 1D models for pulsatile flow in elastic

vessels

Recent studies of fluid flows in vessels focus on the derivation of simplified models that
take into account the elasticity of the vessels of constant radius r0 > 0 (or constant
cross-sectional area A). These models usually ignore the viscous nature of the fluid, and
are based on the assumption that the flow is symmetric around the axis of the vessel.
All these models are systems of partial differential equations in one space dimension, c.f.
[15, 30, 53], and are based on the mass and momentum conservation of fluid flow in an
elastic vessel, [63]:

η
t
+ η

x
u + 1

2
ηux + 1

2
r0 ux = 0 , (2.1)

u t + uux + 1

ρ
px = 0 , (2.2)



Asymptotic nonlinear and dispersive pulsatile flow 7 / 45

where η = η (x, t) denotes the radial displacement of the vessel wall from its rest position,
u = u (x, t) and p = p (x, t) is the cross-section averaged velocity and pressure of a fluid
of constant density ρ at point x at time t . The choice of the pressure p appeared to be
crucial in the mathematical classification of the system (2.1) – (2.2). For example, using
the simple Laplace law to a pressure-area relation leads to the formula

p = E h

r 2

0

η , (2.3)

where E is the Young modulus, h the thickness of the vessel and r0 the constant radius
of the relaxed vessel leads to a hyperbolic system of conservation laws, [53]:

η
t
+ η

x
u + 1

2
ηux + 1

2
r0 ux = 0 , (2.4)

u t + uux + E h

ρr 2

0

η
x
= 0 . (2.5)

On the other hand, using (1.6) to the pressure/displacement relationship, [15]:

ρw hη
t t
= p − E h

r 2

0

η , (2.6)

and substituting p into (2.2) one obtains the nonlinear and dispersive system, [15]:

η
t
+ η

x
u + 1

2
ηux + 1

2
r0 ux = 0 , (2.7)

u t + uux + E h

ρr 2

0

η
x
+ ρw h

ρ
η
x t t
= 0 . (2.8)

The last Boussinesq-type system is unfortunately not very useful for practical problems
due to its poor stability properties, [11]. For this reason further investigation can lead
to other regularised Boussinesq systems. For example, consider the non-dimensional
variables:

η∗ = η
a
, x∗ = x

λ
, u∗ = u

c0
, t∗ = t

T
, (2.9)

where a is a typical excitation of a pulse, λ a typical wavelenght of a pulse, T = 2aλ/r0 c0
the characteristic time scale, while

c0 = a

r0

√
2E h

ρr0

, (2.10)

is a modified Moens–Korteweg characteristic speed, [34, 40]. Then, non-dimensionalisation
and scaling of (2.7) – (2.8) using (2.9) – (2.10) leads to the non-dimensional system:

η∗
t∗
+ 2 εη∗

x∗
u∗ + εη∗ u∗ x∗ + u∗ x∗ = 0 , (2.11)

u∗t∗ + η∗x∗ + 2 εu∗ u∗x∗ + δ 2 α η∗
x∗ t∗ t∗

= 0 , (2.12)

where here ε = a/r0 , δ 2 = r 2

0
/λ2 , ε, δ 2 ≪ 1 and α = ρw h /2ρr0 . From (2.11) –

(2.12) we observe that η∗t∗ = −u∗x∗ + O (ε, δ 2) and thus η∗x∗ t∗ t∗ = −u∗x∗ x∗ t∗ + O (ε, δ 2) .
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After substituting the last relationship into (2.12) and omitting the high-order terms of
O (ε δ 2, δ 4) we obtain the regularised system of Boussinesq equations

η∗
t∗
+ 2 εη∗

x∗
u∗ + εη∗ u∗x∗ + u∗x∗ = 0 , (2.13)

u∗t∗ + η∗x∗ + 2 εu∗ u∗x∗ − δ 2 αu∗x∗ x∗ t∗ = 0 , (2.14)

which can be written in dimensional variables in the form:

η
t
+ η

x
u + 1

2
(η + r0)ux = 0 , (2.15)

u t + uux + E h

ρr 2

0

η
x
− ρw h

2ρE
uxx t = 0 . (2.16)

One can also derive one-way propagation model equations of KdV and BBM type by
assuming that

u∗ = η∗ + εF + δ 2G, (2.17)

where F = F (x, t) , G = G (x, t) are unknown functions. Substitution of the last
equation into the system (2.13) – (2.14) and equating coefficients of same order, [60], leads
to the KdV-type equation:

η∗
t∗
+ 5

2
εη∗ η∗

x∗
+ η∗

x∗
+ δ 2

α

2
η∗
x∗ x∗ x∗

= 0 ,

and the BBM-type equation

η∗
t∗
+ 5

2
εη∗ η∗

x∗
+ η∗

x∗
− δ 2

α

2
η∗
x∗ x∗ t∗

= 0 ,

or in dimensional variables

η
t
+ c̃η

x
+ 5

2 r0

c̃ ηη
x
+ ρw hr0

4ρ
c̃η

xxx
= 0 ,

and

η
t
+ c̃ η

x
+ 5

2 r0

c̃ηη
x
− ρw hr0

4ρ
η
xx t
= 0 , (2.18)

where c̃ =
√

E h

2ρr0

is the Moens–Korteweg characteristic speed, [34, 40].

Although equations (2.1) – (2.2) (and the derived systems (2.4) – (2.5) and (2.7) – (2.8)
appeared to be useful and quite accurate in the approximation of the blood flow in large
arteries, [15, 30, 50, 53], their derivation is based on the assumption:

∫
S
û2 dσ = Au2 ,

where in this notation S is a cross-section of the vessel and A its area, û = û (x, r, t) is
the horizontal velocity of the fluid measured at distance r from the centre of the vessel.
Moreover, the equations for the cross-sectional averaged pressure (2.3) and (2.6) are not
asymptotic and therefore the derivations following (2.1) – (2.2) is not clear that are valid
by asymptotically means.

An asymptotic unidirectional model equation was derived in [14]. This equation is a vari-
able coefficient KdV-type equation and describes the unidirectional propagation of pulse
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waves in an elastic vessel of variable radius. Other model equations for the flow in cylindri-
cal tubes of constant cross section in equilibrium has been derived in [51]. These equations
are asymptotic approximations of Euler’s equations but again written in their simplest
form are difficult to use in practice since each equation contains temporal derivatives of
both the excitation of tube’s wall and velocity of the fluid. Although asymptotic unidi-
rectional models exist in the literature, bidirectional models are of significant importance
since they have the capacity to model wave reflections from the walls and boundaries of
the fluid domain. Next section focuses on the asymptotic derivation of weakly nonlinear
and weakly dispersive model equations that describe the two-way propagation of waves in
elastic vessels of variable radius that are easy to use in practice.

Remark 1. Although the viscous nature of the fluid has been neglected in all these models,
it can be recovered by adding an extra dissipative term. This has been considered in several
works c.f. e.g. [30, 50, 53] and also in Section 5 bellow.

3. New model equations

In order to derive an asymptotic model we first write the Euler equations in a non-
dimensional and scaled form using the following change of variables:

η∗ = η
a
, x∗ = x

λ
, r ∗ = r

R
, t∗ = t

T
,

u∗ = 1

ε c̃
u , v ∗ = 1

ε δ c̃
v , p∗ = 1

ερ c̃2
p , (3.1)

where a is a typical excitation of the vessel wall, λ a typical wavelenght of a pulse, R is

a vessel’s typical radius, T = λ / c̃ the characteristic time scale, while c̃ = √E h /2ρR
is the Moens–Korteweg characteristic speed. It is noted that the external pressure is
considered zero and is neglected. The parameters ε and δ characterise the nonlinearity and
the dispersion of the system:

ε = a

R
, δ = R

λ
.

Usually, ε and δ are very small. Specifically, we assume that ε ≪ 1 , δ 2 ≪ 1 , while the
Stokes–Ursell number is of order 1 : ε / δ 2 = O (1) .

Omitting the ∗ from the notation below, the non-dimensional form of the Euler equa-
tions takes the form:

u t + εuux + ε v u r + px = 0 , (3.2)

δ 2 (v t + εuvx + ε v v r) + p r = 0 , for 0 ⩽ r ⩽ rw ≐ r0 + εη (3.3)

r ux + (r v)r = 0 , (3.4)

δ 2 vx = u r , (3.5)
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while the boundary and compatibility conditions are written as:

v (x, rw, t) = η
t
(x, t) + rw

x u (x, rw, t) , (3.6)

pw (x, t) ≐ p (x, rw, t) = αδ 2 η
t t
(x, t) + β (x)η (x, t) , (3.7)

v (x, 0, t) = 0 , (3.8)

where denoting

ᾱ = ρw h

ρ
and β̄ (x) = E h

ρr 2

0
(x) , (3.9)

then

α = ᾱ

R
and β (x) = 2R 2 ρ

E h
β̄ (x) . (3.10)

Equation (3.5) represents the irrotationality of the flow and it is equivalent with the as-
sumption that the flow is potential, [35].

In the long wave approximation the horizontal velocity is a small perturbation of the
velocity of the fluid at the vessel wall. This can be seen by integrating (3.5) from r to rw

and solving for u :

u (x, r, t) = u (x, rw, t) − δ 2 ∫ rw

r
vx (x, s, t) ds . (3.11)

The last equation gives a low-order asymptotic relation for the horizontal velocity u (x, r, t) =
u (x, rw, t) + O (δ 2) and shows that the velocity is almost uniform along the radius r .
Moreover, differentiation of the last equation yields

u r (x, r, t) = O (δ 2) . (3.12)

In the sequel we will denote uw (x, t) ≐ u (x, rw, t) . Using this notation we observe that
ux (x, r, t) = ux (x, rw, t) + rw

x u r (x, rw, t) + O (δ 2) and u t (x, r, t) = u t (x, rw, t) +
rw
t u r (x, rw, t) + O (δ 2) . But since u r = O (δ 2) then we have that

ux (x, r, t) = uw
x (x, t) + O (δ 2) , (3.13)

u t (x, r, t) = uw
t (x, t) + O (δ 2) . (3.14)

Since the radial accelerations are negligible we can simplify the momentum conservation
Equation (3.2) into

u t (x, r, t) + εu (x, r, t)ux (x, r, t) + px (x, r, t) = O (ε δ 2) , (3.15)

We continue with the derivation of analogous asymptotic approximations for the radial
velocity v . We consider the function

Q (x, r, t) = 1

r
∫ r

0

su (x, s, t) ds .
Using (3.11) we obtain the relation

Q (x, r, t) = 1

r
∫ r

0

suw (x, t) ds + O (δ 2) = r

2
uw (x, t) + O (δ 2) .
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Integrating the mass conservation equation (3.4) we have

∫ r

0

(s v)s ds = − ∫ r

0

sux ds ,

from which, after integration by parts we obtain:

v (x, r, t) = − 1
r
∫ r

0

sux ds = −Qx (x, r, t) ,
or using asymptotic reasoning

v (x, r, t) = − r
2
uw
x (x, t) + O (δ 2) . (3.16)

The boundary condition (3.6) using (3.16) is reduced to the equation

− rw

2
uw
x (x, t) = η t (x, t) + rw

x uw (x, t) + O (δ 2) ,
which gives an equation for η

η
t
(x, t) + 1

2
rw uw

x (x, t) + rw
x uw (x, t) = O (δ 2) . (3.17)

It is noted that this equation is a low order approximation of the mass conservation equation
(similar to that of [15], see also Eq. (2.13)).

In order to eliminate the pressure from (3.15) we need to derive high-order approxima-
tions of the non-hydrostatic pressure as follows. Equation (3.16) implies:

v t (x, r, t) = − r
2
uw
xt (x, t) + O (δ 2) , (3.18)

while momentum equation (3.3) implies that

δ 2 v t + p r = O (ε δ 2) . (3.19)

Substituting (3.18) into (3.19) we have the expression for the pressure:

p r (x, r, t) = δ 2
r

2
uw
xt (x, t) + O (ε δ 2, δ 4) ,

which after integration leads to the formula:

p (x, r, t) = pw (x, t) − δ 2 uw
xt (x, t) (rw)2 − r 2

4
+ O (ε δ 2, δ 4) . (3.20)

Differentiation gives

px (x, r, t) = pw
x (x, t) − δ 2 uw

xt (x, t) (rw)2 − r 2

4
− δ 2

rw rw
x

2
uw
xx t (x, t) + O (ε δ 2, δ 4) .

(3.21)
Finally, we derive high-order asymptotic expansions for the velocities and eventually for

the mass and momentum conservation equations. Starting from the horizontal velocity
u (x, r, t) we combine (3.11) and (3.16) to obtain

u (x, r, t) = uw (x, t) + δ 2 ∫ rw

r

s

2
uw
xx (x, t) ds + O (δ 4) ,
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which leads to the high-order approximation of the horizontal velocity:

u (x, r, t) = uw (x, t) + δ 2 uw
xx (x, t) (rw)2 − r 2

4
+ O (δ 4) , (3.22)

and of the time derivative of the horizontal velocity (since rw = r0 + εη):

u t (x, r, t) = uw
t (x, t) + δ 2 uw

xx t (x, t) (rw)2 − r 2

4
+ O (δ 4, ǫ δ 2) , (3.23)

In order to compute high-order approximation to the radial velocity we integrate (3.4) from
0 to rw we get

rw v (x, rw, t) = − ∫ rw

0

sux (x, s, t) ds .
The last equation with the help of the boundary condition (3.6) leads to

rw (η
t
+ rw

x uw ) = − ∫ rw

0

sux ds ,

(from (3.22)) = − ∫ rw

0

s [uw
x + δ 2 (uw

xx

(rw)2 − s2

4
)
x

] ds + O (δ 4) ,
= − 1

2
(rw)2 uw

x − δ 2

16
(rw)4 uw

xxx − δ 2

4
(rw)3 rw

x uw
xx + O (δ 4) .

Solving the last relationship for η
t
we obtain the approximate mass conservation equation:

η
t
+ 1

2
rw uw

x + rw
x uw + δ 2

4
(rw)2 rw

x uw
xx + δ 2

16
(rw)3 uw

xxx = O (δ 4) . (3.24)

Furthermore, substituting (3.21) into (3.15), and using (3.23), (3.13), (3.14) and the
boundary condition (3.7), yields the approximate momentum conservation equation,

uw
t + εuw uw

x + [β (x)η ]x − δ 2
rw rw

x

2
uw
xt + αδ 2 η

x t t
= O(εδ 2) . (3.25)

We can further use the low order approximation of the mass conservation equation
(3.17) to improve the term η

x t t
in (3.25). Specifically, differentiating (3.17) we obtain

η
x t t
= −( 1

2
rw uw

x + rw
x uw)

x t
+ O (δ 2) . Substituting the last equation into (3.25) we

obtain the BBM-type equation:

uw
t + [β (x)η ]x + εuw uw

x − αδ 2 (rw
x uw)x t − δ 2 rw rw

x

2
uw
xt − αδ 2

2
(rw uw

x )x t = O (ǫ δ 2, δ 4) .
(3.26)

Finally, we recollect the high-order approximations of mass and momentum equations.
Since rw (x, t) = r0 (x) + εη (x, t) we can further simplify the terms multiplied by δ 2 or
ε in (3.24) and (3.26) and obtain:

η
t
+ 1

2
(r0 + εη)uw

x + (r0 x + εη
x
)uw + δ 2

4
r0

2 r0x u
w
xx + δ 2

16
r0

3 uw
xxx = O (ε δ 2, δ 4) ,

(3.27)

uw
t + [β (x)η ]x + εuw uw

x − αδ 2 (r0 x u
w
t )x − δ 2 r0 r0 x

2
uw
xt − αδ 2

2
(r0 u

w
xt)x = O (ε δ 2, δ 4) .

(3.28)
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Discarding the high-order terms system (3.27) – (3.28) can be written in dimensional form
as

η
t
+ 1

2
(r0 + η)uw

x + (r0 x + ηx)uw + r0
2 r0 x

4
uw
xx + r0

3

16
uw
xxx = 0 , (3.29)

uw
t + [ E h

r 2

0
ρ
η ]

x

+ uw uw
x − ρw h

ρ
(r0 x u

w
t )x − r0 r0 x

2
uw
xt − ρw h

2ρ
(r0 u

w
xt)x = 0 .

(3.30)

We mention that the last system differs from the non-asymptotic model derived in [15] and
it has similarities with analogous asymptotic models derived in the context of water waves,
[44].

Remark 2. The viscoelastic nature of a vessel can be taken into account by considering
in the left hand side of the boundary condition (1.6) an additional term proportional to the
displacement velocity γ η

t
with γ a positive damping parameter. This is the case of a simple

Voigt/Kelvin model, c.f. e.g. [31]. The addition of this term will result in additional
dissipative terms in the momentum equation that we will study in detail in the future.

4. Further developments

In the previous section we approximated the velocity u (x, r, t) by the velocity u (x, rw, t)
eliminating in this way the radial component of the velocity from the equations and re-
ducing the dimensionality of the system to one. Using similar arguments to [11, 13] and
approximating the velocity at any radius r we can derive a whole new class of systems.

Using the high-order approximation (3.22) to the horizontal velocity we observe that

uw (x, t) = u (x, r, t) − δ 2 uxx (x, r, t) (rw)2 − r 2

4
+ O (δ 4) .

Taking r = θ rw with 0 ⩽ θ ⩽ 1 and denoting u (x, θ rw, t) by u θ (x, t) we have,

uw = u θ − δ 2 u θ
xx

(1 − θ 2)(rw)2
4

+ O (δ 4) .
Using the previous expression to low-order terms and taking into account uw = u θ + O (δ 2)
for the high-order terms in Equations (3.27) – (3.28) we have:

η
t
+ 1

2
(r0 + εη)u θ

x + (r0 x + εη
x
)u θ

− δ 2
r0

2 r0 x (1 − 2 θ 2)
4

u θ
xx + δ 2

r0
3 (2 θ 2 − 1)

16
u θ
xxx = O(ε δ 2, δ 4) , (4.1)

(1 − αδ 2 r0 xx)u θ
t + [β η ]x + εu θ u θ

x

− δ 2 r0 x

3α + r0

2
u θ
x t − δ 2

[2α + (1 − θ 2) r0 ] r0

4
u θ
xx t = O (ε δ 2, δ 4) . (4.2)
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We can further use the low-order terms:

η
t
= − 1

2
r0 u

θ
x − r0 x u

θ + O (ε, δ 2) , (4.3)

u θ
t = − [β η ]x + O (ε, δ 2) . (4.4)

The BBM-type relation (4.3) implies that

r0 u
θ
xxx = −2ηxx t

− 5 r0 xx u
θ
x − 4 r0 x u

θ
xx − 2 r0 xxx u

θ + O(ε, δ 2) , (4.5)

while the BBM-type relation (4.4) implies that

u θ
xx t = − [β η ]xxx + O(ε, δ 2) . (4.6)

Writing u θ
xxx = ν u θ

xxx + (1 − ν)u θ
xxx and u θ

xx t = µu θ
xx t + (1 − µ)u θ

xx t for µ, ν ∈ R ,
and using (4.5) and (4.6) into the last terms of (4.1) and (4.2) respectively we get the
system:

η
t
+ 1

2
(r0 + εη)u θ

x + (r0 x + εη
x
)u θ − δ 2

A (x)u θ
xx + δ 2

B (x)u θ
xxx (4.7)

− δ 2
C (x) (5 r0 xx u

θ
x + 4 r0 x u

θ
xx + 2 r0 xxx u

θ + 2η
xx t
) = O (ε δ 2, δ 4) ,

(1 − αδ 2 r0 xx)u θ
t + [β η ]x + εu θ u θ

x − δ 2
D (x)u θ

x t +
δ 2

E (x) [β η ]xxx − δ 2
F (x)u θ

xx t = O (ε δ 2, δ 4) , (4.8)

where

A (x) = r0
2 r0 x (1 − 2 θ 2)

4
, B (x) = r0

3 (2 θ 2 − 1)ν
16

, (4.9)

C (x) = r0
2 (2 θ 2 − 1) (1 − ν)

16
, D (x) = r0 x (3α + r0)

2
, (4.10)

E (x) = [2α + (1 − θ 2) r0 ] r0 µ

4
, F (x) = [2α + (1 − θ 2) r0 ] r0 (1 − µ)

4
. (4.11)

In dimensional variables the Equations (4.7) – (4.8) take the form:

η
t
+ 1

2
(r0 + η)u θ

x + (r0 x + ηx)u θ − Ā (x)u θ
xx + B̄ (x)u θ

xxx −
− C̄ (x) (5 r0 xx u

θ
x + 4 r0 x u

θ
xx + 2 r0 xxx u

θ + 2η
xx t
) = 0 , (4.12)

(1 − ᾱ r0 xx)u θ
t + [ β̄ (x)η ]x + u θ u θ

x − D̄ (x)u θ
x t +

Ē (x) [ β̄ (x)η ]xxx − F̄ (x)u θ
xx t = 0 , (4.13)

where

Ā (x) = r0
2 r0 x (1 − 2 θ 2)

4
, B̄ (x) = r0

3 (2 θ 2 − 1)ν
16

, (4.14)

C̄ (x) = r0
2 (2 θ 2 − 1) (1 − ν)

16
, D̄ (x) = r0 x (3 ᾱ + r0)

2
, (4.15)

Ē (x) = [2 ᾱ + (1 − θ 2)r0 ] r0 µ

4
, F̄ (x) = [2 ᾱ + (1 − θ 2) r0 ] r0 (1 − µ)

4
. (4.16)
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Remark 3. The simplest of all these systems can be obtained by choosing θ 2 = 1/2 and
µ = ν = 0 , which is:

η
t
+ 1

2
(r0 + εη)u θ

x + (r0 x + εη
x
)u θ = O (ε δ 2, δ 4) , (4.17)

(1 − αδ 2 r0 xx)u θ
t + [β η ]x + εu θ u θ

x

− δ 2
(3α + r0) r0 x

2
u θ
x t − δ 2

(4α + r0) r0

8
u θ
xx t = O(ε δ 2, δ 4) . (4.18)

This system has many similarities with Peregrine’s system of water wave theory, [47].
The rest of the systems (4.7) – (4.8) are relevant to the Boussinesq systems derived in the
context of water waves in [11, 39]. In dimensional and unscaled variables, and discarding
the high-order terms the system can be written as:

η
t
+ 1

2
(r0 + η)u θ

x + (r0 x + ηx)u θ = 0 , (4.19)

(1 − ᾱ r0 xx)u θ
t + [ β̄ (x)η ]x + u θ u θ

x

− (3 ᾱ + r0) r0 x

2
u θ
x t − (4 ᾱ + r0) r0

8
u θ
xx t = 0 , (4.20)

where α , ᾱ , β and β̄ are defined in (3.9) and (3.10).

Remark 4. Further alternatives can be derived by replacing the terms (or some of the
terms) δ 2 u θ

t by − δ 2 [β (x)η ]x due to the low order approximation u θ
t = − [β (x)η ]x +

O(ε, δ 2) . For example, system (4.19) – (4.20) can be written in the alternative form:

η
t
+ 1

2
(r0 + η)u θ

x + (r0 x + ηx)u θ = 0 , (4.21)

(1 − ᾱ r0 xx)u θ
t + [ β̄ (x)η ]x + u θ u θ

x +(3 ᾱ + r0) r0 x

2
[ β̄ (x)η ]xx − (4 ᾱ + r0) r0

8
u θ
xx t = 0 . (4.22)

The last system appears to be more convenient for practical use for reasons explained in the
next section. We will also refer to this system as the classical Boussinesq system due to
its structure.

Remark 5. Dropping the high-order terms of O (δ 2) , the new asymptotic models are re-
duced to the commonly used hyperbolic one-dimensional model equations, [30, 53], but now
we can see that dissipative effects due to vessel’s variations can be lost.

5. Dissipative Boussinesq systems

The motivation for the derivation of the previously mentioned reduced model equations
is the accurate description of the blood flow in arteries. Although blood in large arteries can
be considered as a Newtonian fluid, in order to simulate the blood flow more accurately
one should take into consideration the viscous nature of the flow (it is known that blood can
become almost two times more viscous than water). The governing equations for viscous



D. Mitsotakis, D. Dutykh & Q. Li 16 / 45

flow are known to as the Navier–Stokes equations. Assuming once again cylindrical
symmetry of the vessel and using the same change of variables as in (3.1) we can write the
Navier–Stokes equations in the following non-dimensional and scaled form:

u t + εuux + ε v u r + px = 1

δ 2

1

Re
[ 1
r
(r u r)r + δ 2 uxx ] , (5.1)

δ 2 (v t + εuvx + ε v v r) + p r = 1

Re
[ 1
r
(r v r)r − v

r 2
+ δ 2 vxx ] , for 0 ⩽ r ⩽ rw ,

(5.2)

r ux + (r v)r = 0 , (5.3)

where if κ denotes the kinematic viscosity coefficient then Re is the Reynolds number
defined as

Re = λ c̃

κ
.

Deriving asymptotic approximations to the Navier–Stokes equations is in general very
difficult and usually results in very complicated systems that are difficult to use in practice,
[24, 36]. In order to derive dissipative Boussinesq systems from the Navier–Stokes
equations without using the boundary layer theory and simplifying the analysis we assume
that the viscosity of the fluid is not significant, i.e. the kinematic viscosity of the fluid is
very small and that 1/Re = O (ε δ 2) . This assumption is realistic for blood flow problems
since it is known that Re ≈ 103 for the blood in aorta for example. Then following [23, 54]
we discard terms of order O (ε δ 2) and consider the reduced equations:

u t + εuux + ε v u r + px = 1

δ 2

1

Re
[ 1
r
(r u r)r ] , (5.4)

δ 2 (v t + εuvx + ε v v r) + p r = 0 , for 0 ⩽ r ⩽ rw , (5.5)

r ux + (r v)r = 0 , (5.6)

To further simplify these equations we employ some classical heuristic arguments that have
been proposed in [30, 32, 54, 58] to derive analogous dissipative models for the study of
blood flow problems. First, we assume that the flow is smooth (laminar) and that the
velocity profile is given by the formula

u (x, r, t) = uw (x, t)φ (x, r, t) + O (δ 2) ,
with φ (x, r, t) = 2 rw 2 − r 2

r 0
2 . Then we observe that the viscous term is reduced to the

simple
1

r
(r u r)r = −8 uw

r0
2
,

and thus we consider the reduced dissipative system:

u t + εuux + ε v u r + px = − 1

δ 2

8

Re

uw

r0
2
, (5.7)

δ 2 (v t + εuvx + ε v v r) + p r = 0 , for 0 ⩽ r ⩽ rw , (5.8)

r ux + (r v)r = 0 , (5.9)
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where again we consider u = u (x, r, t) . These equations differ from the Euler equations
(3.2) – (3.4) only to the dissipative term of (5.7) and most of the analysis carried in
Sections 3 and 4 can be repeated for the new set of equations without imposing new
boundary conditions or assuming rotational flow. Specifically, the only difference occurs
in Equation (3.25) which is now written in the form:

uw
t + εuw uw

x + [β η ]x − δ 2
rw rw

x

2
uw
xt + αδ 2 η

x t t
= − 1

δ 2

8

Re

uw

r0
2
+ O (ε δ 2) , (5.10)

and therefore we obtain the following dissipative Boussinesq system in lieu of (3.27) –
(3.28)

η
t
+ 1

2
(r0 + εη)uw

x + (r0 x + εη
x
)uw +

δ 2

4
r0

2 r0 x u
w
xx + δ 2

16
r0

3 uw
xxx = O (ε δ 2, δ 4) , (5.11)

uw
t + [β η ]x + εuw uw

x − αδ 2 (r0 x u
w
t )x

− δ 2 r0 r0 x

2
uw
xt − αδ 2

2
(r0 u

w
xt)x = − 1

δ 2

8

Re

uw

r 2

0

+ O (ε δ 2, δ 4) . (5.12)

System (5.11) – (5.12) can be written in dimensional form and discarding the high-order
terms as:

η
t
+ 1

2
(r0 + η)uw

x + (r0 x + ηx)uw + r0
2 r0 x

4
uw
xx + r0

3

16
uw
xxx = 0 , (5.13)

uw
t + [ E h

r 2

0
ρ
η ]

x

+ uw uw
x − ρw h

ρ
(r0 x u

w
t )x

− r0 r0 x

2
uw
xt − ρw h

2ρ
(r0 u

w
xt)x = −8κ uw

r 2

0

. (5.14)

Furthermore, since uw = u θ + O (δ 2) , and since we have assumed that 1/Re = O (ε δ 2)
we can extend all the Boussinesq models derived in Sections 3 and 4 to the dissipative
systems by just adding the term −8κu/r 2

0
on the right-hand side of momentum equations.

Since the classical Boussinesq-type System (4.21) – (4.22) is the simplest system and for
other reasons that we explain later we rewrite it here in its dissipative form

η
t
+ 1

2
(r0 + η)u θ

x + (r0 x + ηx)u θ = 0 , (5.15)

(1 − ᾱ r0 xx)u θ
t + [ β̄ η ]x + u θ u θ

x

+ (3 ᾱ + r0) r0 x

2
[ β̄ η ]xx − (4 ᾱ + r0) r0

8
u θ
xx t + 8κ

u θ

r 2

0

= 0 . (5.16)

This system will be used later in some practical applications to verify the applicability of
the analysis of this paper.

Remark 6. The dynamic viscosity for the blood is usually around 0.4 × 10−2 Kg/(m ⋅ sec)
on 37 ○C and so the kinematic viscosity is then κ = 0.4× 10−5 m2/sec. We will see bellow
that for practical use in blood flow problems the dissipative Boussinesq systems are very
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useful and the results are very close to in vivo observations of the blood pressure and flow
for a common carotid artery, [3, 43].

6. Unidirectional models and other conservation laws

In this section we study some properties of significant importance of the systems (4.7) –
(4.8), (4.10) – (4.11) in the case of a vessel with constant radius r0 = R . For scaled radius
r0 = 1 the Equations (4.7) – (4.8) become:

η
t
+

1

2
(1 + εη)u θ

x + εη
x
u θ
+ δ 2 au θ

xxx − δ 2 bη
xx t
= O (ε δ 2, δ 4) , (6.1)

u θ
t + β η

x
+ εu θ u θ

x + δ 2 β cη
xxx
− δ 2 du θ

xx t = O (ε δ 2, δ 4) , (6.2)

and in dimensional variables for general constant radius r0 > 0 :

η
t
+

1

2
(r0 + η)u θ

x + ηx u
θ
+ r 3

0 au
θ
xxx − r 2

0 bηxx t
= 0 , (6.3)

u θ
t + β̄ η

x
+ u θ u θ

x + β̄ r 2

0 cηxxx
− r 2

0 du
θ
xx t = 0 , (6.4)

where

a = (2 θ 2
− 1)ν
16

, b = (2 θ 2
− 1) (1 − ν)

8
,

c = (2α + 1 − θ 2)µ
4

, d = (2α + 1 − θ 2) (1 − µ)
4

.

We mention that because the radius is constant R = r0 the parameter α contains the
known constant radius r0 .

It is noted that the well-posedness theory of [11, 12] can be generalised for the new set
of Boussinesq systems in a straightforward way. We only mention here that following
[11] it turns out that a Boussinesq system of the form (6.1) – (6.2) is linearly well-posed
if and only if one of the following conditions holds:

(1) b ⩾ 0 , d ⩾ 0 , a ⩽ 0 , c ⩽ 0 ,
(2) b ⩾ 0 , d ⩾ 0 , 2a = β̄ c > 0 ,
(3) b = d < 0 , 2a = β̄ c > 0 .

We can then distinguish the following linearly well-posed systems:

● Classical Boussinesq-type: µ = ν = 0 , θ 2 = 1

2

● Bona–Smith-type: ν = 0 , µ ∈ R , (2α + 1 − θ 2)µ ⩽ 0 , (2α + 1 − θ 2) (1 − µ) ⩾ 0

● BBM–BBM-type: ν = 0 , µ = 0 , θ 2 ∈ (1/2, 2α + 1)
● KdV–BBM-type: ν = 1 , µ = 0 , θ 2 ⩽ min(1/2, 2α + 1)
● KdV–KdV-type: ν = 1 , µ = 1 , θ 2 ∈ (1/2, 2α + 1)

where because of the linear well-posedness conditions more restrictions apply on α . We
first study one-way propagation models that can be derived from these systems.
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6.1. Unidirectional models with constant radius

Considering the scaling parameters (2.9) – (2.10) then the simplest of the Systems (6.3)
– (6.4) with θ 2 = 1/2 , µ = 0 , (i.e. when a = b = c = 0 and d = (4α + 1) /8) can be
written in the following non-dimensional and scaled form:

η∗
t∗
+ 2 εη∗

x∗
u∗ + εη∗ u∗x∗ + u∗x∗ = 0 , (6.5)

u∗t∗ + η
∗
x∗
+ 2 εu∗ u∗x∗ − δ 2 du∗x∗ x∗ t∗ = 0 , (6.6)

which has the same form with system (2.13) – (2.14) but with coefficient d instead of α .
Using the same arguments as in Section 2, we derive the KdV-type equation:

η∗
t∗
+

5

2
εη∗ η∗

x∗
+ η∗

x∗
+ δ 2

d

2
η∗
x∗ x∗ x∗

= 0 , (6.7)

and the BBM-type equation

η∗
t∗
+

5

2
εη∗ η∗

x∗
+ η∗

x∗
− δ 2

d

2
η∗
x∗ x∗ t∗

= 0 , (6.8)

which in dimensional variables are written in the form

η
t
+ c̃ η

x
+

5

2 r0

c̃η η
x
+

d

2
r 2

0
c̃η

xxx
= 0 ,

and

η
t
+ c̃ η

x
+

5

2 r0

c̃η η
x
−

d

2
r 2

0 ηxx t
= 0 ,

where c̃ = √E h /2ρr0 is the Moens–Korteweg characteristic speed.
It is well-known, the KdV equation is integrable and, thus, it admits infinite number of

(independent) conservation laws. Here we provide only a few of them:

η
t
+ [ c̃ (η + 1

2
α̃ η2 + β̃ η

xx
)]

x

= 0 ,

(η 2)
t
+ [ c̃ (1

2
η2 +

1

3
α̃ η3 −

1

2
β̃ η 2

x
+ β̃ ηη

xx
) ]

x

= 0 ,

(η (α̃ η 2 + 3 β̃ η
xx
))

t
+ [ c̃ (α̃ η3 + 3

4
α̃ 2 η4 + 3 α̃ β̃ η2 η

xx
+

3 β̃ 2 η 2
xx
+ 3 β̃ η2

x
− 3 β̃ ηη

x t
+ 3 β̃ η

t
η
x
) ]

x
= 0 ,

(1
2
η (α̃ tη + 2 t −

2

c
x))

t

+ [ β̃ η
x
+ c̃ α̃ tη2 +

1

3
c̃ α̃ 2 tη 3 −

1

2
α̃ xη 2 +

c̃ α̃ β̃ tη η
xx
−

1

2
c̃ α̃ β̃ tη 2

x
− (x − c̃ t)η − β̃ (x − c̃ t)η

xx
]
x

= 0 ,

where

α̃ ≐ 5

2 r0

, β̃ ≐ ρw hr0

4ρ
.
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Conservation laws and symmetries were computed using GeM package in Maple, [18]. Let
us compute also the symmetry group of the KdV equation. Its infinitesimal generators are
given below:

X1 = ∂ t ,

X2 = ∂x ,

X3 = c̃ α̃ t ∂x + ∂η ,

X4 = − 3
2
t ∂ t − (1

2
x + c̃ t) ∂x + η∂η .

The corresponding point transformations are given here:

t ′ = t + ε1 , x ′ = x , η ′ = η ,
t ′ = t , x ′ = x + ε2 , η ′ = η ,
t ′ = t , x ′ = x + ε3 c̃ α̃ t , η ′ = η + ε3 ,

t ′ = c̃ e−3/2ε 4 t , x ′ = (x − c̃ t) e−1/2ε 4
+ c̃ e−3/2ε 4 t , η ′ = eε 4 η .

The first two transformations are time and space translations correspondingly. The third
transformation is the Galilean boost and the last transformation is the scaling.

Nonlinear and dispersive wave equations usually admit solitary waves propagating in
one direction without change in their shape and with constant phase speed s . In the case
of unidirectional models it is usually easy to compute analytical formulas following c.f. e.g.
[60]. The exact solitary wave to the particular KdV equation can be found easily to be of
the form:

η (x, t) = a sech 2 (1
2
κξ ) ,

where

ξ = x − s t , κ =
√

a α̃

3 β̃
, s = c̃ (1 + β̃ κ2) ≡ c̃ (1 + a α̃

3
) .

Periodic cnoidal-type travelling waves can also be found in the form:

η (x, t) = a cn 2 (1
2
κξ, m) , m ∈ (0, 1) ,

where

ξ = x − s t , κ =
√

a α̃

3 β̃ m2
, s = c̃ (1 + a α̃

2m2
− 1

3m2
) .

From these analytical results one can see that when the solution amplitude a tends to 0 ,
the travelling wave speed tends to the speed of linear waves, i.e. s → c̃ , where c̃ is the
Moens–Korteweg velocity.

Contrary to the KdV equation, the BBM equation is not integrable. Thus, it can have
only a finite number of conservation laws. Writing the BBM equation into the following
conservative form: (η − β̃ η

xx
)
t
+ [ c̃η + 1

2
c̃ α̃ η2 ]

x

= 0 ,
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we were able to find an additional conservation law:

(1
2
η2 +

1

6
β̃ η2

x
−

1

3
β̃ ηη

xx
)
t

+ [ 1
2
c̃η 2 +

1

3
α̃ c̃η 3 −

2

3
β̃ ηη

x t
+

1

3
β̃ η

x
η
t
]
x

= 0 .

The infinitesimal generators of the BBM equation symmetries are given here:

X1 = ∂ t ,

X2 = ∂x ,

X3 = − α̃ t ∂ t + (1 + α̃ η)∂η .
The corresponding point transformations, which keep invariant the set of the solutions to
the BBM equation are given below:

t ′ = t + ε1 , x ′ = x , η ′ = η ,
t ′ = t , x ′ = x + ε2 , η ′ = η ,
t ′ = e− α̃ ε 3 t , x ′ = x , η ′ = 1

α̃
(e α̃ ε 3 (1 + α̃ η) − 1) .

The first two symmetries are time and space translations respectively. The third transfor-
mation is the scaling transformation.

The exact solitary wave solution to this equation can be easily derived:

η (x, t) = a sech 2 (1
2
κξ) ,

where

ξ = x − s t , κ =
¿ÁÁÀ a α̃(3 + a α̃) β̃ , s = c̃ (1 + a α̃

3
) .

Periodic cnoidal-type travelling waves to the BBM equation can also be found in the form:

η (x, t) = a cn 2 (1
2
κξ, m) , x0 ∈ R , m ∈ (0, 1) ,

where

ξ = x − s t , κ =
¿ÁÁÀ a α̃(3m2

+ a α̃ (2m2
− 1)) β̃ , s = c̃ (1 + a α̃

2m2
− 1

3m2
) .

From the expression for κ it follows that cnoidal-type solutions for the BBM equation exist
provided that

3m2
+ a α̃ (2m2

− 1) > 0 .

Figure 2 presents solitary and cnoidals waves (for m = 0.99) of the KdV and BBM
equations of amplitude a = 1 in the case of E = h = r0 = ρ = ρw = 1 . We observe
that traveling waves of the BBM equation are wider (have larger support) compared to
the analogous waves of the KdV equation. We will discuss traveling wave solutions again
later.

It is interesting to notice that the speed/amplitude relations s = s (a) are identical
for the KdV and BBM equations. Moreover, the shapes of travelling waves are slightly
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Figure 2. Comparison between traveling waves solution of the KdV and BBM
equations. The cnoidal waves have been computed for m = 0.99 .

different. However, these differences vanish again in the limit of linear waves, since
lima → +0 κKdV/κBBM = 1 .

Remark 7. All the previously derived model equations are usually accompanied by appro-
priate initial and boundary conditions to form a well-posed problem in the Hadamard
sense. These conditions can vary among the systems and the exact number of boundary
conditions required by the system is known for some of the Systems including (4.21) –
(4.22) in case of vessel with constant initial radius, [5, 7, 29]. In applications it is usually
required to provide the velocity and the deviation of the vessel radius at an inlet position
while similar conditions should be specified at the end of the vessel. These are enough to
form well-posed problems for the commonly used systems such as the BBM–BBM system,
or the classical Boussinesq and these are the boundary conditions we use in Section 8 to
demonstrate the capacity to use the classical Boussinesq model in practical problems.
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6.2. Symmetries and conservation laws for the Boussinesq systems

of constant radius

Now we consider the general Boussinesq systems (6.3) – (6.4) with constant radius r0

and we explore some symmetries and conservation laws of these systems.
Equation (6.4) can be written in the conservative form:

(u − d r 2

0 uxx) t + [ β̄ η + 1

2
u2
+ β̄ c̃ r 2

0 ηxx
]
x

= 0 .

As always, β̄ = E h /ρr 2

0
. However, it is interesting to find less trivial conservation laws.

Let us assume that a ≡ 0 . In this case we are able to find an additional conservation law,
which plays the rôle of the potential energy balance:

(1
2
η2 + r0 η − b r 2

0 ηηxx
−

1

3
b r 3

0 ηxx
+

1

6
b r 2

0 η
2

x
)
t

+

[ 1
2
uη2 + r0 uη +

1

2
r 2

0 u +
1

3
b r 2

0 ηx η t −
2

3
b r 2

0 η η tx ]
x

= 0 .

If additionally we assume that a = c ≡ 0 , then we have an additional conservation law,
which can be interpreted physically as the kinetic energy conservation:

(1
2
u2
− 2 β̄ η +

1

6
d r0 u

2

x + 2 β̄ b r 2

0 ηxx
)
t

+

[ 1
3
u3
− β̄ (η + r0)u + 1

3
d r 2

0 ux u t −
2

3
d r0 uu tx ]

x

= 0 .

We also computed the symmetry point transformations of Equations (6.3), (6.4) for
general values of the free parameters µ , ν and θ . Without any further assumptions, the
solutions remain symmetric only with respect to time and space translations. However, if
we assume that ν ≡ 0 or θ 2 ≡ 1

2
, an additional symmetry transformation appears. The

complete set of the infinitesimal generators in this particular case is given here:

X1 = ∂

∂x
,

X2 = ∂

∂t
,

X3 = −t ∂
∂t
+ 2 (η + r0) ∂

∂η
+ u

∂

∂u
.

The corresponding point transformations are given below in the same order:

t ′ = t , x ′ = x + ε1 , η ′ = η , u ′ = u ,

t ′ = t + ε2 , x ′ = x , η ′ = η , u ′ = u ,

t ′ = e−ε 3 t , x ′ = x , η ′ = − r0 + e2ε 3 (r0 + η) , u ′ = eε 3 u ,
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where ε1,2,3 ∈ R are free parameters. The last transformation is a scaling transformation.
It is noted that in order to achieve further symmetries to the solutions one should include
higher order terms even if they break the asymptotic order of the models, c.f. [21].

7. Dispersion characteristics and solitary waves

In this section we study the linear dispersion characteristics of the new Boussinesq
systems (with constant initial radius) while we show a method to choose the parameters
µ and ν in order to obtain a system with improved linear dispersion relation. Finally, we
explore the solitary waves solutions of these systems.

7.1. Dispersion characteristics

We start with the linear dispersion characteristics and compare with those of the lin-
earised Euler equations:

u t +
1

ρ
px = 0 , (7.1)

v t +
1

ρ
p r = 0 , (7.2)

ux + v r +
1

r
v = 0 , (7.3)

with linearised boundary conditions

v (x, rw, t) = η
t
(x, t) , (7.4)

pw (x, t) = ρw hη
t t
(x, t) + E h

ρ2

0

η (x, t) , (7.5)

v (x, 0, t) = 0 . (7.6)

So considering solutions of the form u (x, r, t) = u0 (r) exp(i (k x − ω t)) , η (x, r, t) =
η
0
(r) exp(i (k x − ω t)) , v (x, r, t) = v0 (r) exp(i (k x − ω t)) , p (x, r, t) = p0 (r) exp(i (k x −

ω t)) and substituting into the linearised Euler equations we obtain the equation for
u0 (r) :

r u ′′0 (r) + u ′0 (r) − r k 2 u0 (r) = 0 , (7.7)

which is the modified Bessel equation. Similarly, the boundary conditions take form:

u ′
0
(0) = 0 , (7.8)

ρw hω 2 η
0
(r0) + ρω

k
u0 (r0) − E h

r 2

0

η
0
(r0) = 0 , (7.9)

u ′0 (r0) = ω k η
0
. (7.10)

A solution of (7.7) that satisfies also the boundary conditions (7.8), (7.10) is the function
u0 (r) = η0 ω I0 (r k) / I1 (r0 k) , where I0 (z) , I1 (z) are modified Bessel functions of
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first kind. Finally, substituting into the boundary condition (7.9) we obtain the linear
dispersion relation

ω 2

E
(k) = E h

ρr 3

0

r0 k I1 (r0 k)
ρw h

ρr 0
r0 k I1 (r0 k) + I0 (r0 k) . (7.11)

Similarly, taking u θ (x, t) = u0 exp(i (k x − ω t)) and η (x, t) = η
0
exp(i (k x − ω t))

solutions to the linearised System (6.3) – (6.4)

η
t
+

1

2
r0 u

θ
x + r 3

0 au
θ
xxx − r 2

0 bηxx t
= 0 , (7.12)

u θ
t + β̄ η

x
+ β̄ r 2

0 cηxxx
− r 2

0 du
θ
xx t = 0 , (7.13)

with β̄ = E h /ρr 2

0
, we obtain the dispersion relation

ω 2

B
(k) = E h

ρr 3

0

(1 − c (r0 k)2) ⋅ (1/2 − a (r0 k)2)(1 + b (r0 k)2) ⋅ (1 + d (r0 k)2) ⋅ (r0 k)2 . (7.14)

Instead of using the frequency function ω we consider the phase velocity, which describes
the propagation speed of various spectral components c = ω (k)/k . The Taylor expan-
sions of the Euler equations dispersion relation (7.11) in the long wave limit k → 0

provide us with the reference approximation for the phase velocity:

cE (k)
c̃

= 1 −
4α + 1

24
(r0 k)2 + 144α 2

+ 72α + 13

3 × 29
(r0 k)4

−

960α 3
+ 720α 2

+ 228α + 31

3 × 213
(r0 k)6

+

403200α 4
+ 403200α 3

+ 180000α 2
+ 42480α + 4591

5 × 3 × 219
(r0 k)8 + O (k 10) , (7.15)

where c̃ is the Moens–Korteweg characteristic speed defined as

c̃ =
√

E h

2ρr0

. (7.16)

The same Taylor’s expansion can be obtained for the Boussinesq system dispersion
relation as well:

cB (k)
c̃

= 1 −
4α + 1

24
(r0 k)2 − 1

29
[(64µ − 48 )α 2

+

(64µ (1 − θ 2) + 32 θ 2
− 40)α +

16 (µ + ν − 1) θ 4
− 8(4µ + 2ν − 3) θ 2

+ 16µ + 4ν − 11] (r0 k)4
−

P3 (α; µ, ν, θ 2)
213

(r0 k)6 + P4 (α; µ, ν, θ 2)
219

(r0 k)8 + O (k 10) , (7.17)

where P3,4 (α; µ, ν, θ 2) are some well-defined cubic and quartic polynomials in the variable
α .

From the expansions (7.15) and (7.17) we observe that the Boussinesq equations ap-
proximate the full Euler dispersion relation to the second order uniformly for all values
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of the parameters (µ, ν, θ 2) . However by choosing these parameters appropriately, we can
further improve its dispersion characteristics.

Remark 8. Even if the Boussinesq models were initially derived to represent long waves
(k → 0), it is not forbidden to look at its phase speed behaviour in the short waves limit
k → +∞ . First, we compute the reference asymptotic behaviour from the full Euler
model:

cE (k) = 1

r0

√
E

ρw
⋅ [ 1

k
−

ρ

2ρw h

1

k 2
] + O( 1

k 3
) .

The quantity
√
E /ρw has the dimension of the velocity and is called the first velocity,

while the coefficient 1/r0

√
E /ρw is the first frequency. The dispersion relation of the

Boussinesq systems has the following asymptotic behaviour (provided that θ 2 ≠ 1/2 ,
µ ≠ 1 and ν ≠ 1):

cB (k) = c0

√
µν(µ − 1) (ν − 1) + O(1

k
) .

If θ 2 = 1/2 , then the value of ν is immaterial and we obtain a similar asymptotic behaviour:

cB (k) = c0

√
µ

µ − 1
+ O(1

k
) .

Thus, the phase speed of short waves in the Boussinesq model tends to a finite value,
while Euler’s equations phase speed decays monotonically to zero. This drawback can be
corrected by taking ν = 0 or µ = 0 . The value µ = 0 seems to be preferable since it
works for all values of the parameter θ . By making a different choice of other parameters,
the decay rate of the phase velocity cB (k) as k → +∞ may be corrected as well. However,
the precise rate might be of secondary importance provided that the trend goes into the right
direction, i.e. limk → +∞ cB (k) = 0 . Additionally, as we observe in Figure 4 among other
classical candidates the classical Boussinesq system with µ = 0 , ν = 1 and θ 2 = 1/2 is
one of the best choices as far as it concerns the dispersion characteristics. In what follows
we take µ ≡ 0 .

By equating the coefficients of O (k 4) terms of the Expansions (7.15) and (7.17) we
obtain the equation:

E1 (θ, ν; α) ≐ (2 θ 2
− 1)α + (ν − 1)θ 4

− (ν − 3

2
) θ 2

+

3ν − 5

12
= 0 . (7.18)

It can be easily verified that the value θ 2 = 1/2 does not satisfy the Equation (7.18).

Specifically, we have E1 (√1/2, ν; α) = 4 for all ν and α . Therefore, although the choice
θ 2 = 1/2 leads to the simplest System (4.21) – (4.22) it cannot be accurate beyond the
standard second order term.
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Similarly, equating the terms of order O (k 6) we obtain the equation:

E2(θ, ν; α) ≐ (2 θ 2
− 1)α 2

+ [(1
3
ν − 1) θ 4

− (1
3
ν − 2) θ 2

+

ν − 8

12
] α

−

1

3
ν (1 − ν) θ 6

+ (1
2
ν 2
−

5

12
ν −

1

4
) θ 4

− (1
4
ν 2
−

1

6
ν −

1

8
) θ 2

+

1

24
ν 2
−

1

48
ν −

7

72
= 0 .

(7.19)

In order for the dispersion relations (7.15) and (7.17) to match up to the sixth order of
accuracy the Equations (7.18), (7.19) have to be solved simultaneously for a fixed value of
the parameter α :

E1 (θ, ν; α) = 0 , (7.20)

E2 (θ, ν; α) = 0 . (7.21)

Only solutions that belong to the infinite strip (θ, ν) ∈ [0, 1 ] ×R are admissible. Geomet-
rically these solutions correspond to the intersection of two real algebraic curves defined by
Equations (7.18), (7.19) in the (θ, ν)-plane. Let us consider a biologically realistic value
of the parameter α = 0.05 . In Figure 3 we show the loci of two algebraic curves in the
admissible strip. We can see that there is only one intersection in the admissible strip. The
coordinates of this intersection point (θ ⋆, ν ⋆) for α = 0.05 is given here (correct to 30

digits):

ν ⋆ = 1.53773145502645468091997801621 . . . ,

θ ⋆ = 0.58088109654602731473797307004 . . . .

The topology of algebraic curves defined in (7.20), (7.21) does not depend on the parameter
α , i.e. for any positive value of α we have a unique intersection point in the admissible
strip. If we increase the parameter α → +∞ , the solution ν ⋆ → +∞ as well, while
the other parameter tends to a finite value θ ⋆ → 0.70⋯. The Boussinesq model with
parameters (θ ⋆ (α), ν ⋆ (α), µ⋆ ≡ 0) will be called the improved Boussinesq system.

The phase speeds for the full Euler, classical and improved Boussinesq equations are
depicted in Figure 4. We can see that the judicious choice of free parameters results in
the substantial improvement of the dispersion relation properties for long waves (infrared
region, which is achieved naturally by construction), but also for short waves (‘ultraviolet’
region, which is rather surprising). We computed the Taylor expansion coefficients of
dispersion relations in the long wave limit k → 0 for α = 0.05 for the classical and
improved Boussinesq models. Their numerical values are reported in Table 1. One can
see that the coefficients of the improved model coincide with the reference values up to the
sixth order. It is not a surprise, but rather a verification. However, we can see that beyond
sixth order the coefficients remain close to the exact values. The classical Boussinesq
system starts to differ from the fourth order.
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Figure 3. Loci of algebraic curves E1,2 (θ, v ν) = 0 in the admissible strip for
the physical parameter α = 0.05 . The dashed line (−−) represents the curve
E1 (θ, ν) = 0 while the solid line (—) shows E2 (θ, ν) = 0 .

Degree of the term Euler iBoussinesq classical Boussinesq

k0 1 1 1

k2
−0.075 −0.075 −0.075

k4 0.011041(6) 0.011041(6) 0.00843750

k6
−0.00180338 −0.00180338 −0.00105469

k8 0.00030594 0.00030526 0.00013843

k10
−0.00005304 −0.00005279 −0.00001868

k12 0.00000934 0.00000927 0.00000257

k14
−0.00000166 −0.00000165 −3.57903671 × 10−7

k16 2.98218393× 10−7 2.94810072× 10−7 5.03302038× 10−8

k18
−5.38927682× 10−8 −5.31665759 × 10−8 −7.13011220 × 10−9

k20 9.79265927× 10−9 9.64105154× 10−9 1.01604099 × 10−10

Table 1. Comparison of coefficients in Taylor expansion of dispersion
relations at the long wave limit k → 0 .
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Figure 4. Comparison of dispersion relation of various Boussinesq systems
against the reference solution provided by the linearised Euler model.

Let us check now how the improved system behaves asymptotically for short waves
k → +∞ . First of all, the reference solution is

cE (k)
c0

= 1

k
−

10

k 2
+

145

k 3
+ O( 1

k 4
) .

The classical Boussinesq system gives

c cB (k)
c0

= 0.4082

k
−

1.3608

k 3
+ O( 1

k 4
) ,

while the improved system gives

c iB (k)
c0

= 0.7422

k
+

19.3358

k 3
+ O( 1

k 4
) .

We can observe that the improved system outperforms the classical one in the ultraviolet
region as well.

The question that one could ask now is how the optimal parameters (θ ⋆, ν ⋆) change
when we let α vary in R+? We addressed this problem numerically and the continuation
curve in the space (θ ⋆, ν ⋆) is shown in Figure 5. It is not difficult to estimate also the
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Figure 5. The optimal parameters (θ ⋆, ν ⋆) as functions of α ∈ R+ . The
arrows indicate the direction of increasing α .

limiting points of this curve. Namely, in the limit α → 0 , we depart from the point

θ ⋆ (0) =
√
5 − 1

3

√
57

2
√
2

≈ 0.5572 . . . ,

ν ⋆ (0) = 9

4
−

3

8
(5 − 1

3

√
57) ≈ 1.3187 . . . .

On the other hand, when the parameter α → +∞ , we tend to the point:

θ ⋆ (+∞) = √2
2
≈ 0.7071 . . . ,

ν ⋆ (+∞) = +∞ .

We continue with the study of solitary wave solutions of the new Boussinesq systems.

7.2. Solitary waves

Finding analytical formulas for the solitary wave solutions of unidirectional model equa-
tions such as the KdV and BBM equations is usually straightforward. The computation
of the solitary waves to Boussinesq systems such as for the System (6.3) – (6.4) is very
difficult and there are only a few cases were analytical formulas can be found, [17]. Using
the appropriate ansatz we were able to compute exact solitary waves in a particular case
when µ = ν ≡ 0 and θ 2 ∈ [0, 1 ] ∖ {1/2} . For these values the coefficients become:

a = 0 , b = 2 θ 2
− 1

8
, c = 0 , d = 2α + 1 − θ 2

4
.

The exact solution reads:

η (x, t) = 9 (ã + r0) sech 4 (κξ) − 6 (ã + r0) sech 2 (κξ) − 2 ã − 3 r0 , (7.22)

u (x, t) = 3 s sech 2(κξ) , (7.23)
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where ξ = x − s t − x0 and

κ = 1

r0

√
2 θ 2

− 1
, s =

¿ÁÁÀ2 β̄ (ã + r0) (2 θ 2
− 1)

2 (1 + α) − 3 θ 2
.

By β̄ we denote as usual the coefficient β̄ = E h /ρr 2

0
while ã is a parameter that defines

the amplitude of the solitary wave. It is worth mentioning that the η−component of the
solution (7.22) does not tend to zero as ∣ ξ ∣ → ∞ except for the case where 2 ã + 3 r0 = 0

which defines a unique solitary wave for each value of θ . These traveling wave solution are
not classical solitary waves and can be rather unphysical and are expected to be rather
unstable. We also note that the classical Boussinesq system with θ 2 = 1/2 does not
admit solitary waves of the form (7.22) – (7.23). On the other hand, other traveling wave
solutions can be found for the specific system by assuming that η = 0 .

Although it is difficult to find analytical formulas for the traveling wave solutions of
the Boussinesq systems at hand, one can see that dynamical systems techniques used
in [20] can be applied in a straightforward manner to the general system (6.3) – (6.4)
and conclude that all admissible systems with coefficients as shown above and in [20]
possess classical solitary waves that decay exponentially to zero as ∣x ∣ → ∞ . Because
the classical Boussinesq system is of significant importance for applications due to its
simplicity and because it has favourable dispersion characteristic properties we compute
approximately solitary waves with high accuracy using the Petviashvili method, [46, 49].
The Petviashvili method is a modification of the classical fixed point iteration but with
several advantages. For example, it is known that the classical fixed point iteration applied
to solitary wave problems usually diverges in contrast with the Petviashvili method
which is usually convergent, c.f. e.g. [4]. This method was applied successfully to similar
systems of differential equations such as the analogous classical Boussinesq system of
water wave theory, [21].

We consider the System (6.3) – 6.4 with a = b = c = 0 and d > 0 . In what follows
we drop θ in our notation. Using the ansatz η (x, t) = η (ξ) and u (x, t) = u (ξ) where
ξ = x − s t to denote traveling wave solutions propagating with constant speed s , the
classical Boussinesq system can be transformed into the system of ordinary differential
equations

2
η ′

r0 + η
= − u ′

u − s
, (7.24)

− su ′ + β̄ η ′ + uu ′ + r 2

0 dsu
′′′ = 0 , (7.25)

where in (7.24) we have separated the variables, while ′ stands for the derivative d

dξ
. In-

tegrating both equations and using the assumption that the solutions decrease to zero as∣ ξ ∣ → ∞ we have that

η = r0 (−1 ±
√

s∣u − s ∣) , (7.26)

− su + β̄ η +
1

2
u2
+ r 2

0 dsu
′′ = 0 . (7.27)
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Combining (7.26) and (7.27) we get a single equation for the unknown velocity profile u

− su + β̄ r0 (−1 ±
√

s∣u − s ∣) + 1

2
u2
+ r 2

0 dsu
′′ = 0 . (7.28)

Due to physical restrictions we assume that u ⩽ s for s > 0 otherwise the wave would
break and also assume that η > 0 . Then (7.28) becomes:

− su + β̄ r0 (−1 + √ s

s − u
) + 1

2
u2
+ r 2

0 dsu
′′ = 0 , (7.29)

while

η = r0 (−1 + √ s

s − u
) . (7.30)

Other assumptions on s , u and η will result to other traveling waves, such as solitary waves
of depression, and the analysis and the methods are the same so we focus only on classical
solitary waves of elevation. Using the classical Fourier transform to (7.29) we get an
equation of the form

LU = N (U) ,
where U = F u denotes the Fourier transform of u , while LU = (1 + r 2

0
dsk 2)U

and N (U) = F [β̄ r0 (−1 + √ s
s − u
) + 1

2
u2 ] are the linear and nonlinear parts of the

Equation (7.28) respectively, and u = F −1U is the inverse Fourier transform of U . Here
k denotes the Fourier modes. The Petviashvili method is formulated then as follows:
Given an arbitrary initial profile U0 , the (n + 1)−th approximation Un+1 of the Fourier
transform of the solution is given by the recursive formula:

LUn+1 = M γ
n N (Un) ,

where

Mn = ⟨LUn, Un⟩⟨N (Un), Un⟩ .
is known as the stabilising factor. Here ⟨⋅, ⋅⟩ denotes the usual L2 inner product and
γ is a free parameter that controls the convergence of the method and is usually taken
γ = 2 . In order to apply this iterative scheme in practice we consider periodic boundary
conditions in a large domain [−L, L ] while the Fourier transform is approximated using
the discrete Fourier transform. As a termination criterion for the iterative proceedure
we consider the error ∥Un+1 − Un∥∞ < tol , which in our computation the tolerance
has been taken tol = 10−15 . Therefore, we compute an approximation u ≈ F −1 (U)
while the approximation for η can be computed using the exact Equation (7.26). Initial
approximations U0 of the solitary wave can be computed using the exact solitary wave
solutions computed for the KdV and BBM equations as well as for the Boussinesq systems
with θ 2 /= 1/2 since they are all expected to be similar in shape.

Figure 6 presents several solitary wave profiles of the classical Boussinesq system in
the case of E = h = r0 = ρ = ρw = 1 for various values of the speed s acquired using
the Petviashvili method. We observe that solitary waves of higher amplitude propagate
faster as it was expected. Moreover, due to the unusual relationship between the wall vessel
excitation η and the velocity profile u , their profiles differ in shape by a nonlinear manner.
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Figure 6. Solitary wave profiles for various values of speed s .
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Figure 7. Phase diagram of a solitary wave with s = 1 .

Using also (7.29) we are able to plot the solution curve in the phase space (u, u ′, u ′′)
of numerically computed solitary waves of the classical Boussinesq system as they can
be represented by homoclinic orbits to the origin in the three dimensional space. Figure 7
presents the homoclinic orbit of a solitary wave with s = 1 in the three-dimensional space
along with its projection on the (u, u ′′) plane. Various projections can be drawn from this
data onto two-dimensional spaces resulting to other homoclinic orbits, c.f. e.g. [20].
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Figure 8. The speed s of the solitary wave as a function of its amplitude for the
unidirectional propagation models (KdV/BBM) and the classical Boussinesq

system (cB).

It is noted that the relationship between the amplitude a of a solitary wave and its speed
s can be found analytically for the classical Boussinesq system. Specifically, multiplying
(7.29) with u ′ , integrating (using the fact that solitary waves and their derivatives tend
exponentially to zero), using (7.30) and solving for s when u ′ = η ′ = 0 we obtain:

s =
¿ÁÁÀ6 β̄ r0

(2 − ζ) − 2
√
1 − ζ

ζ 2 (3 − ζ) , (7.31)

where

ζ = 1 −
r 2

0(a + r0)2 .
We observe that the speed-amplitude relation is universal for all classical Boussinesq
systems of the specific form since it is independent of the coefficient d . Similar behaviour
has been observed also between the KdV and BBM equations which share the same speed-
amplitude relation. Figure 8 shows the speed of the solitary wave as a function of its
amplitude for the classical Boussinesq system and the unidirectional model equations.

In this figure also we present the computational values of the speed obtained during
the computation of the solitary waves with amplitudes in the range [0.01, 1.2 ] with the
Petviashvili method. We observe that the numerical values coincide with the analytical
solution while the speed of the solitary wave of the unidirectional model equations diverges
from the analogous speed of the solitary wave of the classical Boussinesq system as the
amplitude of the solitary wave increases.

8. Numerical results and applications to blood flow

In this Section we consider the System (5.15) – (5.16) in a finite domain defined by a
vessel of finite length L (located in the interval [0, L ]) with appropriate time dependent
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Dirichlet boundary conditions u (0, t) , η (0, t) and u (L, t) , η (L, t) and initial condi-
tions u (x, 0) and η (x, 0) . Here we drop the θ from the notation since it is fixed to θ = 1/2 .
This particular system is a dissipative version of the classical Boussinesq system [11, 47].
After constructing a simple and efficient numerical method for the numerical solution of
this classical Boussinesq system, we validate the constructions of the previous sections
by studying the propagation and the reflection from a wall of a solitary wave. We close
this section by demonstrating the applicability of this system in blood flow studies.

8.1. Numerical validation of the model

We start with the presentation of the numerical method. Bousisnesq systems in the
context of water waves have been discretised successfully using finite difference schemes,
[47] and other sophisticated numerical methods such as spectral, finite element/continuous
and discontinuous Galerkin, and finite volume methods, c.f. e.g. [6, 7, 22, 25, 27, 38].
For the purposes of this paper we consider a simple and efficient numerical method based on
finite-difference discretisation. Specifically, we discretise the classical Boussinesq system
using the method of lines comprised by a second order finite difference scheme in space and a
third order adaptive Runge–Kutta method in time. The temporal discretisation is imple-
mented using the Matlab ode23 method. In order to discretise the spatial derivatives we
consider a uniform subdivision x i = i⋅∆x , i = 0, ⋯, N of the computation domain [0, L ] ,
where ∆x = L /N is the constant mesh length. We will approximate the solution u (x i, t)
by the values U i (t) , η (x i, t) by H i (t) while R i = r0 (x i) , ᾱ i = ᾱ (x i) and β̄ i = β̄ (x i) .
We will also consider the solution vectors V = (H, U)T = (H0, ⋯, HN , U0, ⋯, UN)T .

To describe the spatial discretisation we introduce the following notation for the approx-
imation of the spatial derivatives with finite-difference operators:

δV i = V i+1 − V i−1

2∆x
, (8.1)

∆V i = V i+1 − 2V i + V i−1

∆x2
, (8.2)

Then the semi-discrete problems can be written as:

∂ tH i + f (H i, U i) = 0 , (8.3)

(1 − ᾱ i∆R i −
(4 ᾱ i + R i)R i

8
∆)∂ tU i + g (H i, U i) = 0 , (8.4)

where ∂ t denotes the temporal derivative and

f (H i, U i) = 1

2
(R i + H i) δU i + δ(R i + H i)U i ,

g (H i, U i) = δ [ β̄ iH i ] + U i δU i +
(3 ᾱ i + R i) δR i

2
∆[ β̄ iH i ] + 8κ

U i

R 2

i

.

The System (8.4) can be written as a system of ordinary differential equations of the form

A (R)∂ t U = F (U) .



D. Mitsotakis, D. Dutykh & Q. Li 36 / 45

Figure 9. Propagation and reflection of a solitary wave of the classical
Boussinesq system (s = 1.2).

where A is a tridiagonal (N + 1) × (N + 1) matrix that depends on R i , ᾱ , and ∆x . After
solving for ∂ tU using a tridiagonal algorithm, the resulting system of ordinary differential
equations is being integrated in time using the adaptive Runge–Kutta method. It is
noted that when inhomogeneous boundary conditions are provided the system can be
transformed to a similar one with homogeneous Dirichlet boundary conditions using
a linear transformation of the solution and modifying the function F and the matrix A

appropriately. Moreover, we mention that in the case constant radius we only need to
impose boundary data for the velocity u in order to determine the solution of the classical
Boussinesq system, [29]. We also mention that the derivatives on the boundary are
treated appropriately in order to comply with the given boundary conditions.

In order to verify the efficiency of the numerical method we consider the case of the
propagation of a solitary wave with s = 1.2 in a vessel of constant length L = 140 and
radius r0 = 1 . For simplicity we take in this experiment E = h = ρ = ρw = 1 .
We impose reflective boundary conditions u = 0 on both boundaries while we take the
viscosity coefficient κ = 0 . After we constructed the solitary wave numerically using
Petviashvili’s method in the specified domain and using ∆x = 0.02 we move the
solitary wave to x = 40 and let it propagate until the final time T = 150 . For the adaptive
time-stepping method we consider the relative error tolerance 10−6 which appeared to be
sufficient to compute the solution accurately. Figure 9 shows the propagation of the solitary
wave and its reflection on the right boundary.

We observe that the solitary wave propagates without variations in its shape. The
reflection is not elastic as it was expected since for Boussinesq systems the result of the
reflection coincides with the head-on collision of two solitary waves of the same amplitude
that propagate in different directions. Similar results have been observed for the analogous
classical Boussinesq system of water wave theory, [6, 7].
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Vessel’s length L 12.6 × 10−2 m

Vessel’s nominal radius R 0.3 × 10−2 m

Vessel’s thickness h 0.03 × 10−2 m

Wall density ρw 1000 kg/m3

Fluid density ρ 1060 kg/m3

Young’s modulus E 4.07 × 105 kg/m ⋅ sec2
Kinematic viscosity κ 0.4 × 10−5 m2/sec

Table 2. Characteristic values of an ideal blood flow in a carotid artery in S.I.

Figure 10. Sketch of ideal and tapered carotid arteries.

8.2. Application to a blood flow problem

In the rest of this section we use the prescribed numerical method to study the blood
flow in a vessel that represents an ideal common carotid artery. Analogous experiments
have been considered in [28, 61]. In this experiment we consider an ideal blood flow in
an artery of a fixed length L with a constant nominal radius R where we also consider
variations of this vessel with variable radius as well. The required characteristic quantities
for this particular experiment are summarised in Table 2.

We consider two cases: (1) an ideal and (2) a tapered carotid-like artery. In the case (1)
the vessel has constant radius r0 = 0.3 × 10−2 m. The tapered artery initially has a luminal
radius r0 (0) = 0.003 m while the outflow boundary has radius r0 (0.126) = 0.0026 m. A
sketch of the two different vessels is presented in Figure 10. In all cases the inlet is located
at x = 0 while the outlet at x = L where all the vessel parameters are described in
Table 2.

In each case the blood flow is determined at the inlet by a standard velocity waveform
during a cardiac cycle for the left common carotid (c.f. e.g. [3]) which is presented in
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Figure 11. The velocity wave at the inlet of an ideal carotid artery model.

Figure 11 and it is used as a left boundary condition of the horizontal velocity for the
numerical simulation. While boundary conditions based on lumped models [2, 37] can be
employed to describe the radiation of the flow to other vessels in a more realistic setting,
we choose to use a standard absorbing layer by extending the computational domain suf-
ficiently and imposing standard wall boundary conditions on the right boundary of the
extended domain. We also assume that initially there is no flow in the vessel while the ves-
sel wall is at rest. The initial pressure can also be prescribed using realistic data and here
we consider initially that the pressure in the vessel is 10.26 kPa (or 76 mmHg). Due to the
boundary requirements of the classical Boussinesq system (and since the vessel initially
has constant radius) at the inlet it is not necessary to prescribe boundary conditions for
the motion of the vessel wall, i.e. for the η component of the solution but we compute it
using the mass conservation equation (5.15), [29]. In the case of variable radius at the inlet
the additional boundary conditions on η are prescribed using low-order approximations
such as (2.3).

We compute numerically the velocity and the pressure at two different locations denoted
by S1 and S2 in Figure 10 and at the inlet and outlet of the vessel. We take the stations S1

and S2 at x = 0.006 m and x = 0.12 m respectively. We also compute an approximation
of the flow rate

q = 2π ∫ rw

0

su dr = π r 2

0 u
θ
+ O (ε δ 2) ,

at all stations. The results for the case (1) are presented in Figure 12 and for the case (2)
in Figure 13. It is noted that pressure has been computed using Equation (3.7) which is
an O (δ 2) approximation of the pressure p (x, r, t) due to the asymptotic relation (3.20).

It is noted that we studied also the case of a stenosed vessel with a symmetric stenosis.
We observed that when the radius of the vessel at the centre of the stenosed vessel was
decreased by a small amount (for example by 0.00005 m) then the effects of the stenosis
were insignificant. The flow and pressure weren’t affected significantly by the geometry of
the vessel but only insignificant reduction to their absolute value of O (10−2) from the case
(1) was observed. This reduction to the flow and pressure were mainly observed because
of the partial reflection of some portion of the transmitted pulse. It is also noted that the
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Figure 12. The velocity, flow rate and pressure at the inlet, outlet and stations
S1 and S2 of an ideal carotid artery model.

location of the stenosis wasn’t important and its effects were always similar. For smaller
values of the diameter of the stenosed vessel results to an unstable flow due to turbulence
and therefore cannot be studied with the current model. A remarkable change of the
velocity and the pressure can be observed in the case of the tapered vessel. Although the
flow rate is decreasing slightly, we observe a noticeable increase in the velocity of the fluid
while we observe lower pressure values due to the decreasing values of the luminal radius
of the vessel. Due to the high speed values the differences between the station S2 and the
outlet cannot be observed with eye accuracy except for the cases of the tapered vessel where
the tapering effects are more effective compared to a local stenosis. The changes observed
in the pressure can also be justified by considering Bernouli’s principle of fluid flow in
pipes. In all the experiments we used ∆x = 5 × 10−4 m in the spatial discretisation while
for the adaptive time-stepping method we considered the relevant error tolerance 10−6 .
We also implemented the implicit numerical method of [47] and we verified the validity
of our numerical experiments. Finally, we mention that in all the previously mentioned
experiments a typical deformation of the vessel was of O (10−4) and taking into account
the size of the prescribed vessel we verified that the ε ≈ 0.07 , δ 2 ≈ 0.03 are of the same
order, while Re = O (10−6) , and therefore the examples fall into the regime modelled
by the model equations. For more realistic results and comparisons with in vitro and in
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Figure 13. The velocity, flow rate and pressure at the inlet, outlet and stations
S1 and S2 of a tapered carotid artery model.

vivo measurements the inclusion of the viscoelastic properties of the vessels along with
branching effects [10] should be considered but we leave this for future studies. Turbulent
phenomena can also be handled either by discarding the dispersive terms when the flow
becomes critical and by using other numerical techniques that can handle the propagation
of discontinuities, [53], but this is beyond the purposes of this paper.

9. Conclusions

In this paper we derived a new set of weakly nonlinear and weakly dispersive asymptotic
model equations that describe the irrotational flow of an ideal fluid in an elastic vessel.
Extensions including dissipative effects due to viscosity have also been considered. The
new systems verify other commonly used hyperbolic equations by asymptotic means and
improve previously derived Boussinesq equations in the same context. Fundamental
properties of the new models such as dispersive and nonlinear characteristics were studied
in depth. A particular model similar to the classical Boussinesq system of water wave
theory appeared to have favourable properties and attracted some special attention. This
model was tested against the propagation of solitary waves using a simple finite-difference
algorithm. Finally, we used this model to study the propagation of a single pulse in an ideal
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blood vessel modelling a carotid artery and study the effects of tapering and stenosis. The
results were qualitatively in the range of observed in vivo measurements ([58]) confirming
the applicability of the new model equations to regular blood flow problems. More realistic
situations require the inclusion of viscoelastic effects of the vessel wall along with shock
capturing numerical techniques so as to simulate unstable flows. The new models can also
be used to provide initial conditions to three-dimensional models that have been developed
to study blood flow in complicated geometrical settings.
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