
HAL Id: hal-01756703
https://hal.science/hal-01756703

Submitted on 30 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improved Outdoor Localization Based on Weighted
Kullback-Leibler Divergence for Measurements

Diagnosis
Joelle Al Hage, Maan El Badaoui El Najjar

To cite this version:
Joelle Al Hage, Maan El Badaoui El Najjar. Improved Outdoor Localization Based on Weighted
Kullback-Leibler Divergence for Measurements Diagnosis. IEEE Intelligent Transportation Systems
Magazine, 2020, 12 (4), pp.41-56. �10.1109/MITS.2018.2879165�. �hal-01756703�

https://hal.science/hal-01756703
https://hal.archives-ouvertes.fr


See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/324177043

Improved Outdoor Localization Based on Weighted Kullback-Leibler Divergence

for Measurements Diagnosis

Article  in  IEEE Intelligent Transportation Systems Magazine · November 2018

DOI: 10.1109/MITS.2018.2879165

CITATIONS

3
READS

211

2 authors:

Some of the authors of this publication are also working on these related projects:

Personal Localization System View project

Multisensory Data Fusion with Detection and Exclusion of Default Based on Kullback-Leibler Divergence View project

Joelle Al Hage

Université de Technologie de Compiègne

23 PUBLICATIONS   126 CITATIONS   

SEE PROFILE

Maan El Badaoui El Najjar

Université de Lille: Sciences et Technologies

101 PUBLICATIONS   791 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Joelle Al Hage on 06 December 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/324177043_Improved_Outdoor_Localization_Based_on_Weighted_Kullback-Leibler_Divergence_for_Measurements_Diagnosis?enrichId=rgreq-1a713856409da8d3d764219a8844e767-XXX&enrichSource=Y292ZXJQYWdlOzMyNDE3NzA0MztBUzo3MDA3NjQwMjg2OTQ1MzBAMTU0NDA4NjU3MjU1Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/324177043_Improved_Outdoor_Localization_Based_on_Weighted_Kullback-Leibler_Divergence_for_Measurements_Diagnosis?enrichId=rgreq-1a713856409da8d3d764219a8844e767-XXX&enrichSource=Y292ZXJQYWdlOzMyNDE3NzA0MztBUzo3MDA3NjQwMjg2OTQ1MzBAMTU0NDA4NjU3MjU1Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Personal-Localization-System?enrichId=rgreq-1a713856409da8d3d764219a8844e767-XXX&enrichSource=Y292ZXJQYWdlOzMyNDE3NzA0MztBUzo3MDA3NjQwMjg2OTQ1MzBAMTU0NDA4NjU3MjU1Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Multisensory-Data-Fusion-with-Detection-and-Exclusion-of-Default-Based-on-Kullback-Leibler-Divergence?enrichId=rgreq-1a713856409da8d3d764219a8844e767-XXX&enrichSource=Y292ZXJQYWdlOzMyNDE3NzA0MztBUzo3MDA3NjQwMjg2OTQ1MzBAMTU0NDA4NjU3MjU1Ng%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-1a713856409da8d3d764219a8844e767-XXX&enrichSource=Y292ZXJQYWdlOzMyNDE3NzA0MztBUzo3MDA3NjQwMjg2OTQ1MzBAMTU0NDA4NjU3MjU1Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joelle-Al-Hage?enrichId=rgreq-1a713856409da8d3d764219a8844e767-XXX&enrichSource=Y292ZXJQYWdlOzMyNDE3NzA0MztBUzo3MDA3NjQwMjg2OTQ1MzBAMTU0NDA4NjU3MjU1Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joelle-Al-Hage?enrichId=rgreq-1a713856409da8d3d764219a8844e767-XXX&enrichSource=Y292ZXJQYWdlOzMyNDE3NzA0MztBUzo3MDA3NjQwMjg2OTQ1MzBAMTU0NDA4NjU3MjU1Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universite-de-Technologie-de-Compiegne?enrichId=rgreq-1a713856409da8d3d764219a8844e767-XXX&enrichSource=Y292ZXJQYWdlOzMyNDE3NzA0MztBUzo3MDA3NjQwMjg2OTQ1MzBAMTU0NDA4NjU3MjU1Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joelle-Al-Hage?enrichId=rgreq-1a713856409da8d3d764219a8844e767-XXX&enrichSource=Y292ZXJQYWdlOzMyNDE3NzA0MztBUzo3MDA3NjQwMjg2OTQ1MzBAMTU0NDA4NjU3MjU1Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maan-El-Badaoui-El-Najjar?enrichId=rgreq-1a713856409da8d3d764219a8844e767-XXX&enrichSource=Y292ZXJQYWdlOzMyNDE3NzA0MztBUzo3MDA3NjQwMjg2OTQ1MzBAMTU0NDA4NjU3MjU1Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maan-El-Badaoui-El-Najjar?enrichId=rgreq-1a713856409da8d3d764219a8844e767-XXX&enrichSource=Y292ZXJQYWdlOzMyNDE3NzA0MztBUzo3MDA3NjQwMjg2OTQ1MzBAMTU0NDA4NjU3MjU1Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Maan-El-Badaoui-El-Najjar?enrichId=rgreq-1a713856409da8d3d764219a8844e767-XXX&enrichSource=Y292ZXJQYWdlOzMyNDE3NzA0MztBUzo3MDA3NjQwMjg2OTQ1MzBAMTU0NDA4NjU3MjU1Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Joelle-Al-Hage?enrichId=rgreq-1a713856409da8d3d764219a8844e767-XXX&enrichSource=Y292ZXJQYWdlOzMyNDE3NzA0MztBUzo3MDA3NjQwMjg2OTQ1MzBAMTU0NDA4NjU3MjU1Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf


1

Improved Outdoor Localization Based on Weighted
Kullback-Leibler Divergence for Measurements

Diagnosis
Joelle Al Hage and Maan E.El Najjar

Abstract—The Global Navigation Satellite System (GNSS) is
growing in usefulness for navigation in outdoor environment.
However, the measurements from the satellites (pseudorange,
Doppler) could be obscured or degraded due to different phe-
nomena such as the multipath and interference. Therefore, in
order to ensure the continuity and the integrity of localization,
the fusion of these measurements with proprioceptive data is
necessary. Adding also, the erroneous measurements should be
detected and excluded from the fusion procedure.

In this work, we propose a tightly coupled architecture
(GNSS/Odometer) with pseudorange Fault Detection and Ex-
clusion (FDE) based on Weighted Kullback-Leibler Divergence
(WKLD). Threshold optimization based on Kullback-Leibler Cri-
terion (KLC) is applied in order to replace classical approaches
that fix heuristically the false alarm probability. The validation
of this framework is studied on real experimental data using
Septentrio receiver.

Index Terms—Localization, Weighted Kullback-Leibler Diver-
gence, Fault Detection and Exclusion, threshold optimization,
Tightly coupled GNSS/odometer

I. INTRODUCTION

ONE of the main challenge when navigating in outdoor
environment is to ensure an accurate and reliable posi-

tion estimation in presence of buildings and trees [1] [2]. In
restricted sky view, the desirability of aiding the GNSS with
proprioceptive data is relevant in order to ensure the continuity
of localization. The proprioceptive sensors used in such data
fusion refer to Inertial Measurement Unit (IMU), odometer and
encoders [3]. Other methods rely on the use of exteroceptive
sensors like the camera [4] and LiDAR [5].

For integrating GNSS with proprioceptive data, we dis-
tinguish loosely coupled and tightly coupled architectures
[6][7][8][9]. The loosely coupled architecture consists in fus-
ing the position estimated by the GNSS receiver with the dead
reckoning estimation. However, tightly coupled uses a single
filter to fuse GNSS and proprioceptive sensors measurements.
The main advantage of the tightly coupled architecture is
that the GNSS measurements could be used to update the
dead reckoning estimation when less than four satellites are
available. Many works highlight the benefits of tightly coupled
architecture [10] in ensuring the integrity of localization in
urban environment.

J. Al Hage is with Heudiasyc laboratory, UMR CNRS 7253, Université de
technologie de Compiègne, 60200, Compiègne, France. M.E.El Najjar is with
CRIStAL laboratory, UMR CNRS 9189, University of Lille, 59655 Villeneuve
d’Ascq, France. E-mail: joelle.al-hage@hds.utc.fr.

Traditional Receiver Autonomous Integrity Monitoring
(RAIM) methods are based only on the fault detection. How-
ever, recent GNSS receivers expand the RAIM to include an
exclusion of faults ensuring the continuity of localization.

In general, in RAIM context, integrity monitoring is
achieved by using:

• the Least Square Residual (LSR) [11]: The residual test
is constructed from the difference between the measure-
ments (Z) and the estimations (Ẑ) obtained from the least
square solution.

• the projection into the parity space [12]: The test variable
is constructed in the parity space.

• comparison of pseudorange [13]: In the case that we
have more than 4 visible satellites, a navigation solution
is obtained by satisfying the first four measurements
equations. The resulting solution is then used to predict
the remaining pseudorange measurements. The difference
between the predicted and the measured pseudorange is
used to detect the presence of erroneous measurements.

• Multiple Solution Separation (MSS) [14] [15]: This
method acts in the state space (position) which is not
the case with the above mentioned methods. It is a more
fundamental approach because in general we do not care
about the error if it does not have a direct effect on
the position. For the faults detection, a bank of filters
should be used; for the fault exclusion another bank is
added. This approach can be extended to the exclusion
of multiple faults by adding, at each time, a new bank
of filters. This extension has the disadvantage of a large
computational load.

In urban environment, the probability of occurrence of
multiple faults is quite high because of multipath and waves
interference. The fault detection methods based on LSR,
the projection into the parity space, and the comparison of
pseudorange are mainly used for the detection of one fault
at a time. Indeed, if the variable test exceeds the threshold
value, we can’t specify if the origin is one or more faults. In
addition, a fault in one observation could have effect in another
one due to satellites geometry and the correlation between the
measurements.

In order to specify precisely the erroneous observations,
several techniques are proposed in the literature and are based
on two types of tests: Global Test (GT) and Local Tests (LT)
[16] [17] [18]. The GT aims to detect the presence of faults and
the LT intend to isolate the erroneous measurements by ana-
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lyzing standardized residuals (wi) obtained from the difference
between the measured and the estimated pseudorange Zi. wi
are assumed to be normally distributed in the case of absence
of defaults. Therefore, each wi that exceeds the threshold value
T corresponding to a probability (1 − PF

2 ) of the Gaussian
distribution is declared faulty, where PF is the false alarm
probability. However, this strategy, using the recursive LT, can
mark good measurements as erroneous. In order to mitigate
this problem, several approaches are proposed in literature:

• Subset: If a measurements set is declared faulty using
the GT, all possible combinations of measurements are
checked in order to find a subset that excludes the faulty
measurements. The subset that passes the GT and has
the largest number of measurements is used for the po-
sition estimation. However, this method has a significant
computational load.

• Forward-Backward: This method uses the GT and the LT.
The first part of the algorithm, namely Forward, is applied
to detect and exclude the erroneous measurements. If the
GT indicates the presence of faults, the LT are applied
in order to exclude the erroneous measurements. The
Forward procedure is done in a recursive manner until
no measurement is declared faulty. The exclusion of a
healthy observation is possible due to the correlation
between the measurements. Therefore, if k measurements
are excluded, the Backward procedure is applied by
reintroducing iteratively the excluded measurements and
by applying the GT. The set of measurements that passes
this test is used for the position estimation.

• Danish method: This method is a re-weighted iterative
least squares algorithm. It is very popular in geodetic ap-
plications. This method uses GT to verify the consistency
of the measurements and LT to identify and reduce the
weights of the outliers measurements.

In this paper, we propose an informational framework for
localization in outdoor environment with a tightly coupled
GNSS/Odometer. The tightly coupled architecture is chosen
because of its attractive results in the urban environment
where less than 4 satellites are in view. Adding also, this
method is adapted for the diagnosis of the erroneous GNSS
measurements.

The efficiency of the Information Filter (IF) [19] (the
informational form of the Kalman Filter (KF)) has been proven
for multi-sensor data fusion with FDE step [20]. Indeed, the
update step of the IF is modeled as a simple summation
of the information contributions of the different observations
allowing a distributed data fusion and diagnosis architectures.
Assimakis et al. [21] present the computational requirements
of the Information and Kalman Filters. They demonstrated that
the information filter is faster if the size of the observation
vector is greater than 1.65n for a time-varying system and
than 0.75n for a time-invariant system, with n the size of
the state vector. This can be verified by the fact that the
informational filter is more advantageous in the correction
step. In the prediction step, it is necessary to invert a matrix
having the size of the state vector. By contrast, for the Kalman
filter, the correction step requires the inversion of a matrix

having the size of the observation vector.
In this work, we propose a FDE method of erroneous

satellite measurements based on a bank of Extended IF (EIF).
The method acts in the state space (position domain) since we
are not interested by an error if it does not have a direct effect
on the position estimation. Therefore, a fault is detected when
the posteriori distribution (obtained from the update step of
the EIF and using the pseudorange measurements) diverges
from the priori distribution (obtained from the predicted step
and using the encoders measurements). This divergence is
quantified using the Weighted Kullback-Leibler Divergence
(WKLD). In the case of Gaussian distributions, the Kullback-
Leibler Divergence (KLD) [22], [23] takes into account the
Mahalanobis distance (distance between the means of the
data distributions) and the Burg matrix divergence between
covariance matrices [24]. In this work, we propose to add a
weight to each part of the KLD depending on the confidence
that we have on them. This confidence is computed using the
trace of the update covariance matrix. For the faults exclusion,
a bank of EIF is generated (EIFj) in order to determine the
information contribution of the pseudorange measurement (ρj)
and therefore, a set of residuals (WKLj) is constructed. The
method is designed in a similar way as the Forward-Backward
method so it will be able to exclude multiple faults.

In order to detect a fault, the WKLD should be compared
to a threshold value. In aeronautics domain, the RAIM al-
gorithms are designed with a false alarm and miss detection
probabilities which provide an agreement with the integrity
risk standardized by ICAO (International Civil Aviation Or-
ganization) [25]. For urban applications, the conditions are
different, therefore, the number of positions declared valid
can be determined differently than the case of the aviation
applications. In this work, we propose more elaborate method
for the threshold calculation based on Kullback-Leibler Cri-
terion (KLC) [20]. It is based on the maximization of the
information gain given by a decision on the true hypothesis
(fault or non fault) (KLC = max(KLS)). KLS (Kullback-
Leibler Summation) can be viewed as the summation of
the information gain between the priori and the posteriori
distributions given a particular value: KLS = KLS0+KLS1.
The optimization using KLS0 leads to a liberal threshold and
that using KLS1 leads to a conservative one [26]. The optimal
threshold obtained from KLC lies inside this interval and
depends on the prior probability of default (P0) obtained using
the historical system behavior and the Maximum Likelihood
Estimation (MLE) [27].

The general approach of the method is given in figure 1.
The main contributions of this paper are:
• Developing a tightly coupled (GNSS/odometer) with FDE

approach able to deal with multiple faults,
• Using the information filter for state estimation and the

Weighted Kullback-Leibler Divergence as a residual,
• Threshold optimization based on the Kullback-Leibler

Criterion for GNSS applications.
This paper is organized as follows: section 2 presents the

tightly coupled GNSS/Odometer based on the EIF. Section 3
details the FDE approach based on the WKLD. Threshold
optimization based on the KLC is shown in section 4 and it
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Fig. 1: The proposed approach for GNSS/Odometer data fusion with fault detection and exclusion.

is compared to other informational criteria. Results based on
experimental data from a Septentrio receiver are shown and
detailed in section 5 followed by a conclusion in section 6.

II. TIGHTLY COUPLED ARCHITECTURE GNSS/ODOMETER

In order to estimate the position of the vehicle through a
tightly coupled architecture, we propose to use the EIF [19].
It is divided into two parts:

1) prediction where the state vector is estimated using the
encoders measurements,

2) update where the estimation is corrected using the pseu-
dorange measurements.

A. Prediction step
At instant k, the state vector is considered to be the 3D posi-

tion of the vehicle in the Earth Centered Earth Fixed (ECEF),
its orientation, the clock range (cδtr,k) and its variation:

Xk =
[
xk yk zk θk cδtr,k c

∂δtr,k
∂k

]T
(1)

c is the speed of light.
δtr,k is the clock shift of the receiver at the moment of

reception with respect to GPS reference time.
The propagation equation is obtained from the odometer

model as follows:

Xk+1/k = TXk/k +Akuk + wk (2)
= f(Xk/k, uk) + wk (3)

where:
T is the transition matrix defined by:

T =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 Te
0 0 0 0 0 1

 (4)

Te is the sampling period.
Ak is the input matrix:

Ak =



cos(θk/k + ωk

2 ) 0

sin(θk/k + ωk

2 ) 0

0 0
0 1
0 0
0 0


(5)

uk is the input vector, it consists of the elementary
displacement and elementary rotation of the vehicle
obtained from the encoders measurements: u =
[∆, ω]

∆k =
rr∆qr + rl∆ql

2
(6)

ωk =
rr∆qr − rl∆ql

e
(7)

∆qr and ∆ql correspond to the elementary rotations
of the right and left wheels respectively (expressed
in radians), between the two sampling instants k and
k + 1.
e is the separation distance between the wheels.
rr and rl represent respectively the radius of the right
and the left wheels (we assume rl = rr).

wk is the process noise modeled as Gaussian white noise
with zero mean and covariance matrix Qk.

The model is non linear, therefore the EIF is applied. For
this purpose, the Jacobian matrix Fk = ∂f

∂X |X=Xk/k
and Bk =

∂f
∂u |u=uk

are calculated:
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Fk =



1 0 0 −∆k sin(θk/k + ωk

2 ) 0 0

0 1 0 ∆k cos(θk/k + ωk

2 ) 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 Te
0 0 0 0 0 1


(8)

Bk =



cos(θk/k + ωk

2 ) − 1
2∆k sin(θk/k + ωk

2 )

sin(θk/k + ωk

2 ) 1
2∆k cos(θk/k + ωk

2 )

0 0
0 1
0 0
0 0


(9)

The corresponding covariance matrix can be written as:

Pk+1/k = FkPk/kF
T
k +Bk(Qu)kB

T
k +Qk (10)

Where:
Qu is the covariance matrix associated to the input vector

uk.
Consequently, the information matrix and information vec-

tor are obtained from the state vector and covariance matrix
as follows:

Yk+1/k = P−1k+1/k (11)

yk+1/k = Yk+1/kXk+1/k (12)

B. Update step

The fusion of the pseudorange with the encoders measure-
ments is done through a tightly coupled architecture using
the EIF. Note that we have used the GPS (Global Positioning
System) constellation [28] [29].

The pseudorange measurements can be modeled according
to equation (13) [30] [2]:

ρi = ri + cδtr + εi (13)

where:
ρi is the measured pseudorange
ri is the geometric distance between the satellite i
and the receiver
δtr is the receiver clock offset
εi is the noise errors after atmospheric and clock
correction

ri =
√

[x− xi]2 + [y − yi]2 + [z − zi]2 (14)

where [x, y, z] is the receiver position and [xi, yi, zi] is the
position of the satellite i in the ECEF frame.

The observation equation (equation (13)) can be expressed
as:

Zk = hk(Xk) + vk (15)

where vk is the noise associated to the pseudorange mea-
surements modeled as white Gaussian noise with zero mean
and covariance matrix R.

The observation model is non linear, its linearization around
the predicted estimation yields to:

Zk = hk(Xk/k−1) +Hk∆Xk + vk (16)

where H is the Jacobian matrix given by:

Hk =



xk/k−1−x1

r1

yk/k−1−y1
r1

zk/k−1−z1
r1

0 1 0

xk/k−1−x2

r2

yk/k−1−y2
r2

zk/k−1−z2
r2

0 1 0

...
xk/k−1−xN

rN

yk/k−1−yN
rN

zk/k−1−zN
rN

0 1 0


k

(17)
The information matrix and the information vector are

updated as shown in equations (18) and (19) respectively:

Yk/k = Yk/k−1 +

N∑
i=1

Ii(k) (18)

yk/k = yk/k−1 +
N∑
i=1

ii(k) (19)

where:

Ii(k) = HT
i,kR

−1
i (k)Hi,k (20)

ii(k) = HT
i,kR

−1
i (k)[(Zi,k − Ẑi,k) +Hi,kXk/k−1]

(21)

are the information contributions of the satellite
measurement i,

Ẑi,k =√
[xk/k−1 − xi]2 + [yk/k−1 − yi]2 + [zk/k−1 − zi]2

+ cδtr,k
(22)

is the estimated pseudorange measurement i,
N is the number of satellites in view,
Hi is the line i of the matrix H (equation 17).

III. FAULT DETECTION AND EXCLUSION BASED ON
WEIGHTED KULLBAK-LEIBLER DIVERGENCE

A. Fault detection

In our previous work [20], a residual based on the Kullback-
Leibler divergence, namely GKLD, was proposed:

GKLD =
1

2
trace

(
Yk/k Y −1k/k−1

)
+

1

2
log

∣∣Yk/k−1∣∣∣∣Yk/k∣∣ − 1

2
M

+
1

2

(
Xk/k −Xk/k−1

)T
Yk/k

(
Xk/k −Xk/k−1

)
(23)

M is the dimension of the state vector.
This residual is obtained from the calculation of the

Kullback-Leibler divergence between two Gaussian distribu-
tions and it evaluates the divergence between the predicted
and the updated probability distributions obtained from the
EIF.
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It consists of two parts:

1) The Mahalanobis distance(
Xk/k −Xk/k−1

)T
Yk/k

(
Xk/k −Xk/k−1

)
: allows a

test on the means
2) The Burg matrix divergence trace

(
Yk/k Y −1k/k−1

)
+

log
|Yk/k−1|
|Yk/k| − M : allows a test on the covariance matrix.

However, with this representation, we have supposed the
same confidences on the Mahalanobis distance and the Burg
matrix divergence by the use of the weight 0.5. Depending on
the update distribution, we can specify a weight α that gives
a visualization about the confidence on the pose estimation or
on the covariance matrix. In fact, the trace of the covariance
matrix represents the sum of the variance of the state vector
estimation. If the value of the trace is high, this reflects an
important variance on the pose estimation. Therefore, the
confidence on the means values of the position must be
weakened and that on the Burg matrix divergence should be
increased. On the other hand, if the trace is low, the confidence
on the means must be increased relatively to the one associated
to the Burg matrix divergence.

Notice that the sum of confidences should be equal to one:

• α represents the confidence on the Burg matrix diver-
gence

• 1 − α represents the confidence on the Mahalanobis
distance.

Therefore, we propose to express the weight as in equation
(24):

α =
trace(Pk/k)

C
(24)

where C is the maximal value of the trace(Pk/k) fixed
according to the maximal variance on the state vector. It
depends on the used GNSS receiver and the maximum allowed
error.

The Weighted Kullback-Leibler Divergence (WKLD) is
given in equation (25):

WKLD = α

[
trace

(
Yk/k Y −1k/k−1

)
+ log

∣∣Yk/k−1∣∣∣∣Yk/k∣∣ − M

]
+ (1− α)

[(
Xk/k −Xk/k−1

)T
Yk/k

(
Xk/k −Xk/k−1

)]
(25)

The data distribution of the WKLD can be obtained from
the statistical study realized on the GKLD [20] by replacing
the weight 1

2 by its corresponding value α or 1−α. Therefore,
the distribution of the WKLD can be expressed in function
of the F -distribution and the Chi-square distributions:

WKLD ∼ (1− α)

[
M (n− 1)

(n−M)n
FM,n−M

]

+ α

 1

n− 1

1

1− 1
6(n−1)−1

(
2M + 1− 2

M+1

) χ2
1
2 (M(M+1))


(26)

B. Fault exclusion

When a fault is detected using the WKLD, the faulty
measurements should be excluded from the fusion procedure.
For this reason, N informational filters (EIFj) are designed.
Each filter permits to calculate the information contribution
of one observation (pseudorange). Therefore, from each filter
EIFj , a residual denoted WKLj can be calculated (figure 1).
It represents the divergence between the predicted distribution
and the updated one obtained after the fusion of the pseudo-
range observation of satellite j. Notice that the calculation of
the position estimation using one satellite is possible because
we are in a tightly coupled architecture.

The residual WKLj is obtained as follows:

WKLj,k =

α

[
trace

(
Yj,k/k Y −1k/k−1

)
+ log

∣∣Yk/k−1∣∣∣∣Yj,k/k∣∣ − M

]
+ (1− α)

[ (
Xj,k/k −Xk/k−1

)T
Yj,k/k

(
Xj,k/k −Xk/k−1

)]
(27)

with:

Yj,k/k = Yk/k−1 + Ij(k) (28)
yj,k/k = yk/k−1 + ij(k) (29)

Xj,k/k = (Yj,k/k)−1yj,k/k (30)

If the satellite measurement n is faulty, The different
WKLj will be lower than a threshold value expect WKLn
(the only residual that contains the erroneous measurement).
Therefore, while the WKLD exceeds the threshold value,
the measurement that leads to the maximum WKLi will be
excluded from the fusion procedure. This iterative procedure
will be repeated until no fault is detected using the WKLD.
In order to avoid the exclusion of a healthy measurement,
we introduce iteratively the excluded observations and we
recalculate the WKLD. The set that passes the GT on the
WKLD will be used for the state estimation.

This approach that uses the EIF and the Kullback-Leibler
divergence for the detection and exclusion of erroneous mea-
surements, presents many advantages:
• The simplified model of the update step of EIF permits

to add or to remove easily a pseudorange measurement.
The fault tolerance aspect does not induce a high com-
putational cost.

• The adopted model for the system allowed us to work
in the state space. A fault which does not have a direct
impact on the position of the vehicle will not be isolated.
Indeed, in some cases, using measurements with errors
could be a better alternative than their isolation in order
to ensure an acceptable geometry of observations.

• In comparison with the MSS method which operates also
in the state space, the latter needs a bank of filters for
the faults detection and another bank for the exclusion of
one fault. The exclusion of multiple faults will generate
a high computational cost.
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IV. THRESHOLD OPTIMIZATION

After the construction of the residual, its comparison with a
threshold value is necessary in order to detect the presence of
erroneous measurements. Classical FDE approaches for GNSS
observations are based on fixing a false alarm probability
[31] [32]. In aeronautic domain, the choice of false alarm
and miss detection probabilities is done with agreement with
the integrity risk standardized by ICAO. However, in urban
applications, this choice is done heuristically. In this work, we
propose more elaborate method for the threshold optimization
based on the Kullback-Leibler Criterion KLC (proposed in
our previous work given in [20]). It is based on maximizing
the information gain given by decision on the true hypothesis.

A. Kullback-Leibler Criterion for threshold optimization

We begin by some definitions:
H0 and H1 are the hypotheses of absence and
presence of defaults respectively
u0 and u1 are the decisions of choosing H0 and H1

respectively
PD = p(u1/H1) is the detection probability: the
probability of choosing H1 when H1 is true
PF = p(u1/H0) is the false alarm probability: the
probability of choosing H1 when H0 is true
Pmd = p(u0/H1) is the missed detection probabil-
ity: the probability of choosing H0 when H1 is true

The priori probabilities are defined as:

p(H0) = P0 (31)
p(H1) = 1− P0 (32)

The Kullback-Leibler Summation is given by:

KLS = KLS0 +KLS1 (33)

where

KLSj = KL(p(H/uj) ‖ p(H))

=
∑

i={0,1}

p(Hi/uj) log
p(Hi/uj)

p(Hi)
(34)

KLSj represents the information gain associated to the
decision uj , j = 0, 1.

KLSj =
αj

αj + βj
log

αj
P0(αj + βj)

+
βj

αj + βj
log

βj
(1− P0)(αj + βj)

(35)

Therefore KLS can be written as:

KLS =
α0

α0 + β0
log

α0

P0(α0 + β0)

+
β0

α0 + β0
log

β0
(1− P0)(α0 + β0)

+
α1

α1 + β1
log

α1

P0(α1 + β1)

+
β1

α1 + β1
log

β1
(1− P0)(α1 + β1)

(36)

where:

α0 = P0 (1− PF ) β0 = (1− P0)(1− PD)
α1 = P0PF β1 = (1− P0)PD

(37)

In [20], we have demonstrated that the minimum of KLS
is obtained when p(H/u) = p(H) indicating that the decision
does not provide any information about the true hypothesis.
Similarly, KLS is minimum when PF = PD. However,
maximizing the information gain given by the decision on the
true hypothesis will lead to the maximum value of KLS.

Consequently, the Kullback-Leibler Criterion is defined as:

KLC = max(KLS) (38)

The likelihood ratio test obtained from this optimization
problem (the maximization of KLS) is given by [20]:

Λ =
∂PD
∂PF

=
f(WKLD/H1)

f(WKLD/H0)

H1

≷
H0

P0

1− P0

A0 −A1

B1 −B0
(39)

where

Ai =
βi

(αi + βi)
2 log

(
1− P0

P0

αi
βi

)
Bi =

αi

(αi + βi)
2 log

(
P0

1− P0

βi
αi

)
i = 0, 1

(40)

Therefore, the optimal threshold is obtained from the values
of PF and PD that maximize KLS. For this purpose, the prob-
abilities density functions (pdf ) of the WKLD in the faulty
(f(WKLD/H1)) and non faulty cases (f(WKLD/H0))
should be known.

The decision criterion can be expressed directly in function
of the WKLD as:

WKLD
H1

≷
H0

λ = threshold

= function of(Ai, Bi, P0, parameters of the pdf of the WKLD)
(41)

Notice, that KLS is function of the priori probability P0.
In order to avoid a heuristic choice of this probability, P0 will
be calculated based on the Maximum Likelihood Estimation
(MLE) and using the historical system behavior:

P̂0 = 1−
∑n
i=1 h

i

n
(42)

where h = (h1, h2, ..., hn) is a random samples of chosen
hypotheses and:
hi = 0 if H0 is chosen
hi = 1 if H1 is chosen

In this work, the sample of hypotheses at instant k is
obtained from the decisions taken from the sampling instant
k1 to k − 1, where [k1, k − 1] is a sliding interval with width
equal to 50 sampling instants and{

k1 = 1 if k ≤ 50
k1 = k − 50 if k > 50

(43)
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B. Interpretation of KLS

The KLS can be viewed as the summation of KLS0 and
KLS1 (equations 35 and 36). The maximization of KLS0 is
equivalent to maximizing the information gain given by the
decision u0 (no fault). This gain is maximum if we are sure
that the true hypothesis is H0. Therefore, this optimization
problem leads to a threshold denoted thKLC0 : it’s a liberal
threshold (figure 2).

The threshold that maximizes KLS0 is obtained by setting
the derivative of KLS0 to 0: ∂KLS0

∂v = 0 where v denotes
the threshold. The likelihood ratio test obtained from this
optimization problem is:

Λ0 =
f(WKLD/H1)

f(WKLD/H0)

H1

≷
H0

−P0

1− P0

A0

B0
(44)

where:
A0

B0
= −β0

α0
(45)

Consequently:

Λ0 =
f(WKLD/H1)

f(WKLD/H0)

H1

≷
H0

1− PD
1− PF

(46)

Demonstration: After a simple calculation and using
equation (46) in reference [20] we can obtain:

∂KLS0

∂v
=
∂α0

∂v
A0 +

∂β0
∂v

B0 = 0

Therefore:

P0
∂PF
∂v

A0 = −(1− P0)
∂PD
∂v

B0

Which leads:
∂PD
∂PF

=
−P0

1− P0

A0

B0

Likewise, the maximization of KLS1 is equivalent to
maximizing the information gain given by the decision u1
(fault). This gain is maximum if we are sure that the true
hypothesis is H1. Therefore, this optimization problem leads
to a threshold denoted thKLC1

: it is a conservative one (figure
2). The likelihood ratio test obtained from the maximization
of KLS1 is:

Λ1 =
f(WKLD/H1)

f(WKLD/H0)

H1

≷
H0

−P0

1− P0

A1

B1
(47)

with:
A1

B1
= −β1

α1
(48)

Consequently:

Λ1 =
f(WKLD/H1)

f(WKLD/H0)

H1

≷
H0

PD
PF

(49)

It can be noticed that the thresholds thKLC0 and thKLC1

are independent from the priori probability P0.

Given that we are interested by the case where PD > PF ,
we have:

PD
PF

> 1 (50)
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Fig. 2: The interval of thresholds using the KLC and the MI .

and
1− PD
1− PF

< 1 (51)

which verifies our interpretation that thKLC0 < thKLC1

According to the application, the user can choose a liberal
threshold, a conservative threshold or a threshold varying with
a system parameter. The threshold that maximizes KLS can
varies from thKLC0 to thKLC1 and is influenced by the value
of the priori probability P0.

For a large value of P0, the threshold will approach thKLC1

since max(KLS1)� max(KLS0). Because, in this case, the
decision u1 provides the maximum information gain, therefore

max(KLS0 +KLS1) −→ max(KLS1).

C. Comparison with the Mutual Information Criterion

The Mutual Information (MI) criterion for threshold opti-
mization was proposed in [33] [34]. The goal was to minimize
the uncertainty between the decision and the hypothesis which
is equivalent to maximize the MI .

The likelihood ratio test obtained from this optimization
problem is given by:

Λ =
f(WKLD/H1)

f(WKLD/H0)

H1

≷
H0

P0

1− P0

C10 − C00

C01 − C11
(52)

where:

Cij = log

(
p(ui, Hj)

p(ui)p(Hj)

)
= log

(
p(ui/Hj)

p(ui)

)
(53)

In this section, we propose to decompose the MI criterion
into two criteria and to compare the obtained interval to that
of KLS.
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The MI (I(H,u)) can be viewed as the expected value of
the KLS, indeed:

I(H,u) =
∑
H

∑
u

p(H/u)p(u) log
p(H/u)

p(H)
(54)

=
∑
u

p(u)
∑
H

p(H/u) log
p(H/u)

p(H)
(55)

=
∑
u

p(u)KL(p(H/u), p(H)) (56)

= Eu [KL(p(H/u), p(H))] (57)

Consequently, I(H,u) can be expressed in function of
KLS0 and KLS1 as follows:

I(H,u) = p(u = 0)KLS0 + p(u = 1)KLS1 (58)

Equation (58) can be considered as the summation of two
terms:

MI0 = p(u = 0)KLS0 (59)

= α0 log
α0

P0(α0 + β0)
+ β0 log

β0
(1− P0)(α0 + β0)

(60)

and

MI1 = p(u = 1)KLS1 (61)

= α1 log
α1

P0(α1 + β1)
+ β1 log

β1
(1− P0)(α1 + β1)

(62)

Therefore, the corresponding likelihood ratio test obtained
from the maximization of MI0 is:

Λ0 =
f(WKLD/H1)

f(WKLD/H0)

H1

≷
H0

− P0

1− P0

C00

C01

= − P0

1− P0

log α0

P0(α0+β0)

log β0

(1−P0)(α0+β0)

(63)

Likewise, the maximization of MI1 leads to the likelihood
ratio test Λ1:

Λ1 =
f(WKLD/H1)

f(WKLD/H0)

H1

≷
H0

− P0

1− P0

C10

C11

= − P0

1− P0

log α1

P0(α1+β1)

log β1

(1−P0)(α1+β1)

(64)

Consequently, contrary to KLS0 and KLS1, the maximiza-
tion of MI0 (MI1) leads to a threshold thMI0 (thMI1 ) depend-
ing on P0. The interval [thMI0 , thMI1 ] varies with the value
of P0 which is not the case for the interval [thKLC0

, thKLC1
].

On the other hand, the aim is to compare these two intervals.
For this reason, the study of the variation of p(u = 0) and
p(u = 1) is necessary:

p(u = 0) = P0(1− PF ) + (1− P0)(1− PD) (65)
p(u = 1) = P0PF + (1− P0)PD (66)

For a given value of P0, p(u = 0) increases when the values
of PF and PD decrease, so when the threshold value increases.

Likewise, p(u = 1) increases if PF and PD increase, so if the
threshold value decreases. The maximum of KLS0 is obtained
at the value of thKLC0

. From figure 3, we can remark that
the maximum of MI0 (i.e. p(u = 0)KLS0) can only move
to the right of the one of KLS0. Similarly, from figure 4, the
maximum of MI1 (i.e. p(u = 1)KLS1) can only move to the
left of the one of KLS1.
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Fig. 3: Representation of KLS0 and p(u = 0) in function of
the threshold value.
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Fig. 4: Representation of KLS1 and p(u = 1) in function of
the threshold value.

The interval of thresholds obtained from KLS and MI
are shown in figure 2. [thKLC0

, thKLC1
] is a fixed interval

and more conservative than [thMI0 , thMI1 ]. The threshold
obtained from the maximization of KLS lies always inside
this interval and varies from thKLC0 to thKLC1 .

V. EXPERIMENTATION AND RESULTS VALIDATION

In order to test the performance of the proposed approach,
experimentation with real data from a GPS constellation and
Cycab vehicle are achieved (figure 5). Figure 6 shows the
trajectory of the vehicle in the case of a tightly coupled
GPS/odometer compared to the case when using only GPS
measurements. The amelioration is clear especially in the
region surrounded by trees.

The WKLD that quantifies the divergence between the
predicted and the updated distributions is shown in figure 7.
It presents many jumps indicating the presence of erroneous
GPS measurements: In presence of faults and after the update
step, the GPS measurements lead to a position estimation that
diverges from the one obtained using the odometer model
(prediction step).

In order to detect the presence of erroneous measurements,
the WKLD should be compared to a threshold value. Con-
sequently, the probability distributions of the WKLD in the
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Fig. 5: The Cycab vehicle used for experimentation.

(a)
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Fig. 6: Trajectory of the vehicle in the case of using GPS
data (in green) and when using a tightly coupled architecture
GPS/odometer (in blue).

faulty and non faulty cases should be determined previously.
This can be achieved by integrating a learning step based on
the reference data or using a simulator.
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Fig. 7: The WKLD before and after FDE step.

Figure 8a shows the empirical probability distributions of
the WKLD in the non faulty case after taking into account
healthy pseudorange measurements. Figure 8b presents the
empirical probability distribution of the WKLD in the faulty
case. It is obtained after incorporating different amplitude
values of the errors in the pseudorange measurements. These

two distributions are exploited in order to determine the
optimal threshold that maximizes the KLS. When P0 is
equal to 0.5, the optimal threshold is obtained at λ = 0.901
corresponding to a false alarm probability of 0.0041 and a
detection probability of 0.8725 (figure 9).

The liberal and conservative thresholds obtained from the
maximization of KLS0 and KLS1 respectively are shown in
figure 10. [thKLC0

, thKLC1
] forms an envelope in which the

threshold varies (figure 11). The optimal threshold λ lies inside
this interval and depends on the value of P0 obtained using
the MLE and the historical system behavior under a sliding
interval, as explained in section IV-A (figure 12).
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Fig. 8: Data distributions of the WKLD in the non faulty (8a)
and faulty (8b) cases.

Figure 13 shows the WKLi used for the fault exclusion.
Indeed, when the WKLD exceeds the threshold value, the set
of WKLi should be calculated in order to determine the origin
of the faults. For example, the information contribution of
satellite 9 (corresponding to the residual WKL9) is incoherent
with the others indicating that this satellite should be excluded
from the fusion procedure at instants k = 15 to 30, k = 82
to 87 and k = 483 to k = 525 s ... In order to validate that
the measurements of satellite 9 are erroneous, the elevation of
the different satellites are shown in figure 14. We can remark
that the elevation of satellite 9 is about 6◦ which increases the
multipath probability and therefore the probability of errors.

In order to verify the aptitude of the method in detecting the
erroneous measurements and specifically in detecting multiple
faults at a time, we propose to simulate errors in the pseudor-
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Fig. 9: The optimal threshold λ when using KLC for P0 =
0.5.
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Fig. 10: The liberal and conservative thresholds obtained from
the maximization of KLS0 and KLS1.
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Fig. 11: The WKLD with the corresponding threshold λ

ange measurements of satellite 12 from instant k = 222 to 246
s, and in the pseudorange measurements of satellites 4 and 12
from k = 309 to 322 s. Figure 13 shows the jumps that appear
in WKL12 from k = 222 to 246 indicating that this satellite
should be excluded during these sampling instants. Likewise,
the jumps in WKL12 and WKL4 indicate that satellites 12
and 4 should be excluded from the fusion procedure from
k = 309 to 322.

The estimated trajectories before and after the FDE step are
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Fig. 12: The variation of the priori probability P0 obtained
using the MLE.
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Fig. 13: The WKLi for the fault exclusion
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Fig. 14: The elevation of the satellites in view.

shown in figure 15 and 16. It can be seen the improvement
in the trajectory estimation after the FDE step. Indeed, it
should be noted that the trajectory was degraded at the level
of the estimation of the height (h) which presents some
unjustifiable jumps before the exclusion of the erroneous
satellite measurements.

Figure 17 shows the variations of the false alarm and

Fig. 15: 3D Trajectories before FDE (in blue) and after FDE
(in red).
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Fig. 16: The 2D trajectories and the height before FDE (in
blue) and after FDE (in red).

detection probabilities in function of the priori probability P0,
obtained in the case of the KLC and the MI criterion. It can
be remarked that for P0 < 0.5 (hypothesis ”presence of faults”
is more probable), the KLC leads to PF and PD higher than
in the case of the MI criterion ensuring better faults detection.
However, for P0 > 0.5 (hypothesis ”absence of faults” is
more probable), the KLC reduces the false alarm probability
leading to an automatic reduction of the detection probability
compared to the MI criterion. Therefore, the KLC presents
a better behavior in function of P0.

VI. CONCLUSION

In this paper, a tightly coupled GPS/odometer with faults
diagnosis is proposed. The method is based on the use of
the EIF for the state estimation and on the WKLD for the
faults detection. When a fault is detected using the WKLD,
a set of residuals obtained from a bank of EIFj is generated
in order to exclude the erroneous pseudorange measurements.
Optimal thresholding method based on the Kullback-Leibler
Criterion is proposed. The optimal threshold is the value that
maximizes the information gain given by a decision and is
influenced by the priori probability obtained using the MLE
and the historical system behavior under a sliding interval.

Experimental results show that the method was able to
localize accurately the vehicle while detecting and excluding
the erroneous pseudorange measurements in a relevant manner.
Likewise, the method ensures the exclusion of multiple faults
at a given instant.

Comparison between the KLC and the MI criterion is
given theoretically and then experimentally in order to show
the performance of each criterion.
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Dec. 1, 2011.

[3] A. Angrisano, “GNSS/INS integration methods,” PhD
thesis, universita’ degli studi di napoli ”Parthenope”,
2010.

[4] Z. Tao, “Autonomous road vehicles localization us-
ing satellites, lane markings and vision,” PhD thesis,
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Shi, and J. Hyyppä, “LiDAR scan matching aided iner-
tial navigation system in GNSS-denied environments,”
Sensors, vol. 15, no. 7, pp. 16 710–16 728, 2015.

[6] M. G. Petovello, “Real-time integration of a tactical-
grade IMU and GPS for high-accuracy positioning and
navigation,” PhD thesis, University of Calgary, 2003.

[7] U. I. Bhatti, “Improved integrity algorithms for in-
tegrated GPS/INS systems in the presence of slowly
growing errors,” PhD thesis, University of London,
2007.

[8] Y. W. Huang and K. W. Chiangb, “Improving the
performance of MEMS IMU/GPS pos systems for land
based MMS utilizing tightly coupled integration and
odometer,” in ISPRS proceedings, 2010.

[9] M. George and S. Sukkarieh, “Tightly coupled INS/GPS
with bias estimation for UAV applications,” in Pro-
ceedings of Australiasian Conference on Robotics and
Automation (ACRA), 2005.

[10] I. Miller, B. Schimpf, M. Campbell, and J. Leyssens,
“Tightly-coupled GPS / INS system design for au-
tonomous urban navigation,” in 2008 IEEE/ION Posi-
tion, Location and Navigation Symposium, May 2008,
pp. 1297–1310.

[11] B. W. Parkinson and P. Axelrad, “Autonomous GPS
integrity monitoring using the pseudorange residual,”
Navigation, vol. 35, no. 2, pp. 255–274, Jun. 1, 1988,
ISSN: 2161-4296.

[12] M. A. Sturza, “Navigation system integrity monitoring
using redundant measurements,” Navigation, vol. 35,
no. 4, pp. 483–501, 1988.

[13] Y. C. Lee, “Analysis of range and position comparison
methods as a means to provide GPS integrity in the user
receiver,” in Proceedings of the Annual Meeting of the
Institute of Navigation, Citeseer, 1986, pp. 1–4.

[14] R. G. Brown and P. W. McBURNEY, “Self-contained
GPS integrity check using maximum solution separa-
tion,” Navigation, vol. 35, no. 1, pp. 41–53, Mar. 1,
1988, ISSN: 2161-4296.

[15] A. Martineau, “Etude de la performance du contrôle
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inertielle en présence de multiples mesures satellitaires
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