
HAL Id: hal-01756689
https://hal.science/hal-01756689

Preprint submitted on 2 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ARTE: a Simulation Tool for Reconfigurable Energy
Harvesting Real-time Embedded Systems

Wiem Housseyni, Maryline Chetto

To cite this version:
Wiem Housseyni, Maryline Chetto. ARTE: a Simulation Tool for Reconfigurable Energy Harvesting
Real-time Embedded Systems. 2018. �hal-01756689�

https://hal.science/hal-01756689
https://hal.archives-ouvertes.fr

ARTE: a Simulation Tool for Reconfigurable
Energy Harvesting Real-time Embedded Systems

Wiem HOUSSEYNI1,2,3 and Maryline CHETTO1

1 University of Nantes, LS2N UMR CNRS 6597 44321 Nantes, France
2 LISI Laboratory, INSAT, University Of Carthage, Tunisia

3 Tunisia Polytechnic School, University Of Carthage, Tunisia
maryline.chetto@univ-nantes.fr

wiem.housseyni@univ-nantes.fr

Abstract. This report presents ARTE a new free Java based software, which
we have developed for simulation and evaluation of reconfigurable energy har-
vesting real-time embedded systems. It is designed in the aim to generate,
compare, and evaluate different real-time scheduling strategies on their schedu-
lability performance as well as energy efficiency in the presence of external un-
predictable reconfiguration scenarios. A reconfiguration scenario is defined as
unpredictable events from the environment such as addition-remove of software
tasks, and increase-decrease of the power rate. The occurrence of such events
may evolve the system towards an overload state. For this purpose, ARTE pro-
vides a task sets generator, reconfiguration scenarios generator, and a simula-
tor. It also offers to the designer the possibility to generate and run simulation
for specific systems. In the actual version, ARTE can simulate the execution of
periodic independent and (m,k)-firm constrained task sets on monoprocessor
architecture. The energy consumption is considered as a scheduling parameter
in the same manner as Worst Case Execution Time (WCET).

Table of Contents

1 Introduction . 2
2 Research Aims . 4
3 Related Works . 4
4 Background . 6

4.1 Earliest Deadline First scheduling EDF . 6
4.2 Earliest Deadline First-Energy Harvesting EDH 6
4.3 (M,K)-model . 7
4.4 Mandatory/Optional Job Partitioning With (M,K)-Pattern 8

Evenly Distributed Pattern (Even Pattern) . 8
5 New Scheduling Approach for Reconfigurable Energy Harvesting

Real-Time Systems . 8
5.1 Normal Mode . 9
5.2 Degradation mode level 1: EDH-MK Algorithm 9
5.3 Degradation mode level 2: Removal Algorithm . 11
5.4 Reconf-Algorithm . 12

6 Functionalities . 12
6.1 Task Set Generator . 13

Task Model . 13
6.2 Reconfiguration Scenarios Generator . 14
6.3 Simulation Tool . 14

7 Case Study . 14
8 Future Works . 19
9 Conclusion . 19
10 Proposed Thesis Outline . 19

3

1 Introduction

Since decades, the literature has revealed a substantial interest in the real-time schedul-
ing problem, where several approaches and algorithms have been ported over the years
to optimize the scheduling of real-time tasks on single and multiple processor systems.
The energy constraint has emerged as a major issue in the design of such systems,
despite there are big research efforts addressing this problem. Research works have
focused on either dynamic energy awareness algorithm in order to reduce system en-
ergy consumption or energy harvesting technology. In order to enhance the lifespan
and to achieve energy autonomy in such system, there is a tremendous interest in the
energy harvesting technologies recently.

In recent years, energy scavenging or harvesting technology from renewable sources
such as photovoltaic cells, and piezoelectric vibrations emerges as new alternative to
ensure sustainable autonomy and perpetual function of the system. By the same to-
ken, the literature has revealed a substantial interest in the scheduling research for
energy aware and power management scheduling for real-time systems. Still, there is
sufficient scope for research, although uni-processor real-time scheduling for energy
harvesting based systems is well studied. On the other hand, scheduling techniques
for the reconfigurable energy harvesting real-time systems are not mature enough to
either be applicable or optimal as much as currently available uni-processor real-time
scheduling techniques.

Nowadays, new criteria such as energy efficiency, high-performance and flexible
computing arises the need of new generation of real-time systems. As a result, such
systems need to solve a number of problems that so far have not been addressed by
traditional real-time systems. Reconfigurable systems are solutions to providing both
higher energy efficiency, and high-performance and flexibility. In recent years, a sub-
stantial number of research works from both academia and industry have been made
to develop reconfigurable control systems [1], [2]. Reconfiguration is usually performed
in response to both user requirements and dynamic changes in its environment such as
unpredictable arrival of new tasks, and hardware or software failures. Some examples
of such systems are multi-robot systems [3], and wireless sensor networks [4]. From the
literature we can drive different definitions of a reconfigurable system. The authors of
[5] define a reconfiguration of a distributed system as any addition/ removal/update
of one/more software-hardware elements. In this work, we define a reconfiguration as
a dynamic operation that offers to the system the capability to adjust and adapt its
behavior i.e., scheduling policy, power consumption, according to environment and
the fluctuating behavior of renewable source, or to modify the applicative functions
i.e., add-remove-update software tasks.

Almost of embedded systems are real-time constrained. A real-time system in-
volves a set of tasks where each task performs a computational activity according to
deadline constraints. The main purpose of a real-time system is to produce not only
the required results but also within strict time constraints. In order to check whether
a set of tasks respects its temporal constraints when a scheduling algorithm is used
or to evaluate the efficiency of a new approach, software simulation against other
algorithms is considered as a valid comparison technique and it is commonly used
in the evaluation of real-time systems. Over the last years, several simulation tools
have been ported MAST [6], CHEDDAR [7], STORM [8], FORTAS [9] and YARTISS
[10]. However, none of these approaches provide support for reconfigurable based ap-
plications, yet. More recently, new simulation tools are proposed for reconfigurable
computing systems Reconf-Pack [15]. However, this attempt do not support energy
harvesting requirements.

4

New challenges raised by reconfigurable real-time embedded energy harvesting
systems in terms of reconfigurability, scheduling, and energy harvesting management.
Indeed, in such a context, it is very difficult to evaluate and compare scheduling al-
gorithms on their schedulability performance as well as energy efficiency. Unlike any
prior work, we formulate and solve the challenging problem of scheduling real-time
applications on reconfigurable energy-harvesting embedded system platforms. Based
on these motivations, we investigate in this report the challenges and viability of de-
signing an open and flexible simulation tool able to generate and simulate accurately
the behavior of such systems.
In this report, we introduce ARTE, a new simulation tool for reconfigurable energy
harvesting real-time embedded systems, which provides various functions to simulate
the scheduling process of real-time task sets and their temporal behavior when a
scheduling policy is used. It provides the classical real-time scheduling policy EDF,
the optimal scheduling algorithm for energy harvesting systems EDH, EDF schedul-
ing for (m,k)-constrained task sets, and a new scheduling policy which is an extension
of EDH for (m,k)-firm constrained task sets EDH-MK, and finally a new hierarchical
approach Reconf-Algorithm. It implements also classical and new feasibility tests for
both real-time and energy harvesting requirements. The main aim of this research
work is to guarantee a feasible execution in the whole system in the presence of un-
predictable events while satisfying a quality of service (QoS) measured first in term of
the percentage of satisfied deadline, second the percentage of satisfied deadline while
considering the degree of importance of tasks, and finally the overhead introduced by
the proposed approach.

The remainder of this report is as follows: we review related works and exam-
ples of real-time simulators in Section 2. Section 3 presents a background about the
EDF, EDH scheduling algorithm, and the (m,k)-firm model. In section 4 we detail
the proposed new scheduling approach for reconfigurable energy harvesting real-time
systems. Then in Section 5 we present the various functionalities of our simulation
tool. A case study is given in Section 6. Finally, we discuss our future work in Section
7 and Section 8 brings a conclusion to this report.

2 Research Aims

New challenges raised by reconfigurable real-time embedded energy harvesting sys-
tems in terms of reconfigurability, scheduling, and energy harvesting management.
Such systems work in dynamic environment where unpredictable events may occur
arrival-remove of software tasks or increase-decrease of power rate. However, when
unpredictable events from the environment occur, the system may evolve towards
an unfeasible state (processor/energy overload) and the actual operation mode is no
longer optimal. For this aim, the main focus of this research is on how to achieve
system feasibility while satisfying a graceful QoS degradation. For this purpose we
define three operating modes:

– Normal mode: where all the tasks in the system execute 100% of their instances
while meeting all the deadlines

– Degradation mode level 1: This is the case where the normal mode is not
feasible. The K least important tasks execute in degraded mode according to the
model (m,k)-firm and other tasks execute normally. The schedulability test is
performed by considering iteratively the tasks according to their importance.

– Degradation mode level 2. This is the case where the degradation mode level
1 is not feasible. Abandonable tasks are gradually eliminated by increasing im-
portance.

5

When a system executing under an operating mode and an external event occurs it
is imperative to verify the schedubility test. We identify three cases:

– The system may continue to execute in the actual operating mode,
– the system may be executed under degraded mode,
– the system may executed under normal mode.

The quality of service (QoS) is measured in term of:

– The percentage of satisfied deadline,
– the percentage of satisfied deadline while considering the degree of importance of

tasks,
– the overhead introduced by the proposed approach.

3 Related Works

In this section we outline the existing works related to simulation of the scheduling
of real-time tasks.

There are a lot of tools to test and visualize the temporal and execution behavior
of real-time systems, and they are divided mainly into two categories: the execution
analyzer frameworks and the simulation software. MAST [6] is a modeling and analy-
sis suite for real-time applications that is developed in 2000. MAST is an event-driven
scheduling simulator that permits modeling of distributed real-time systems and offers
a set of tools to e.g. test their feasibility or perform sensitive analysis. Another known
simulator is Cheddar [20, 19] which is developed in 2004 and it handles the schedul-
ing of real-time tasks on multiprocessor systems. It provides many implementations
of scheduling, partitioning and analysis of algorithms, and it comes with a friendly
Graphical User Interface (GUI). Unfortunately, no API documentation is available
to help with the implementation of new algorithms and to facilitate its extensibil-
ity. Moreover, Cheddar is written in Ada programming language [14] which is used
mainly in embedded systems and it has strong features such as modularity mecha-
nisms and parallel processing. Ada is often the language of choice for large systems
that require real-time processing, but in general, it is not a common language among
developers. We believe that the choice of Ada as the base of Cheddar reduces the
potential contributions to the software from average developers and researchers. Fi-
nally, STORM [8] FORTAS [9], and YARTISS [10] are tools which are written in Java.
In 2009, STORM is released and it is described as a simulation tool for Real time
multiprocessor scheduling. It has modular architectures (both software and hardware)
which simulate the scheduling of task sets on multiprocessor systems based on the
rules of a chosen scheduling policy. The specifications of the simulation parameters
and the scheduling policies are modifiable using an XML file. However, the simula-
tor tool lacks a detailed documentation and description of the available scheduling
methods and the features of the software. On the other hand, FORTAS is a real-time
simulation and analysis framework which targets uniprocessor and multiprocessor
systems. It is developed mainly to facilitate the comparison process between the dif-
ferent scheduling algorithms, and it includes features such as task generators and
computation of results of each tested and compared scheduling algorithm. FORTAS
represents valuable contributions in the effort towards providing an open and modular
tool. Unfortunately, it seems to suffer from the following issues: its development is
not open to other developers for now, we can only download .class files, no documen-
tation is yet provided and it seems that no new version has been released to public
since its presentation in [9]. More recently, YARTISS is proposed as a modular and

6

extensible tool. It is a real-time multiprocessor scheduling simulator which provides
various functions to simulate the scheduling process of real-time task sets and their
temporal behavior when a scheduling policy is used. Functionalities of YARTISS: 1)
simulate a task set on one or several processors while monitoring the system energy
consumption, 2) concurrently simulate a large number of tasksets and present the
results in a user friendly way that permits us to isolate interesting cases, and 3) ran-
domly generate a large number of task sets. However, none of these simulation tools
provide support for unpredictable reconfiguration scenarios yet. To date, only a few
recent works target the real-time scheduling issue in reconfigurable systems. In [15]
a simulator tool is proposed for Reconfigurable Battery-Powered Real-Time Systems
Reconf-Pack. Reconf-Pack is a simulation tool for analyzing a reconfiguration and
applying the proposed strategy for real-time systems. It is based upon another tool
Task-Generator which generates random tasks. According to the state of the system
after a reconfiguration, Reconf-Pack calculates dynamically a deterministic solution.
Moreover, it compares the pack-based solutions to related works. However, it seems
to suffer from the following issues: its development is not open to other developers for
now, and isn’t available for download.

During the development of ARTE, we learned from those existing tools and we
included some of their features in addition to others of our own. Our aim is to provide
a simulation tool for reconfigurable energy harvesting real-time systems that is easily
it can be used to generate, compare, simulate the scheduling of real-time tasks on
reconfigurable energy harvesting real-time systems.

4 Background

This section gives a background about first the EDF scheduling algorithm, then EDH
scheduling algorithm, and finally the (M,K)-model.

4.1 Earliest Deadline First scheduling EDF

EDF is probably the most famous dynamic priority scheduler. As a consequence of
its optimality for preemptive uniprocessor scheduling of independent jobs, the run-
time scheduling problem is perfectly solved if we assume there exists no additional
constraints on the jobs. EDF is the scheduler of choice since any feasible set of jobs
is guaranteed to have a valid EDF schedule [18].
Time-feasibility: A set ψ of n tasks τi = {Ci, Ti, Ei} is time feasible if and only if

n∑
i=1

Ci
Ti
≤ 1 (1)

However, when considering energy harvesting requirements EDF is no longer optimal
and a necessary condition but non sufficient of schedulability is as follows:
Time-feasibility: A set ψ of n tasks is time feasible if and only if

n∑
i=1

Ci
Ti
≤ 1 (2)

Energy-feasibility: A set ψ of n tasks is energy feasible if∑n
i=1Ei

C + EP (0, t)
≤ 1 (3)

Let Ep(0,t) be the amount of energy that will be produced by the source between 0
and t and C is the energy storage unit (supercapacitor or battery) capacity.

7

4.2 Earliest Deadline First-Energy Harvesting EDH

Dertouzos [16] shows that the Earliest Deadline First Algorithm (EDF) is optimal.
EDF schedules at each instant of time t, that job ready for execution whose deadline
is closest to t. But the problem with EDF is that it does not consider future jobs ar-
rivals and their energy requirements. In [17], the authors prove that EDF is no longer
optimal for RTEH systems. Jobs are processed as soon as possible thus consuming
the available energy greedily.Although noncompetitive, EDF turns out to remain the
best non-idling scheduler for uniprocessor RTEH platforms [17].
In [18], the authors describe the Earliest Deadline-Harvesting ED-H scheduling algo-
rithm which is proved to be optimal for the scheduling problem of Energy-Harvesting
Real-time systems. ED-H is an extension of the EDF algorithm that adds energy
awareness capabilities by using the notion of slack-time and slack-energy. The idea
behind ED-H is to order the jobs according to the EDF rule since the jobs issued
from the periodic tasks have hard deadlines. Executing them in accordance with their
relative urgency appears to be the best approach even if they are not systematically
executed as soon as possible due to possible energy shortage. The difference between
ED-H and classical EDF is to decide when to execute a job and when to let the pro-
cessor idle. Before authorizing any job to execute, the energy level of the storage must
be sufficient so that all future occurring jobs execute timely with no energy starvation,
considering their timing and energy requirements and the replenishment rate of the
storage unit. According to EDH a processor Pj and battery Bj , that performs tasks
set ψj should satisfy the schedulability tests described follows:

– Time-feasibility: [18] ψj is time feasible if and only if

UPj
=

n∑
i=1

Ci
Ti
≤ 1 (4)

– Energy-feasibility: [18] ψj is energy feasible if and only if

Uej ≤ 1 (5)

Uej is the energy load of the set of tasks ψj assigned to processor Pj

Uej = sup
0≤t1≤t2≤H

Ecj (t1, t2)

C + EPj
(t1, t2)

Theorem 1 [18] The set of tasks ψj assigned to processor Pj is feasible if and only if

UPj
≤ 1 and Uej ≤ 1.

Theorem 1 gives a necessary and sufficient condition of schedulability.

4.3 (M,K)-model

For its intuitiveness and capability of capturing not only statistical but also determin-
istic quality of service QoS requirements, the (m,k)-model has been widely studied,
e.g., [19], [20], [21], [22], and [23]. The (m,k)-model was originally proposed by Ham-
daoui et al. [20]. According to this model, a repetitive task of the system is associated
with an (m,k) (0<m<k) constraint requiring that m out of any k consecutive job in-
stances of the task meet their deadlines. A dynamic failure occurs, which implies that
the temporal quality of service QoS constraint is violated and the scheduler is thus

8

considered failed, if, within any k consecutive jobs, more than (k-m) job instances
miss their deadlines. Based on this (m,k)-model, Ramanathan et al. [23] proposed to
partition the jobs into mandatory and optional jobs. So long as all of the mandatory
jobs can meet their deadlines, the (m,k)-constraints can be ensured. The mandatory
jobs are the jobs that must meet their deadlines in order to satisfy the -constraints,
while the optional jobs can be executed to further improve the quality of the service or
simply be dropped to save computing resources. Quan et al. [22] formally proved that
the problem of scheduling with the (m,k)-guarantee for an arbitrary value of mand
k is NP-hard in the strong sense. They further proposed to improve the manda-
tory/optional partitioning by reducing the maximal interference between mandatory
jobs.

4.4 Mandatory/Optional Job Partitioning With (M,K)-Pattern

The (m,k)-pattern of task τi, denoted by Πi, is a binary string Πi = {πi0, πi1πi(ki−1)}
which satisfies the following: 1) πij is a mandatory job if πij = 1 and optional if πij
= 0 and 2)

∑ki−1
j=0 πij = mi.

By repeating the (m,k)-pattern , we get a mandatory job pattern for τi. It is not
difficult to see that the (m,k)-constraint for τi can be satisfied if the mandatory jobs
of τi are selected accordingly.

Evenly Distributed Pattern (Even Pattern) Even Pattern strategy was pro-
posed by Ramanathan et al. [23] as follows: the first release is always mandatory and
subsequent distribution of mandatory and optional alternating. Mathematically,

Πi
j =

 1, ifj = bdj ×mi

ki
e × ki

mi
c, forj = 0, 1, .., ki

0, otherwise

(6)

In [24] a necessary and sufficient feasibility test for (m,k)-constrained tasks executing
under EDF scheduling policy is proposed.
Theorem 2: Let system T = {τ0, τi, .., τn−1}, where τi={Ci, Ti, Di,mi, ki} and Ψ be
the mandatory job set according to their E-patterns. Also, let L represent either the
ending point of the first busy period when scheduling only the mandatory jobs or
the LCM of T(i) , i = 0, ..., (n-1), whichever is smaller. Then, Ψ is schedulable with
EDF if and only if (iff) all the mandatory jobs arriving within [0, L] can meet their
deadlines, i.e., ∑

i

Wi(0, t) =
∑
i

(dmi

ki
× d t−Di

Ti
e+e)× Ci ≤ t (7)

5 New Scheduling Approach for Reconfigurable Energy
Harvesting Real-Time Systems

Reconfiguration is usually performed in response to both user requirements and dy-
namic changes in its environment such as unpredictable activation of new tasks, re-
moval of tasks, or increase-decrease of power supply of the system. Some examples of
reconfigurable systems are multi-robot systems [3] and wireless sensor networks [4].
At run-time, the occurrence of unpredictable task’s activation makes the static sched-
ule no longer optimal and may evolve the system towards an unfeasible state due to
energy and processing overloads. Thereafter, some existing or added tasks may violate

9

deadlines. The system has to dynamically adjust and adapt the task allocation and
scheduling in order to cope with unpredictable reconfiguration scenarios. We identify
mainly two function modes:

– Normal mode: where all the tasks in the system execute 100% of their instances
while meeting all the deadlines

– Degradation mode level 1: This is the case where the normal mode is not
feasible. The K least important tasks execute in degraded mode according to the
model (m,k)-firm and other tasks execute normally. The schedulability test is
performed by considering iteratively the tasks according to their importance.

– Degradation mode level 2. This is the case where the degradation mode level
1 is not feasible. Abandonable tasks are gradually eliminated by increasing im-
portance.

At any instant, external unpredictable reconfigurations may occur to add or remove
software tasks or to increase-decrease power supply on the system. The occurrence of
such events provoke the execution of schedulability tests to identify in which mode
the tasks should be executed.

5.1 Normal Mode

In the normal mode tasks are assumed to be executed under the optimal scheduler
for real-time energy harvesting systems EDH algorithm. Then the tasks set should
satisfy the following theorem:
Theorem 1 [18] The set of tasks ψj assigned to processor Pj is feasible if and only if

UPj
≤ 1 and Uej ≤ 1.

5.2 Degradation mode level 1: EDH-MK Algorithm

We propose in this work a new real-time scheduler for reconfigurale energy harvesting
real-time systems EDH-MK. The proposed algorithm EDH-MK is an extension of the
EDH algorithm with (m,k)-firm guarantee. When it is impossible to execute the tasks
set in normal mode due to processor and/or energy overloads, we propose to execute
the K least important tasks in degraded mode according to the model (m,k)-firm and
other tasks execute normally. In this work we propose the necessary and sufficient
schedulability conditions for the EDH-MK algorithm.
Definition 1: The static slack time of a mandatory job set Ψ on the time interval
[t1, t2) is

SSTΨ (t1, t2) = t1 − t2 −
∑
i

W (t1, t2) (8)

SSTΨ (t1, t2) gives the longest time that could be made available within [t1, t2) after
executing mandatory jobs of Ψ with release time at or after t1 and deadline at or
before t2.
Definition 2: The total mandatory energy demand within interval [0,t] is

g(0, t) =
∑
i

(dmi

ki
× b t

Ti
ce)× Eni (9)

Proof :
As shown [23] that, if the mandatory jobs are determined according to (6), for the
first pi jobs of τi, there are li(t) = dmi

ki
× pie jobs that are mandatory. Therefore, the

10

total mandatory energy load within interval [0,t] that has to be finished by time t,
denoted by g(0,t), can be formulated as follows:

g(0, t) =
∑
i

(dmi

ki
× d t−Di

Ti
e+e)× Eni (10)

g(0, t) =
∑
i

(dmi

ki
× b t

Ti
ce)× Eni (11)

Let Ep(0,t) be the amount of energy that will be produced by the source between 0
and t and C is the energy storage unit (supercapacitor or battery) capacity.
Definition 3: The total mandatory static slack energy on the time interval [0, t] is

SSEΨ (0, t) = C + Ep(0, t)− g(0, t) (12)

SSEΨ (0,t) gives the largest energy that could be made available within [0,t] after
executing mandatory jobs with release time at or after 0 and deadline at or before t.
Definition 4: Let d be the deadline of the active job at current time tc. The preemp-
tion slack energy of a mandatory job set Ψ at tc is

PSEΨ (tc) = min
tc≤ri≤di≤d

SEτi(tc) (13)

Lemma 1: If d1 is missed in the EDH-MK schedule because of energy starvation
there exists a time instant t such that g(t, d1) > C + Ep(t, d1) and no schedule exists
where d1 and all earlier deadlines are met.
Proof : Recall that we have to consider the energy starvation case where d1 is missed
with E(d1) = 0. Let t0 be the latest time before d1 where a mandatory job with dead-
line after d1 releases, no other mandatory job is ready just before t0 and the energy
storage unit is fully charged i.e. E(t0) = C. The initialization time can be such time.
The processor is idle within [t0-1, t0) since no mandatory jobs are ready. As no energy
is wasted except when there are no ready jobs, the processor is busy at least from
time t0 to t0 + 1. We consider two cases:
Case 1: No mandatory job with deadline after d1 executes within [t0, d1). Conse-
quently, all the mandatory jobs that execute within [t0, d1). have release time at or
after t0 and deadline at or before d1. The amount of energy required by these manda-
tory jobs is g(t0, d1). As is feasible, g(t0, d1) is no more than the maximum storable
energy plus all the incoming energy i.e., C + Ep(t0, d1). As E(t0) = C, we conclude
that all mandatory jobs ready within [t0, d1) can be executed with no energy starva-
tion which contradicts the deadline violation at d1 with E(d1) = 0.
Case 2: At least one mandatory job with deadline after d1 executes within [t0, d1).
Let t2 be the latest time where a mandatory job, say τ2, with deadline after d1 is
executed. As d1 is lower than d2 and mandatory jobs are executed according to the
earliest deadline rule in EDH-MK, we have r2 < r1. At time t2, one of the following
situations occurs.
Case 2a: The processor is busy all the times in [t0, d1). τ2 is preempted by a higher
priority job, say τ3, with d3 ≤ d1. From rule 4.2 in [18], PSEΨ (r3) > 0 which implies
that SEτ1 (r3) > 0 and in consequence g(r3, d1) < E(r3) + Ep(r3, d1). All mandatory
jobs that are executed within [r3, d1) have release time at or after r3 and deadline at
or before d1. Consequently, the amount of energy they require is at most g(r3, d1).
That contradicts deadline violation and E(d1) = 0.
Case 2b: The processor is idle in [t3 − 1, t3) with t3 > t2 and busy all the times in
[t3, d1). The processor stops idle at time t3 imperatively by rule 4.1 [18] if E(t3) =
C. By hypothesis, there is no mandatory job waiting with deadline at or before d1

11

at t3 because t0 is the latest one. Furthermore, no mandatory job with deadline after
d1 is executed after t2 and consequently after t3. In order not to waste energy, all
the energy which arrives from the source is used to advance mandatory jobs with
deadline after d1. The processor continuously commutes from active state to inactive
state. The storage is maintained at maximum level until τ1 releases. Consequently, we
have E(r1) = C. As τ1 is feasible, g(r3, d1) ≤ C + Ep(r1, d1). Thus, E(r1) + Ep(r1, d1)
≥ g(r1, d1). That contradicts deadline violation and E(d1) = 0.
Lemma 2: The set Ψ is energy-feasible if and only if

SSEΨ > 0 (14)

Proof :
“If”: Directly follows from Lemma 2.
“Only If”: Since is energy-feasible, let us consider an energy-valid schedule produced
within [0, dMax). The amount of energy demanded in each interval of time [t1, t2),
g(t1, t2), is necessarily less than or equal to the actual energy available in [t1, t2) given
by E(t1) + Ep(t1, t2). An upper bound on E(t1) is the maximum storable energy at
time t1, that is C. Consequently, g(t1, t2)is lower than or equal to C + Ep(t1, t2).
This leads to ∀ (t1, t2) ∈ [0, dMax), g(t1, t2) ≤ C + Ep(t1, t2) i.e. SSE (t1, t2) ≥ 0.
Thus, SSE ≥ 0.
Lemma 3: Ψ is energy-feasible if and only if

UEΨ ≤ 1 (15)

Proof : As proof of Lemma since SSEΨ (t1, t2) ≤ 0 amounts to UEΨ (t1, t2) ≤ 1.
The necessary and sufficient schedulability conditions falls into two constraints which
should be respected.

– Real-time constraints: For each processor Pj the tasks set Ψj assigned to Pj
should satisfy their deadlines. From equation (7)
Time-feasibility: The set Ψj is time feasible if and only if∑

i

Wi(0, t) =
∑
i

(dmi

ki
× b 1

Ti
ce)× Ci ≤ 1 (16)

– Energy constraints: Each processor Pj must not, at any moment, lack energy
to execute the tasks set assigned to processor Pj . Energy feasibility: Pj is energy
feasible if and only if

UEΨ ≤ 1 (17)

We give a necessary and sufficient condition for EDH-MK schedulability and feasibil-
ity.
Theorem 3: Let Ψ be the mandatory job set according to their E-patterns. Also, let
L represent either the ending point of the first busy period when scheduling only the
mandatory jobs or the LCM of T(i) , i = 0, ..., (n-1), whichever is smaller. Then, Ψ is
schedulable with EDH-MK if and only if (iff) all the mandatory jobs arriving within
[0, L] can meet their deadlines, i.e.,∑

i

W (0, t) ≤ 1andSSEΨ ≤ 0 (18)

Proof : “If”: We suppose that constraint (17) is satisfied and Ψ is not schedulable by
EDH-MK. Let us show a contradiction. First, we assume that Ψ is not schedulable by

12

EDH-MK because of time starvation. of energy starvation. Lemma 2 states that there
exists a time interval [t0, d1) such that g(t0, d1) > C + Ep(t0, d1) i.e., C + Ep(t0, d1)
- g(t0, d1) < 0. Thus, SSEΨ < 0 and condition 17 in Theorem 2 is violated.
“Only if”: Suppose that Ψ is feasible. Thus, Ψ is time-feasible and energy feasible.
From constraint (7) in theorem 2 and constraint (14) in Lemma 2, it is the case that
constraint (17) is satisfied.

5.3 Degradation mode level 2: Removal Algorithm

This is the case where the degradation mode level 1 is not feasible. Abandonable tasks
are gradually eliminated by increasing importance. We sort all the abandonable tasks
in an ascending order of degree of importance such that we can reject those with less
importance one by one until establishing the system feasibility.
Theorem 4: The set of tasks Ψj assigned to processor Pj is feasible under degradation
mode level 2: Removal algorithm if and only if the set of non abandonable tasks set
Ψnaj

UΨna
j
≤ 1 and UeΨna

j
≤ 1. (19)

Proof: Directly follows from the proof of the theorem 4 in [18]

5.4 Reconf-Algorithm

To adjust the framework to cope with any unpredictable external event such as new
task arrivals, task removal, and increase-decrease power supply, we characterize a
reconfiguration as any procedure that permits to reconfigure the system to be feasible,
i.e., satisfying its real-time and energy constraints with the consideration of system
performance optimization. We propose an approach with two successive adaptation
strategies to reconfigure the system at run-time. The two adaptation strategies are
performed in a hierarchical order as depicted in Fig. 1.

– Degradation mode level 1: EDH-MK Algorithm
– Degradation mode level 2: Removal Algorithm

6 Functionalities

In this section we explain all functionalities of ARTE in details while showing their
specifications and various characteristics regarding the problem of real-time scheduling
in reconfigurable energy harvesting systems.

6.1 Task Set Generator

Task Model The current version proposes a task model according to the Liu and
Layland task model with energy related parameters. All tasks are considered peri-
odic and independent. Each task τi is characterized by i) worst case execution time
WCET Ci, ii) worst case energy consumption WCEC Ei, and iii) its period Ti. It is
considered that tasks have implicit deadlines, i.e., deadlines are equal to periods. In
addition, each task is characterized by a degree of importance Li which define the
functional and operational importance of the execution of the task vis-a-vis the appli-
cation. Moreover, tasks are considered to be (m,k)-firm constrained deadlines. Tasks
are classified into two categories: the first is firm task set with (1,1)-firm deadline
constraints; the other is a set of soft tasks with (m,k)-soft deadline constraints. And

13

Fig. 1. The reconfiguration scenarios generator tool.

a boolean Ai to determine if a task is abandonnable or not.
The used task sets can be loaded into the simulator either through the GUI by using
a file browser or entering the parameters manually, or by using task set generator as
depicted in Fig.2 .
For the simulation results to be credible, the used task sets should be randomly

generated and varied sufficiently. The current version includes by default a generator
based on the UUniFast-Discard algorithm [25] coupled with a hyper-period limitation
technique [26] adapted to energy constraints. This algorithm generates task sets by
dividing among them the CPU utilization (U =

∑ Ci

Ti
) and the energy utilization

(Ue =
∑ Ei

TiPr
where Pr is the recharging function) chosen by the user. The idea be-

hind the algorithm is to distribute the system’s utilization on the tasks of the system.
When we add the energy cost of tasks to the system, we end up with two parameters
to vary and two conditions to satisfy. The algorithm in its current version distributes
U and Ue uniformly on the tasks then it finds the 2-tuple (Ci, Ei) which satisfies all
the conditions namely Ui, Ue and energy consumption constraints. The operation is
repeated several times until the desired 2-tuple approaches the imposed conditions.
Finally, the algorithm returns as a result a time and potentially energy feasible sys-
tem. The (m,k)-firm parameters are randomly generated in the interval [1, 10]. We
define three levels of importance then the degree of importance is randomly gener-
ated in the interval [1, 3] where 1 is the higher importance level. The parameter Ai
is randomly generated in the interval [0, 1].

6.2 Reconfiguration Scenarios Generator

In order to represent as near as possible the real behavior of the physical reconfig-
urable energy harvesting real-time embedded systems we developed a reconfiguration

14

Fig. 2. The task set generator tool.

scenarios generator tool. Through the GUI the user can use personalized reconfigura-
tion scenarios by selecting the user personalization option, or using random reconfig-
uration scenarios by using the random task set generator as depicted in Fig. 3.
The option user personalization offers to the user the possibility to generate recon-
figuration scenarios that modify the applicative functions i.e., add-remove software
tasks or increase-decrease the power supply of the system. For the simulation results
to be credible, the used reconfiguration scenarios should be randomly generated and
varied sufficiently. The current version includes by default a reconfiguration scenar-
ios generator which offers the possibility to generate three kinds of reconfiguration
scenarios: i) high dynamic system, ii) medium dynamic system, and iii) low dynamic
system. The randomly reconfiguration scenarios algorithm calculates the number of
jobs Njobs in the system upon one hyper-period.

– High dynamic system: the generator will add randomly n tasks where n is ran-
domly in the interval [10%, 3%] from Njobs.

– Medium dynamic system: the generator will add randomly where n is randomly
in the interval [5%, 1%] from Njobs.

– Low dynamic system: the generator will add randomly where n is randomly in
the interval [1%, 0%] from Njobs.

6.3 Simulation Tool

The aim of this tool is to simulate the scheduling of a system according to the pa-
rameters and the assumptions of the user, mainly the task set, and the scheduling
policy. But the purpose of ARTE is not only restricted to checking the feasibility of
a given system but also to simulate and analyze the performance of the scheduling
policies when unpredictable reconfiguration scenarios occur in the system. Through

15

Fig. 3. The reconfiguration scenarios generator tool.

the main interface as depicted in Fig.4 the user have the possibility to use task sets
loaded into the simulator either through the GUI by using a file browser or entering
the parameters manually, or by using task set generator. When the user creates a
system the hyper period will be calculated automatically and displayed in the GUI.
For simulation the user choose the scheduling policy as well as the time interval for
simulations. Two kinds of analyzes can be performed: scheduling simulation and test
feasibility. The user can generate a set of reconfiguration scenarios to the system.

7 Case Study

This section presents a case study through which we can show the different features
and functionalities implemented in ARTE as well as to explore the performance of
the proposed EDH-MK algorithm and Reconf-Algorithm in order to keep feasible
executions with graceful QoS after any external reconfiguration scenario that may
evolve the system towards an unfeasible state. For this aim we create a new system
where we generate randomly a task set with parameters in table 1. Initially, we have
verified the task set feasibility using the simulator tool Fig.5. Then, we have choose to
generate a random high dynamic reconfiguration scenario using the reconfiguration
scenario tool Fig. 6. Thereafter, the system evolves toward an unfeasible state Fig. 7.
In order to analyze the EDH scheduler performance we have run a simulation on 100
time units. The EDH scheduler provides 114 deadline miss Fig. 8. In order to analyze
the EDHMK scheduler performance we have run a simulation on 100 time units. The
EDHMK scheduler provides 16 deadline miss Fig. 9.

16

Fig. 4. The simulation tool.

Fig. 5. Random system generation.

17

Fig. 6. Random reconfiguration scenario generation.

Fig. 7. Test system feasibility.

18

Fig. 8. EDH simulation.

Fig. 9. EDH-MK simulation.

19

Table 1. Initial System Configuration.

File Name systemfile.txt
Power Rate 10
Processor Utilization 0.8
Energy Utilization 0.8
Number of tasks 10
Emax 200
Emin 2
Battery Capacity 200
Proc number 1

8 Future Works

The actual release offers many important features where the main purpose is to pro-
vide a simulator tool which provide the flexibility and the performance to deal with
unpredictable reconfiguration scenarios. But, it has been made in a hurry and im-
provements are planned to address all features targeted by the proposed simulator
tool.
The authors are now working on:

– the development of an extension of the developed graphical user interface to fa-
cilitate the use of the simulator by a large number of users, and to provide our
tool with a GUI to display the simulation results in an interactive and intuitive
way. Three different views envisaged: a time chart, a processor view and an en-
ergy curve as well as a comparison results view permits to the user to see the
simulation of selected scheduling policies,

– implement other task models in the simulator,
– implement other scheduling approaches in the simulator, such as the fixed priority

approaches.
– implement the multiprocessor platforms, and develop new scheduling techniques

based on the migration of tasks between the different processors,
– finally, we plan the use of a distributed system decentralizing the control, and

more precisely the use of an multi-agent system MAS. We aim through the use of
MAS to represent as near as possible the real behavior of the physical networked
reconfigurable energy harvesting real-time embedded systems thanks to the de-
veloped simulator. Motivated by these considerations, we choose to deploy the
intelligent agents to simulate the dynamic behavior of networked reconfigurable
energy harvesting real-time embedded systems.

9 Conclusion

This report presents ARTE, a real-time scheduling simulator for reconfigurable en-
ergy harvesting real-time embedded systems. Presently, the ARTE simulator is able
to simulate accurately the execution of task sets of a reconfigurable energy harvesting
system. We briefly presented existing simulation tools. However, none of the aforemen-
tioned efforts respond to the new criteria of flexibility, agility and high-performance.
Thus, there is a need to develop a new simulation tool that offers the ability to deal
with the dynamic behavior of reconfigurable systems. We have detailed the differ-
ent features provided by ARTE: 1) scheduling simulation, 2) feasibility tests, and 3)
percentage of missed deadline measurement. We have described the three main tools

20

of ARTE: 1) random generator of task sets, 2) random generator of reconfiguration
scenarios sets, and 3) a simulator tool. Finally, we presented some expanding features
we will implement.

10 Proposed Thesis Outline

Abstract

Introduction

I State of The Art

1 Real-Time Scheduling

2 Energy Harvesting Systems

3 Real-Time Scheduling for Energy Harvesting Systems

4 Reconfigurable Systems

5 Real-Time Scheduling for Reconfigurable Systems

II Contributions

1 Real-Time Scheduling under Energy constraints for Reconfigurable Sys-
tems: Monoprocessor Case

2 Real-Time Scheduling under Energy constraints for Reconfigurable Sys-
tems: Multiprocessor Case

3 Case Study: Biomedical Application

4 Simulation Tool: ARTE

General Conclusion

References

1. A. Gharbi, M. Khalgui, and M. A. Khan, “Functional and operational solutions for
safety reconfigurable embedded control systems,” in Embedded and Real Time System
Development: A Software Engineering Perspective, pp. 251–282, Springer, 2014.

2. R. M. da Silva, I. F. Beńıtez-Pina, M. F. Blos, D. J. Santos Filho, and P. E. Miyagi,
“Modeling of reconfigurable distributed manufacturing control systems,” Technological
Innovation for Cloud-Based Engineering Systems, vol. 48, no. 3, pp. 1284–1289, 2015.

3. Y. Chen, X. Mao, F. Hou, Q. Wang, and S. Yang, “Combining re-allocating and re-
scheduling for dynamic multi-robot task allocation,” in Systems, Man, and Cybernetics
(SMC), 2016 IEEE International Conference on, pp. 000395–000400, IEEE, 2016.

4. H. Grichi, O. Mosbahi, M. Khalgui, and Z. Li, “Rwin: New methodology for the devel-
opment of reconfigurable wsn,” IEEE Transactions on Automation Science and Engi-
neering, vol. 14, no. 1, pp. 109–125, 2017.

21

5. H. Grichi, O. Mosbahi, and M. Khalgui, “Rocl: New extensions to ocl for useful ver-
ification of flexible software systems,” in Software Technologies (ICSOFT), 2015 10th
International Joint Conference on, vol. 1, pp. 1–8, IEEE, 2015.

6. M. G. Harbour, J. G. Garćıa, J. P. Gutiérrez, and J. D. Moyano, “Mast: Modeling
and analysis suite for real time applications,” in Real-Time Systems, 13th Euromicro
Conference on, 2001., pp. 125–134, IEEE, 2001.

7. F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Cheddar: a flexible real time scheduling
framework,” in ACM SIGAda Ada Letters, vol. 24, pp. 1–8, ACM, 2004.

8. R. Urunuela, A.-M. Déplanche, and Y. Trinquet, “Storm a simulation tool for real-time
multiprocessor scheduling evaluation,” in Emerging Technologies and Factory Automa-
tion (ETFA), 2010 IEEE Conference on, pp. 1–8, IEEE, 2010.

9. P. Courbin and L. George, “Fortas: Framework for real-time analysis and simulation,”
Proc. of WATERS, pp. 21–26, 2011.

10. Y. Chandarli, M. Qamhieh, F. Fauberteau, and D. Masson, YARTISS: A Generic, Modu-
lar and Energy-Aware Scheduling Simulator for Real-Time Multiprocessor Systems. PhD
thesis, UPE LIGM ESIEE, 2014.

11. S. Kato, R. Rajkumar, and Y. Ishikawa, “A loadable real-time scheduler suite for multi-
core platforms,” Technical report, Department of Electrical and Comptuter Engineering,
2009.

12. M. Holenderski, M. Van Den Heuvel, R. J. Bril, and J. J. Lukkien, “Grasp: Tracing,
visualizing and measuring the behavior of real-time systems,” in International Workshop
on Analysis Tools and Methodologies for Embedded and Real-time Systems (WATERS),
pp. 37–42, 2010.

13. J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H. Anderson, “Litmusˆ rt:
A testbed for empirically comparing real-time multiprocessor schedulers,” in Real-Time
Systems Symposium, 2006. RTSS’06. 27th IEEE International, pp. 111–126, IEEE, 2006.

14. J. W. McCormick, F. Singhoff, and J. Hugues, Building parallel, embedded, and real-time
applications with Ada. Cambridge University Press, 2011.

15. A. Gammoudi, A. Benzina, M. Khalgui, D. Chillet, and A. Goubaa, “Reconf-pack: A
simulator for reconfigurable battery-powered real-time systems,” in 30th European Sim-
ulation and Modelling Conference, 2016.

16. M. L. Dertouzos, “Control robotics: The procedural control of physical processes,” in
Proceedings IF IP Congress, 1974, 1974.

17. M. Chetto and A. Queudet, “A note on edf schedulingfor real-time energy harvesting
systems,” IEEE Transactions on Computers, vol. 63, no. 4, pp. 1037–1040, 2014.

18. M. Chetto, “Optimal scheduling for real-time jobs in energy harvesting computing sys-
tems,” IEEE Transactions on Emerging Topics in Computing, vol. 2, no. 2, pp. 122–133,
2014.

19. G. Bernat and A. Burns, “Combining (/sub m//sup n/)-hard deadlines and dual prior-
ity scheduling,” in Real-Time Systems Symposium, 1997. Proceedings., The 18th IEEE,
pp. 46–57, IEEE, 1997.

20. M. Hamdaoui and P. Ramanathan, “A dynamic priority assignment technique for
streams with (m, k)-firm deadlines,” IEEE transactions on Computers, vol. 44, no. 12,
pp. 1443–1451, 1995.

21. S. Hua and G. Qu, “Energy-efficient dual-voltage soft real-time system with (m, k)-firm
deadline guarantee,” in Proceedings of the 2004 international conference on Compilers,
architecture, and synthesis for embedded systems, pp. 116–123, ACM, 2004.

22. G. Quan and X. Hu, “Enhanced fixed-priority scheduling with (m, k)-firm guarantee,”
in Real-Time Systems Symposium, 2000. Proceedings. The 21st IEEE, pp. 79–88, IEEE,
2000.

23. P. Ramanathan, “Overload management in real-time control applications using (m, k)-
firm guarantee,” IEEE Transactions on Parallel and Distributed Systems, vol. 10, no. 6,
pp. 549–559, 1999.

24. L. Niu and G. Quan, “Energy minimization for real-time systems with (m, k)-guarantee,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 14, no. 7,
pp. 717–729, 2006.

22

25. E. Bini and G. C. Buttazzo, “Measuring the performance of schedulability tests,” Real-
Time Systems, vol. 30, no. 1, pp. 129–154, 2005.

26. J. Goossens and C. Macq, “Limitation of the hyper-period in real-time periodic task set
generation,” in In Proceedings of the RTS Embedded System (RTS01, Citeseer, 2001.

