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DE BROGLIE WAVES AND QUANTIFICATION OF KEPLERIAN ORBITS 

IN A PLATONIC QUADRIDIMENSIONAL SPACE 

 

ONDE DE PHASE DE DE BROGLIE 

ET QUANTIFICATION DES ORBITES KÉPLÉRIENNES 

DANS UN ESPACE QUADRIDIMENSIONNEL PLATONICIEN 

 

Alain Jégat 

 

Abstract 
 

The properties of the platonic quadridimensional space, the modeling of De Broglie waves 

and the resulting concept of mass (see hal-01165196; hal-01207447; hal-01213447) seem to 

allow a quantum approach to the laws of gravitation by a postulate of quantified declination. 

The quantized declination postulate proposed in the article hal-01584918 is here 

supplemented by a second quantized declination postulate concerning, this time, the direction 

of the absolute velocities of the moving bodies. 

These absolutes quanta are independent of the chosen reference frames and of the rest 

masses of the considered bodies. They are related to the De Broglie waves generated by the 

massive bodies in gravitational interaction and lead, surprisingly, to the well-known 

characteristics of Keplerian orbits. 

We propose here an introduction, restricted to the relatively simple case where the guiding 

angle of the observation frame is equal to
2


. 

 

 

Résumé 
 

Les propriétés relativistes de l’espace quadridimensionnel platonicien, la modélisation de 

l’onde de phase et le concept de masse qui en découlent (cf. les documents hal-01081576; hal-

01205805; hal-01213062) semblent permettre une approche quantique des lois de la 

gravitation. 

Le postulat de déclinaison quantifiée proposé dans l’article hal-01577669 est ici enrichi d’un 

second postulat de déclinaison quantifiée concernant, cette fois, la direction des vitesses 

absolues des corps en mouvement. 

Ces quanta absolus sont indépendants des référentiels d’observation choisis et des masses 

au repos des corps considérés. Ils sont liés aux ondes de phase de De Broglie générées par les 

corps massifs en interaction gravitationnelle et conduisent rapidement, de façon surprenante, 

aux caractéristiques bien connues des orbites képlériennes. 

Nous en proposons ici une introduction, restreinte au cas relativement simple où l’angle 

directeur du référentiel d’observation est égal à  
2


. 

 

 

 



2 
 

1. The geometrical framework 

This modeling is based on the Platonic space outlined in the following articles: 

« UN MODÈLE PLATONICIEN (EUCLIDIEN-PROJECTIF) POUR LA THÉORIE DE LA 

RELATIVITÉ RESTREINTE » (pré-publication hal-01081576, version 1). 

« A PLATONIC (EUCLIDEAN-PROJECTIVE) MODEL FOR THE SPECIAL THEORY OF 

RELATIVITY » (pre-publication hal-01165196, version 1). 

 , , , ,O i j k h  is a frame for the four-dimensional Euclidean space whose axes are denoted

 OX ,  OY ,  OZ ,  Ow ; the direction of the projection is that of the vector h . 

Following the hal-01207447 v1 and hal-01213447 v1 articles, the notion of relativistic mass of a 

particle is described here as a result of its interaction with a stratification of the four-

dimensional Platonic space by a sequence of hyperplanes ( )nH which are orthogonal to the 

direction of the projection h , regularly spaced by a distance
0 0w  . 

This distance 0w  is equal to the Compton wavelength of the particle in question (for example, 

for an electron, 122, 426.10e

e

h
w

m c

   , where 
em  denotes the rest mass of the electron). 

 

These concepts are detailed in the HAL articles below: 

 

hal-01165196, v1 : A platonic (euclidean-projective) model for the special theory of relativity. 

hal-01207447, v1 :  Towards a modeling of De Broglie waves in a platonic quadridimensional 

space. 

hal-01213447, v1 :  An idea of the mass of a particle in a platonic quadridimensional space. 

hal-01340134, v1 :  One-dimensional elastic collisions in a platonic quadridimensional space. 

hal-01378215, v1 : About time measurement in a platonic quadridimensional space. 

hal-01584918, v1 : A quantified approach to the laws of gravitation in a platonic quadri- 

  dimensional space. 
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2. Presentation of  the object of this study 

 

 

 

 

 

 

 

 

 

 

 

Observers of a reference frame R study the movement of two bodies 1'C  and 2'C  in 

gravitational interaction. 

These two objects are in fact the projections of two bodies 
1C  and 2C  moving in the Platonic 

space (see also the diagram in paragraph 3). 

Let us denote by
1  and

2 the measures of the angles formed by the velocities 1v  and 2v  of these 

two bodies with the hyperplanes of respective equations  1W W C  and  2W W C ; by 
1  

and 
2   the measures of the angles formed by the vector i  and the absolute velocities 1absv  and 

2absv
 
of the observed bodies 1'C  and 2'C  :  1 1, absi v   and  2 2, absi v  . 

We shall introduce a double postulate of quantified declinations of these angles 

(generated by the De Broglie waves linked to their masses), which, by generating the mutual 

accelerations of these two bodies in the Platonic space, will show us that the elliptic trajectories 

of  1'C  and 2'C  here observed in the reference frame R  are the projections of the quantified 

quadridimensional trajectories thus obtained from the bodies 
1C   and 2C . 

To simplify the calculations and the presentation of this quantum gravitational approach, the 

observation frame chosen is / 2R , the orbits of 1'C  and 2'C  in this reference frame are in a 

plane whose equation is 0z z , the axes of / 2R  are positioned so as to have their origin / 2O  on 

the axis  OW  and their guiding vectors  / 2i , / 2j , / 2k  coincide with the guinding vectors i , 

j , k  of the axes  OX ,  OY ,  OZ . 

The orbits chosen for 1'C  and 2'C  in this reference frame are ellipses (the absolute velocities 

considered being small with respect to the speed of light). 

See diagram above and the following diagrams (axes  / 2O z  and  OZ
 
are not shown). 
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3. Quantified declination postulates 

3.1. First postulate 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
Referring to the diagram above, consider the De Broglie mass wave generated by the 

body
iC  and perceived by the body jC . Let us note 

,i jd  the distance i jC H , where jH  

designates the projection of jC  on the hyperplane PiH  associated with iC  (that is to say 

the hyperplane orthogonal to iv  and passing through iC ). 

We shall adopt the following assumption:  

in the Platonic space, the angular variation ,i j  corresponding to the change of the 

trajectory undergone by the body jC
 
perceiving an occurrence of the mass wave 

emitted by the body iC  is independent of the reference frame R  and of the rest mass 

of the considered body (see also paragraph 8) and has the following value: 

 
, 2

3

,

sin cosi j j

i j

Gh

c d
    .   [1] 
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 Note that if one sets , ,i j i j Pd n l  , where 
32

P

Gh
l

c
  denotes the Planck length, then 

the relation [1] becomes:        

 
, 2

,

2
sin cosi j j

i jn


         (with, in fact, 

,

,

i j

i j

P

d
n E

l

 
  

 
). 

Moreover, we have:        
2 2 2

2
2

, 2

cos cos sin

sin

i i
i j

i

d
  





 ,   [1bis] 

(see details in paragraph 8.1) ,  

it comes therefore:         

   

2

, 3 2 2 2 2

sin sin cos

sin cos cos

i j

i j

i i

Gh

c

  


   
 


.   [1ter] 

 

 

3.2. Second postulate 

 

 

 

 

 

 

 

 

 

 

 

We will introduce in this article a second postulate of quantified declination, which completes 

the article hal-01577669. This assumption concerns angles  1 1, absi v   and  2 2, absi v  : 

when the body jC
 
perceives an occurrence of the mass wave generated by the body iC , the 

direction of the vector abs jv
 
is modified by a quantum ,i j , independent of the 

reference frame R  and of the rest mass of the body considered, which has for value: 

 
, 2

3

,

sin
.
cos cos

i j

i ji j

Gh

c d




 
 


.  [2] 
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Like before, if one sets , ,i j i j Pd n l  , where 
32

P

Gh
l

c
  denotes the Planck length, then 

the relation [2] becomes: 
 

, 2

,

2 sin

cos cos
i j

i ji jn

 


 
 


. 

 Moreover, with:                        
2 2 2

2
2

, 2

cos cos sin

sin

i i
i j

i

d
  





 ,     (cf. Annex 8.1) 

we obtain :   

2

, 3 2 2 2 2

sin sin
.

sin cos cos cos cos

i
i j

i i i j

Gh

c

 


     
 

 
 

[2bis] 

 

4. Frequency of  the mass wave perceived by the body Cj  and variation of the 

angles j  and j  of  its trajectory 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Referring to the diagram above, consider the mass wave generated by the body 
iC  and 

perceived by the body jC . 

Let us denote by  a measure of the angle  ,abs i abs jv v . 

A first wavefront 0 (0)F  is perceived by jC  when it is at (0)jC . 

The next wavefront 1F  is then located at 1(0)F , separated by the absolute wavelength 

0 tanabs i iw  
 
(in addition, see the diagram in paragraph 8). 

After an absolute time T , the bodies iC  and jC  are at ( )iC T  and ( )jC T  and the 

wavefront 1F  is at 1( )F T , with the relations: 

1
cos cosi

T
F

 


        and     cosj jC T    . 
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Thus, the body jC  perceives the wavefront 
1F  when the absolute duration T  verifies 

the equation:   1jl C F    ,     i.e.     0 tan
cos

cos cos cos

i i
j

i

w T
T




  

 
    , 

 

i.e. :    0 sin

1 cos cos cos

i i

i j

w
T



  


 


   (absolute period of the mass wave). 

 

It follows that the absolute frequency 
,i jf  of this mass wave is given by: 

 

,

0

1 cos cos cos1

sin

i j

i j

i i

f
T w

  




 
 

.   

 

With the equality    in the particular case studied in these first paragraphs, the 

absolute frequency 
,i jf  of this phase wave becomes: 

 

,

0

1 cos cos

sin

i j

i j

i i

f
w

 







.    [3] 

     

 

• This result allows us to estimate the derivative of  the direction angle j  of the 

trajectory followed by the body jC  with respect to the absolute time T (although 

the mass waves have high frequencies, the term "derivative" seems unsuitable 

for quantifying quantities):  

 

, , 3 2 2 2 2

0

1 cos cos
sin sin cos

sin cos cos

j i j

i j i j i j

i i i

d Gh
f

dT c w

  
   

   


  

 
. [4] 

 

 

• The estimation of the variation of the angles 
1  and 

2  will appeal, for its part, to 

a complementary hypothesis: 

during the perception by the body jC  of a mass wavefront generated by the body 

iC , the angle j is modified by a quanta ,i j  (cf.3.2.) and, concomitantly, the 

angle i is also modified from this same quanta. 

By reciprocity, this hypothesis thus leads us to the common value of these 

derivatives: 

1 2
1,2 1,2 2,1 2,1

d d
f f

dT dT

 
         [5] 

 

i.e. , noting 
d

dT


 this common  value: 

 

2
1 2

3 2 2 2 2
11 2 0

sin1 cos cos
. .sin .

cos cos sin cos cos

i
i

i i i i

d Gh

dT c w

 


     





 
 

    
  .    [5bis] 
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5. Absolute energy,  absolute momentum and absolute angular momentum 

5.1. Recall of definitions 
 

We will retain the definitions adopted in the article hal-01584918: 
 

absolute velocity of a particle (without unit):  cosabsv  ,   (cf. note in § 8.1.) 
 

absolute mass of a particle (in kg):  
0 sin

abs

h
m

c w 



, 

absolute energy of a particle (in J):  2

0 sin
abs abs

hc
E m c

w 
 


. 

 

By choosing for absolute potential energy of the system the quantity:  
 

2

1 2

2

01 02 1 2sin sin

abs abs
Pabs

Gm m G h
E

c w w   
   

 
, 

 

the conservation of energy in the two-body problem becomes: 
 

2

12

01 1 02 2 01 02 1 2sin sin sin sin

hc hc G h
k

w w c w w    
  

   
  [6] *. 

 

 

Similarly, by setting 1 2' 'C C  , 
1 1 'C     and  

2 2 'C   , where   denotes the 

barycenter of the points 
1 'C  and 

2 'C  respectively assigned to the coefficients 
1absm

 
and 

2absm , the conservation of the absolute angular momentum of the system leads to: 
 

1 2 2

01 1 02 2

sin sin
tan tan

h h
k

c w c w
   

 
 

 
  [7] * 

 

with the relations 
1 2     ;  2 01 1

1

1 2 01 1 02 2

sin

sin sin

abs

abs abs

m w

m m w w


  

 


 

   
 ; 

1 02 2
2

1 2 01 1 02 2

sin

sin sin

abs

abs abs

m w

m m w w


  

 


 

   
    and  1

2 1

2

abs

abs

m

m
  . 

 

 

And the consideration of absolute momentum leads to : 
 

01 1 02 2

0
tan tan

h h

c w c w 
 

 
  [8]. 

(N.B. :  to avoid factors tan i , prefer [8bis] :  1 2

01 1 02 2

cos cos
0

sin sin

h h

c w c w

 

 
 

 
.) 

 

 

*( 1k  and  2k are two constants). 
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5.2. Link between the second postulate and the conservation of the absolute 

angular momentum of the system 
 

A profound link is to be emphasized between the two quantities quoted in this 

paragraph:  

it can be shown that the second postulate of quantified declination, relative to the 

variation of the angles 
i , is equivalent to the principle of conservation of the absolute 

angular momentum of the system. 

This demonstration is attached as Annex 8.2. 

 

 

 

5.3. Note about the absolute energy of the system 
 

This quantity, used in the article hal-01584918, made it possible to establish the 

trajectories of the bodies in gravitational interaction in the four-dimensional Platonic 

space and to thus find, according to the classical expectations, those of their projections. 

In this article, it should be emphasized that the study of these trajectories will be carried 

out according to a different process (detailed in paragraph 7.) which does not make use 

of this concept (the study is here based on the two postulates of quantified declinations 

and some basic geometrical considerations), but that the results obtained here remain 

fully consistent with this concept of absolute energy of the system. 

As an indication, a comparative study was conducted for the Sun-Earth system with 

these two approaches. 

Results using the relationships [P1] and [P2]: 

 
1 2 2 2 1 13 3

02 01

1 22 2 2 2 2 2

2 2 1 1

cos sin sin cos sin sin

1 cos cos cos
sin cos cos sin cos cos

Gh Gh

c w c wd

dT

     
 

  
     

    
     

       
  
 
  

 

and :  

 

 

2 2

01 02 01 02 1 2 0

2

01 1 02 2

cos sin sin cos sin sin sin

.
sin sin

ji
i j i j i i

i

dd d
w w w w w

dT dT dTd

dT w w

 
       



 

 
        

 
  

 

from potential energy (cf. hal-01584918), are discussed in paragraph 8.4.6 and those 

based on [G6bis] :   1 2cos cos cos
d

dT


      (cf. § 6.)  are discussed in paragraph 

8.4.1. 

As can be seen, these results are consistent. 
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6. Some preliminary geometric considerations 
 

Before detailing, in the following paragraph, the iterative process chosen for the study of 

the movement of the 
1C and 

2C bodies, it will be useful to establish some elementary 

geometric relations between the different quantities to be measured. 

The diagram below illustrates the positions of the observed bodies 
1'C and 

2'C at two 

absolute moments T and T dT . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

First, remember that 1 1cosabsv   and 2 2cosabsv   (see 8.1); hence: cosi idl dT . 

Therefore, in the    ' 'i iC T C T dT   triangles, we have:  

cos

sin sin

i i i idl dT

d d

  

   
   . 

Then, successively: 
 

cos
sini

i

d

dT





  ;  [G1] 

 

1 2

1 2

cos cos 

 
 .  [G2] 
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And, with 
1 2     : 

 

1 2cos cos
sin

d

dT

 





  ;  [G3] 

1
1

1 2

cos

cos cos


 

 



 ;    2

2

1 2

cos

cos cos


 

 



.  [G3bis] 

 

With   1 1

2 2

cos

cos

 

 
    and  

01 1 02 2tan tanw w       (cf. [8]), we obtain : 

 

01 11

2 02 2

sin

sin

w

w



 





 ;    hence, with    
0 sin

abs i

i i

h
m

c w 



 , the relation :    21

2 1

abs

abs

m

m




  . 

 

 

Important note: 

the relation [G3] will be used in place of the relation 
cos i

i

d

dT




 which had been 

retained in the article hal-01584918, page 9. 

Indeed, this last relation is only suitable for quasi-circular trajectories and was at the 

origin of the underlined defects for trajectories with high eccentricities. 

 

 

 

Link between increases d , d  and d  and calculation of  
d

dT


: 

This study being limited to Keplerian orbits, for which 
1 2  , put  ' ,i absiC v   . 

With     ' , 'i id C T C T dT      ,     ,absi absid v T v T dT     

and    d t dT T     , we get easily: d d d    . [G4] 

 This relation allows us, by using [G3] and [5], to obtain successively: 

 

d d d

dT dT dT

  
  ,  then :  1 2

1,2 1,2 2,1 2,1

cos cos
sin

d
f f

dT

 
  




     .       [G5] 

 

 

Finally, we will reuse the relation [G6]:  cos cosi
i

d

dT


   (see hal-01584918 pages 8 

and 9) to deduce, from 1 2d dd

dT dT dT

 
  , the relation: 

 

 1 2cos cos cos
d

dT


    .   [G6bis] 
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7. Study of the movement 
 

From the previous relations, we will be able to set up an iterative process to study 

the motion of the two bodies in interaction as a function of the absolute time T. 

As indicated in paragraph 5.3, this process will be significantly different from the one 

adopted in article hal-01584918 because it involves only the quantified assumptions [1] 

and [2], the conservation of the absolute momentum [5] of the system and the 

considerations detailed in paragraph 6. 
 

Insofar as the mass differences chosen are large and the speeds involved are small 

compared with the speed of light, the position of the barycenter   of the system does 

not vary very much (its fluctuations may initially be neglected relative to the distance 

considered in the examples in paragraph 8). 

Therefore, the postulates [1] and [2], and the results [1bis], [3], [4], [5], [G3],[G5]  and 

[G6] can already allow us to set up an iterative process to study the motion of two 

bodies in interaction as a function of the absolute time T. 

We will choose   as the origin of the reference frame. 

 

• The masses of the bodies 
iC  and jC  are in a first approximation equal to the sums 

of the masses of the particles which constitute them. 

The stratification distances 
0iw  and 0 jw  taken into account in the calculations on 

the basis of the relation 0
sinabs

h
w

cm 
   are fictitious distances which make it 

possible to generate the occurrences of the mass waves corresponding to the 

accumulations of the occurrences generated by all of these particles. 

The masses of these bodies are to be indicated in cells C4 and E4. 

 

• The initial value of  is the distance at the periapsis (to be indicated in cell G5). 

 

• The eccentricity e  of the elliptic trajectories is to be indicated in the cell G4. 

• The initial values of the angles 
1  and 

2  are estimated from the velocity 2 pv  at the 

periapsis of the body 2'C  and from the relations: 

cos
i p

abs i i

v
v

c
  . 

 

• The initial value of   is 0  and that of   is 
2


. 

 

• The coordinates 1W  and 2W  of the bodies 1C  and 2C  are implemented by the 

increments 1 1sindW dT    and  2 2sindW dT  . 

This, beyond the situation of these bodies in the Platonic space, makes it possible to 

evaluate the proper durations 1t  and 2t  elapsed for 1C  and 2C , from the relation 

i
i

W
t

c


  . 

The initial values of 1W and 2W are chosen null, arbitrarily.  
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• In order for these tables to give usable results, the absolute time step dT  of the 

cell J5 must be adjusted so that the measurement of the angle 
max  appearing in the 

cell I17  is close to 2 . 

This setting requires some successive tests (... and a little patience ...). 

 

The iterative process has been applied to the following situations (see paragraph 8): 
 

✓ 
1'C  : Sun  and 

2'C  : Earth, 

✓ 
1'C  : Sun  and 

2'C  : Mercury, 

✓ 
1'C  : Sun  and 

2'C  : Neptune, 

✓ 
1'C  : Earth and 

2'C  : Moon, 

✓ the Pulsar PSR B1913+16. 
 

 

These situations were first calculated using the classical laws of gravitation (the 

formulas used are given in Appendix 8); which gives in the Excel tables of paragraph 8 

the quantities referred to as "theoretical" (columns AN to AQ). 

They were then simulated as indicated in this paragraph. 

Finally, the results of these simulations and the "theoretical" data were compared. 

At the margins of errors due to the numerous iterations (here 20 000) and the 

software used (which only retains 15 significant digits for each calculation), this process 

allows us to find the main characteristics of each of the different orbits established 

according to the laws of classical mechanics. 

By way of illustration, the maximum errors recorded for the Sun-Earth system are of 

the order of 0,004 % for the speeds, 5,6.10-5 % for the distances, 2.10-5 % for the period 

of revolution and 0,075% for the eccentricity. 

In the article hal-01584918, it was found that, as the eccentricity increases, the 

maximum errors on velocities and distances remain low, but that the error on the period 

of revolution increases. The relation [G3bis] (cf §6) corrects this anomaly significantly:  

for e close to 0.2, the relation used previously led to an error close to 0.8%, it becomes 

here close to 0.0036%. 

The "Excel" file corresponding to this iterative process is attached. 

The numbers of the formulas used are specified on line 17 of this file. 
 

As the software used retains only 15 significant digits, it has also been noticed that 

large mass differences induce a significant increase in relative errors for the observed 

body velocities 1'C and 2'C . 

For the calculation of the angle 1  (closely related to the estimate of the speed of the 

body 1'C ), it is therefore preferable, in these situations, to replace the iterative 

method proposed above by the relation 02
1 2

01

arctan tan
w

w
 

 
  

 
 (from conservation of 

the absolute momentum). This correction is very effective: for the Sun-Mercury system, 

for example, the average of the errors observed for the speed of the Sun (observed body 

1'C ) has thus decreased from 0.26% to 0.0012%. 
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8. Related documents 
 

8.1. Calculation of  the distance  d1,2 

The quantities used in this paragraph refer to the diagrams in paragraphs 2 and 3. 

Since the movements considered here are assumed to take place with a third constant 

coordinate (
0Z Z ) in the space  , , , ,O i j k h , the velocity vector of the body 

1C  is given, with 

1   not multiple of   , by: 

 

 

1

1

1

1

cos cos

cos sin

0

sin

v

  

  



  
 

 

 
 
 
 

   (cf. note below). 

Let 
1CH  be the hyperplane associated with  1 1 1 1 1, , ,C X Y Z W  (hyperplane orthogonal to 1v  

passing through 
1C ) and let 

2H  be the projection of 
2C  onto 

1CH . 

We thus have the equivalence:   1, , , CM X Y Z W H
 
if and only if  

        1 1 1 1 1 1cos cos cos sin sin 0X X Y Y W W               . 

 

As  2 2 2 2 2 1, , , CH X Y Z W H ,  we have : 

        1 2 1 1 2 1 1 2 1cos cos cos sin sin 0X X Y Y W W               , 

from which emerges:        1
2 1 2 1 2 1

1

cos
cos sin

sin
W W X X Y Y


   


          . 

On the other hand, by definition, we have: 

         
2 2 2 2 22

1,2 2 1 2 1 2 1 2 1d X X Y Y W W W W         , 

with : 2 1 cosX X        and   2 1 sinY Y    . 

We thus obtain:       
2

22 2 1
2 1

1

cos
cos cos sin sin

sin
W W


      



 
        

 
, 

i.e.      
2

2 2 21
2 1

1

cos
cos

sin
W W


 



 
   

 
. 

Finally, we arrive at:      
2 2

2 22 2 1
1,2 2 1 2

1

cos cos
1

sin
d W W

 
 



 
     

 
, 

i.e.       
2 2 2

2 2 1 1
1,2 2

1

cos cos sin

sin
d

  





 . 
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Note on the concept of velocity of a punctual object M  in the Platonic space : 
 

given the definition of the absolute time T  (in m), the norm of the speed vector of all the 

mobiles is equal to 1 and the velocity vector
dM

v
dT

  of any mobile M  is given by: 

cos cos cos

cos cos sin

cos sin

sin

v

  

  

 



 
 
 
 
 
 

, 

with any , 

;
2 2

 


 
  
   

and ;
2 2

 


 
  
 

. 

Its absolute speed is given by: 

cos cos cos

cos cos sin

cos sin

0

absv

  

  

 

 
 
 
 
 
 

,  

whose norm is equal to cos . 

For the vector 1v
 
in this paragraph,  

we have 0    and       . 
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8.2. Equivalence between the second quantified declination postulate and the 

conservation of the absolute angular momentum of the system 

 

To conduct this proof, we will call on the following relations:  

[G3] :      1 2cos cos
sin

d

dT

 





  

[G3bis] :  
1 2

cos

cos cos

i
i


 

 



 

[G5] :      
d d d

dT dT dT

  
   

[G6] :      cos cosi
i

d

dT


   

[8] :        
01 1 02 2tan tanw w     

[2ter]:      , 1 2 ,

cos
sin cos cos

sin
i j j i j


    


      (established from [1] and [2]).   

 

Proof : 

The relation [5] :  
1,2 1,2 2,1 2,1

d
f f

dT


       leads to : 

 1 1
1,2 1,2 2,1 2,1

01 1 01 1

cos cos cos cos

sin sin

d
f f

w dT w

   
   

 
   

 
 ; from where, with [G5], we have : 

 
 1 1 21

1,2 1,2 2,1 2,1

01 1 01 1 1 2

cos cos cos coscos cos

sin sin cos cos

d d
f f

w dT dT w

       
   

   

 
     

   

 

With 
1 2     , [8], [G3] et [G3bis], we obtain: 
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1
1 2

101 1 0

coscos cos
cos sin

sin sin

i
i

i i i

d

w dT w

  
   

 





 
 

  

 1 1 2 2 1
1,2 1,2 2,1 2,1

01 1 2 1

cos cos cos cos

sin cos cos
f f

w

     
 

  

  
    

  
. 
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Then, with [G6] : 

2

1 0 0

cos cos sin cos

sin sin

i
i i i

i

i i i i i

dd

w dT w dT

    


 





 
 

  
  

  2 1
1 2 1,2 1,2 2,1 2,1

02 2 01 1

cos cos cos
sin sin

f f
w w

 
    

 

 
     

  
 

The right-hand member R of this equality can then be written successively: 

   2 1
1,2 1,2 1 2 2,1 2,1 1 2

02 2 01 1

cos cos cos cos cos cos
sin sin

R f f
w w

 
       

 
     
 

 ; 

i.e., with [2ter] : 

2 1
1,2 1,2 2,1 2,12 2

02 2 01 1

sin sin

sin sin
R f f

w w

   
 

 
   
 

. 

We arrive thus at : 

2

2
1 0 0 0

cos cos sin cos sin
0

sin sin sin

i
i i i i i

i

i i i i i i i

d dd

w dT w dT w dT

       


  





 
   

   
  ; 

and finally, by integration : 

1 2

01 1 02 2

sin sin
tan tan

h h
k

c w c w
   

 
 

 
. 

Relation that corresponds to the relation [7], expressing the conservation of the absolute 

angular momentum of the system. 

The reciprocal, easy to establish from the previous calculation elements, thus shows the 

equivalence between the second quantified declination postulate and the conservation of 

the absolute angular momentum of the system.       

 

 

 

 

 

 

 

 



18 
 

8.3. Formulas used to obtain theoretical reference data in simulations 
 

The results of the quantified simulations are compared to the theoretical elliptic 

trajectories of two bodies 
1'C  and 

2'C  in gravitational interaction. Given the velocities 

considered, which are low compared to the speed of light, the calculations are made from 

the laws of classical mechanics (the Excel file cells containing these formulas are shown 

below, in parentheses). 

The data used are: the distance at the periapsis pd , the common eccentricity e , the 

masses at rest 
1m  and 

2m . 

From these elements, we obtain: 
 

• the speeds of the two bodies (columns AP and AQ): 

 

 
  

2

1 2

1 2

1 2 cos

1p

G e e
v m

d m m e

 


 
 ,       

 
  

2

2 1

1 2

1 2 cos

1p

G e e
v m

d m m e

 


 
 ; 

 

• the speeds of the two bodies at the periapsis (C6 and E6): 
 

 

 
1 2

1 2

1
p

p

G e
v m

d m m





 ,  

 

 
2 1

1 2

1
p

p

G e
v m

d m m





 ; 

 

• the speeds of the two bodies at the apoapsis (C7 and E7): 
 

 
  

1 2

1 2

1
1

a

p

G
v m e

d m m e
 

 
,    

  
2 1

1 2

1
1

a

p

G
v m e

d m m e
 

 
 ; 

 

• the distances 1 1'C    and 2 2'C    (columns AN and AO): 

2
1

1 2

1

1 cos
p

m e
d

m m e







 
,       1

2

1 2

1

1 cos
p

m e
d

m m e







 
 ; 

 

• the distance at the apoapsis  (G6): 
1

1
a p

e
d d

e





 ; 

• the period of revolution (in seconds) (X6):
  

3

3

1 2

2
1

p

r

d
p

G m m e


 
 ; 

 

• the half-axes of the ellipses traveled by 1'C
 
and 2'C  (AD10 to AD13): 

 

2
1

1 2 1

pdm
a

m m e


 
     and   2

1

1 2

1

1
p

m e
b d

m m e




 
, 

1
2

1 2 1

pdm
a

m m e


 
     and   1

2

1 2

1

1
p

m e
b d

m m e




 
. 

 

The results of the simulations and the comparisons between the reference results and 

the results of the simulations are carried out in the following paragraph. 
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8.4. Results of simulations and comparisons with reference results 
 

The following screenshots were obtained from the attached Excel file. 

Only the data, final results, checks and calculation steps 0 and 1 are displayed here. 

The numbers in brackets ([1], [2], ...) on line 17 refer to the formulas used. The related 

comments are in paragraph 6. 

 

8.4.1. Sun-Earth System (version A) 
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8.4.2. Sun-Mercury System 
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8.4.3. Sun-Neptune System 
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8.4.4. Earth-Moon System 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 
 

8.4.5. Pulsar PSR B1913+16 
 

This last system has been simulated in order to show that the quantified modeling proposed 

in this article remains consistent with the classical gravitational laws for high velocities at 

the periapsis (close to 0.0015c for the body
2'C ). 

Given the high eccentricity of this system (close to 0.627) and to minimize the accumulation 

of rounding errors, its study was conducted over half a period of revolution. 
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8.4.6. Sun-Earth system (version B, based on the concept of absolute potential energy of 

the system developed in the article hal-01584918) 
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9. Conclusion 

In addition to the article hal-01584918, this article offers a quantification of the angles 
i

measuring the orientation of the absolute speeds of the observed bodies. 

In the relativistic Platonic space, these quanta have an absolute character (they do not 

depend on the reference frames of observation) and are independent of the rest masses of the 

considered bodies. 

Moreover, it should be emphasized that they are intimately related to the Planck length (by 

the presence of the quantity 
3

Gh

c
 in their expression). 

This quantification is equivalent to the conservation of the absolute angular momentum of 

the system and is consistent with the concept of potential energy of the system proposed 

previously, in the article hal-01584918. 

The two proposed postulates on which this study is based, associated with the conservation 

of the absolute momentum of the system, offer, in the framework of the Platonic model, a 

surprisingly well quantified approach to the classical laws of gravitation applied to elliptic 

Keplerian orbits. 

As in the article hal-01584918, these results and their review can certainly be quickly refined 

using more efficient and more sophisticated computer tools than those used here. And the 

principles retained deserve to be enriched and deepened in order to propose, in a more general 

framework, a much richer and complete approach to a quantum theory of gravitation (available 

for any frame references, taking into account barycentric fluctuations in the case of higher 

absolute velocities of the interacting bodies, search for a coupling with the standard model of 

particle physics, etc.). 

In any case, the original way proposed in this article seems, at the very least, to be able to 

favor the emergence of new and numerous questions, promising, in directions still unexplored, 

particularly with regard to the deep links that it suggests between the quantum effects of De 

Broglie waves, the laws of gravitation and the concepts of potential energy and absolute angular 

momentum of the considered systems. 
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