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DE BROGLIE WAVES AND QUANTIFICATION OF KEPLERIAN ORBITS IN A PLATONIC QUADRIDIMENSIONAL SPACE ONDE DE PHASE DE DE BROGLIE ET QUANTIFICATION DES ORBITES KÉPLÉRIENNES DANS UN ESPACE QUADRIDIMENSIONNEL PLATONICIEN

The properties of the platonic quadridimensional space, the modeling of De Broglie waves and the resulting concept of mass (see hal-01165196; hal-01207447; hal-01213447) seem to allow a quantum approach to the laws of gravitation by a postulate of quantified declination.

The quantized declination postulate proposed in the article hal-01584918 is here supplemented by a second quantized declination postulate concerning, this time, the direction of the absolute velocities of the moving bodies.

These absolutes quanta are independent of the chosen reference frames and of the rest masses of the considered bodies. They are related to the De Broglie waves generated by the massive bodies in gravitational interaction and lead, surprisingly, to the well-known characteristics of Keplerian orbits.

We propose here an introduction, restricted to the relatively simple case where the guiding angle of the observation frame is equal to 2  .

Résumé

Les propriétés relativistes de l'espace quadridimensionnel platonicien, la modélisation de l'onde de phase et le concept de masse qui en découlent (cf. les documents hal-01081576; hal-01205805; hal-01213062) semblent permettre une approche quantique des lois de la gravitation.

Le postulat de déclinaison quantifiée proposé dans l'article hal-01577669 est ici enrichi d'un second postulat de déclinaison quantifiée concernant, cette fois, la direction des vitesses absolues des corps en mouvement.

Ces quanta absolus sont indépendants des référentiels d'observation choisis et des masses au repos des corps considérés. Ils sont liés aux ondes de phase de De Broglie générées par les corps massifs en interaction gravitationnelle et conduisent rapidement, de façon surprenante, aux caractéristiques bien connues des orbites képlériennes.

Nous en proposons ici une introduction, restreinte au cas relativement simple où l'angle directeur du référentiel d'observation est égal à 2  .

The geometrical framework

This modeling is based on the Platonic space outlined in the following articles:

« UN MODÈLE PLATONICIEN (EUCLIDIEN-PROJECTIF) POUR LA THÉORIE DE LA RELATIVITÉ RESTREINTE » (pré-publication hal-01081576, version 1).

, where e m denotes the rest mass of the electron).

These concepts are detailed in the HAL articles below:

hal-01165196, v1 : A platonic (euclidean-projective) model for the special theory of relativity.

hal-01207447, v1 : Towards a modeling of De Broglie waves in a platonic quadridimensional space.

hal-01213447, v1 : An idea of the mass of a particle in a platonic quadridimensional space.

hal-01340134, v1 : One-dimensional elastic collisions in a platonic quadridimensional space.

hal-01378215, v1 : About time measurement in a platonic quadridimensional space.

hal-01584918, v1 : A quantified approach to the laws of gravitation in a platonic quadridimensional space. We shall introduce a double postulate of quantified declinations of these angles (generated by the De Broglie waves linked to their masses), which, by generating the mutual accelerations of these two bodies in the Platonic space, will show us that the elliptic trajectories of To simplify the calculations and the presentation of this quantum gravitational approach, the observation frame chosen is

/2
R  , the orbits of We shall adopt the following assumption:

in the Platonic space, the angular variation 

   

).

Moreover, we have:

  2 2 2 2 2 , 2 cos cos sin sin ii ij i d        , [ 1 bis ] 
(see details in paragraph 8.1) , it comes therefore:

2 , 3 2 2 2 2 sin sin cos sin cos cos ij ij ii Gh c           . [1 ter ]

Second postulate

We will introduce in this article a second postulate of quantified declination, which completes the article hal-01577669. This assumption concerns angles 

  , 2 3 , sin . cos cos ij ij ij Gh cd      . [2]
Like before, if one sets Thus, the body j C perceives the wavefront 1 F when the absolute duration T  verifies the equation:

i ij i i i j Gh c           
1 j l C F     , i.e. 0 tan cos cos cos cos i i j i w T T            ,
i.e. :

0 sin 1 cos cos cos

i i i j w T       
(absolute period of the mass wave).

It follows that the absolute frequency

, ij f of this mass wave is given by: , 0

1 cos cos cos 1 sin ij ij ii f Tw        .
With the equality   in the particular case studied in these first paragraphs, the absolute frequency , ij f of this phase wave becomes:

, 0 1 cos cos sin ij ij ii f w      . [3]
• This result allows us to estimate the derivative of the direction angle j  of the trajectory followed by the body j C with respect to the absolute time T (although the mass waves have high frequencies, the term "derivative" seems unsuitable for quantifying quantities):

,, 3 2 2 2 2 0 1 cos cos sin sin cos sin cos cos

j i j i j i j i j i i i d Gh f dT c w                  . [4]
• The estimation of the variation of the angles 

i i i i i i d Gh dT c w                      . [5 bis ]
5. Absolute energy, absolute momentum and absolute angular momentum

Recall of definitions

We will retain the definitions adopted in the article hal-01584918: absolute velocity of a particle (without unit):

cos abs v   , (cf. note in § 8.1.)
absolute mass of a particle (in kg):

0 sin abs h m cw    ,
absolute energy of a particle (in J):

2 0 sin abs abs hc E m c w    .
By choosing for absolute potential energy of the system the quantity:

2 12 2 01 02 1 2 sin sin abs abs Pabs Gm m Gh E c w w         
, the conservation of energy in the two-body problem becomes:

2 1 2 01 1 02 2 01 02 1 2 sin sin sin sin hc hc G h k w w c w w             [6] *.
Similarly, by setting C and 2 '

C respectively assigned to the coefficients 1 abs m and 2 abs m , the conservation of the absolute angular momentum of the system leads to: 

1 2 2 01 1 02 2 sin sin tan tan hh k c w c w        [7] * with the relations 12     ; 2 01 1 1 1 2 01 1 02 2 sin sin sin abs abs abs m w m m w w             ; 1 02 2 2 1 2 01 1 02 2 sin sin sin abs abs abs m w m m w w            and

Link between the second postulate and the conservation of the absolute angular momentum of the system

A profound link is to be emphasized between the two quantities quoted in this paragraph: it can be shown that the second postulate of quantified declination, relative to the variation of the angles i  , is equivalent to the principle of conservation of the absolute angular momentum of the system. This demonstration is attached as Annex 8.2.

Note about the absolute energy of the system

This quantity, used in the article hal-01584918, made it possible to establish the trajectories of the bodies in gravitational interaction in the four-dimensional Platonic space and to thus find, according to the classical expectations, those of their projections.

In this article, it should be emphasized that the study of these trajectories will be carried out according to a different process (detailed in paragraph 7.) which does not make use of this concept (the study is here based on the two postulates of quantified declinations and some basic geometrical considerations), but that the results obtained here remain fully consistent with this concept of absolute energy of the system. As an indication, a comparative study was conducted for the Sun-Earth system with these two approaches.

Results using the relationships [P1] and [P2]:

  As can be seen, these results are consistent.

                                                   
                               from potential

Some preliminary geometric considerations

Before detailing, in the following paragraph, the iterative process chosen for the study of the movement of the 1 C and 2 C bodies, it will be useful to establish some elementary geometric relations between the different quantities to be measured. The diagram below illustrates the positions of the observed bodies 

i i i i dl dT dd           .
Then, successively:  :

cos sin i i d dT      ; [G1]
This study being limited to Keplerian orbits, for which

12   , put   ', i absi Cv   . With       ' , ' ii d C T C T dT      ,       , absi absi d v T v T dT   and     d t dT T       , we get easily: d d d    . [G4]
This relation allows us, by using [G3] and [5], to obtain successively:

d d d dT dT dT    , then : 12 1,2 1,2 2,1 2,1 cos cos sin d ff dT             . [G5]
Finally, we will reuse the relation 

Study of the movement

From the previous relations, we will be able to set up an iterative process to study the motion of the two bodies in interaction as a function of the absolute time T.

As indicated in paragraph 5.3, this process will be significantly different from the one adopted in article hal-01584918 because it involves only the quantified assumptions [1] and [2], the conservation of the absolute momentum [5] of the system and the considerations detailed in paragraph 6.

Insofar as the mass differences chosen are large and the speeds involved are small The masses of these bodies are to be indicated in cells C4 and E4.

• The initial value of  is the distance at the periapsis (to be indicated in cell G5).

• The eccentricity e of the elliptic trajectories is to be indicated in the cell G4.

• The initial values of the angles • In order for these tables to give usable results, the absolute time step dT of the cell J5 must be adjusted so that the measurement of the angle max  appearing in the cell I17 is close to 2 . This setting requires some successive tests (... and a little patience ...).

The iterative process has been applied to the following situations (see paragraph 8): These situations were first calculated using the classical laws of gravitation (the formulas used are given in Appendix 8); which gives in the Excel tables of paragraph 8 the quantities referred to as "theoretical" (columns AN to AQ). They were then simulated as indicated in this paragraph. Finally, the results of these simulations and the "theoretical" data were compared.

✓ 1 ' C : Sun
At the margins of errors due to the numerous iterations (here 20 000) and the software used (which only retains 15 significant digits for each calculation), this process allows us to find the main characteristics of each of the different orbits established according to the laws of classical mechanics.

By way of illustration, the maximum errors recorded for the Sun-Earth system are of the order of 0,004 % for the speeds, 5,6.10 -5 % for the distances, 2.10 -5 % for the period of revolution and 0,075% for the eccentricity.

In the article hal-01584918, it was found that, as the eccentricity increases, the maximum errors on velocities and distances remain low, but that the error on the period of revolution increases. The relation [G3 bis ] (cf §6) corrects this anomaly significantly: for e close to 0.2, the relation used previously led to an error close to 0.8%, it becomes here close to 0.0036%.

The "Excel" file corresponding to this iterative process is attached. The numbers of the formulas used are specified on line 17 of this file.

As the software used retains only 15 significant digits, it has also been noticed that large mass differences induce a significant increase in relative errors for the observed body velocities

1 ' C and 2 ' C .
For the calculation of the angle 1  (closely related to the estimate of the speed of the body 1 ' C ), it is therefore preferable, in these situations, to replace the iterative method proposed above by the relation (from conservation of the absolute momentum). This correction is very effective: for the Sun-Mercury system, for example, the average of the errors observed for the speed of the Sun (observed body 1 ' C ) has thus decreased from 0.26% to 0.0012%.

Related documents

Calculation of the distance d1,2

The quantities used in this paragraph refer to the diagrams in paragraphs 2 and 3. Since the movements considered here are assumed to take place with a third constant coordinate ( 0 ZZ  ) in the space   , , , , O i j k h , the velocity vector of the body 1 C is given, with 1  not multiple of  , by:

    1 1 1 1 cos cos cos sin 0 sin v                    (cf. note below). Let 1 C
H be the hyperplane associated with  

1 1 1 1 1 , , , C X Y Z W (hyperplane orthogonal to 1 v passing through 1 C ) and let 2 H be the projection of 2 C onto 1 C H .
We thus have the equivalence:

  1 , , , C M X Y Z W H  if and only if         1 1 1 1 1 1 cos cos cos sin sin 0 X X Y Y W W                 . As   2 2 2 2 2 1 , , , C H X Y Z W H  , we have :         1 2 1 1 2 1 1 2 1 cos cos cos sin sin 0 X X Y Y W W                 ,
from which emerges:

      1 2 1 2 1 2 1 1 cos cos sin sin W W X X Y Y                 .
On the other hand, by definition, we have: We thus obtain:

          2 2 2 2 2 2 1,2 2 1 2 1 2 1 2 1 d X X Y Y W W W W          
      2 2 2 2 1 21 1 cos cos cos sin sin sin WW                    , i.e.   2 2 22 1 21 1 cos cos sin WW        . Finally, we arrive at:     22 2 2 22 1 1,2 2 1 2 1 cos cos 1 sin d W W            , i.e.   2 2 2 2 2 11 1,2 2 1 cos cos sin sin d        .
Note on the concept of velocity of a punctual object M in the Platonic space :

given the definition of the absolute time T (in m), the norm of the speed vector of all the mobiles is equal to 1 and the velocity vector

dM v dT 
of any mobile M is given by: 

Equivalence between the second quantified declination postulate and the conservation of the absolute angular momentum of the system

To conduct this proof, we will call on the following relations:

[G3] : and[2]).

12 cos cos sin d dT       [G3 bis ] : 12 cos cos cos i i      [G5] : d d d dT dT dT     [G6] : cos cos i i d dT    [8] : 01 1 02 2 tan tan ww     [2 ter ]:   , 1 2 , cos sin cos cos sin i j j i j            (established from [1]

Proof :

The relation [5] : 

                            With 12     , [8], [G3] et [G3 bis
i i i i i i i i i i i i i i dd d w dT w dT w dT                          ;
and finally, by integration : Relation that corresponds to the relation [7], expressing the conservation of the absolute angular momentum of the system. The reciprocal, easy to establish from the previous calculation elements, thus shows the equivalence between the second quantified declination postulate and the conservation of the absolute angular momentum of the system. 

Formulas used to obtain theoretical reference data in simulations

The results of the quantified simulations are compared to the theoretical elliptic trajectories of two bodies 1 ' C and 2 ' C in gravitational interaction. Given the velocities considered, which are low compared to the speed of light, the calculations are made from the laws of classical mechanics (the Excel file cells containing these formulas are shown below, in parentheses). The data used are: the distance at the periapsis p d , the common eccentricity e , the masses at rest 

Results of simulations and comparisons with reference results

The following screenshots were obtained from the attached Excel file. Only the data, final results, checks and calculation steps 0 and 1 are displayed here. The numbers in brackets ([1], [2], ...) on line 17 refer to the formulas used. The related comments are in paragraph 6. 8.4.1. Sun-Earth System (version A) 8.4.5. Pulsar PSR B1913+16

This last system has been simulated in order to show that the quantified modeling proposed in this article remains consistent with the classical gravitational laws for high velocities at the periapsis (close to 0.0015c for the body 2 ' C ).

Given the high eccentricity of this system (close to 0.627) and to minimize the accumulation of rounding errors, its study was conducted over half a period of revolution.

Conclusion

In addition to the article hal-01584918, this article offers a quantification of the angles i  measuring the orientation of the absolute speeds of the observed bodies.

In the relativistic Platonic space, these quanta have an absolute character (they do not depend on the reference frames of observation) and are independent of the rest masses of the considered bodies.

Moreover, it should be emphasized that they are intimately related to the Planck length (by the presence of the quantity 3

Gh c

in their expression). This quantification is equivalent to the conservation of the absolute angular momentum of the system and is consistent with the concept of potential energy of the system proposed previously, in the article hal-01584918.

The two proposed postulates on which this study is based, associated with the conservation of the absolute momentum of the system, offer, in the framework of the Platonic model, a surprisingly well quantified approach to the classical laws of gravitation applied to elliptic Keplerian orbits.

As in the article hal-01584918, these results and their review can certainly be quickly refined using more efficient and more sophisticated computer tools than those used here. And the principles retained deserve to be enriched and deepened in order to propose, in a more general framework, a much richer and complete approach to a quantum theory of gravitation (available for any frame references, taking into account barycentric fluctuations in the case of higher absolute velocities of the interacting bodies, search for a coupling with the standard model of particle physics, etc.).

In any case, the original way proposed in this article seems, at the very least, to be able to favor the emergence of new and numerous questions, promising, in directions still unexplored, particularly with regard to the deep links that it suggests between the quantum effects of De Broglie waves, the laws of gravitation and the concepts of potential energy and absolute angular momentum of the considered systems.

  in the reference frame R  are the projections of the quantified quadridimensional trajectories thus obtained from the bodies

  this reference frame are ellipses (the absolute velocities considered being small with respect to the speed of light).See diagram above and the following diagrams (axes  /2Oz  and   OZ are not shown).

  Referring to the diagram above, consider the De Broglie mass wave generated by the body i C and perceived by the body j C . Let us note ,

C

  is independent of the reference frame R  and of the rest mass of the considered body (see also paragraph 8) and has the following value:

R

   and of the rest mass of the body considered, which has for value:

  of the mass wave perceived by the body Cj and variation of the angles j and j of its trajectory Referring to the diagram above, consider the mass wave generated by the body

k

  are two constants).

  compared with the speed of light, the position of the barycenter  of the system does not vary very much (its fluctuations may initially be neglected relative to the distance considered in the examples in paragraph 8). Therefore, the postulates [1] and [2], and the results [1 bis ], [3], [4], [5], [G3],[G5] and [G6] can already allow us to set up an iterative process to study the motion of two bodies in interaction as a function of the absolute time T. We will choose  as the origin of the reference frame.• The masses of the bodies i C and j C are in a first approximation equal to the sums of the masses of the particles which constitute them. the occurrences of the mass waves corresponding to the accumulations of the occurrences generated by all of these particles.

•W

  The initial value of  is 0 and that of  is 2 are chosen null, arbitrarily.

  and 

•••

  the speeds of the two bodies (columns AP and AQ): the speeds of the two bodies at the periapsis (C6 and E6): the speeds of the two bodies at the apoapsis (C7 and E7):

  of the simulations and the comparisons between the reference results and the results of the simulations are carried out in the following paragraph.
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	and :																		
	01 w w 02	i cos sin	j	d	i	i sin cos	j	d	j	d		01 w w 02	1 sin sin	2	0 w	i	22 sin	i	
	d			dT				dT		dT								
	i																		
	dT						01 ww 1 02 sin	sin	2		2						.

  ], we obtain:

	Then, with [G6] :									
	2 1   i i 	00 cos cos sin cos sin sin i i i i d w dT w        i i d dT i  i     				
							 cos cos 	1 		cos		2		21 1,2 1,2 2 01 sin sin ff 1 ww 02     2,1 2,1       
	The right-hand member R of this equality can then be written successively:
	R		 21  1,2 1,2 1 2 cos cos cos sin sin f ww          	f	2,1	 	2,1	 cos cos 	1 		cos		2		;
					02	2										01	1
	i.e., with [2 ter ] :										
	R		21 1,2 1,2 22 sin sin sin sin f ww      2,1 f     	2,1	.
					02	2		01	1					
	We arrive thus at :									
						2									
						cos cos			sin cos	sin
																0
																2
						sin					sin		sin
						1									
						0					0				0
		  1 12 01 1 cos cos sin d w dT      2 2 1 0 cos cos sin sin i i i ii w       
								 01 cos sin w 1   1 1   cos cos 		cos		2		21 1,2 1,2 2 cos ff 1  cos  2,1    2,1     	.

Sun-Mercury System