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In this paper, simple rational bounds for the functions of the type f (x)

x or x f (x) , where f (x) is circular or hyperbolic function are obtained. The inequalities thus established are sufficiently sharp. In particular, some new lower and upper bounds of sin x/x, x/ sinh x, x/ tan x and tanh x/x are proposed. The proposed bounds are even functions.

Introduction

The two sided inequality [START_REF] Mitrinovic | Analytic Inequalities[END_REF] 

2 π < sin x x < 1, x ∈ (0, π/2) (1.1)
is due to Jordan. Many inequalities of this type have been proposed and refined by Mathematicians so far [START_REF] Bhayo | On Jordan's, Redheffer's and Wilker's inequality[END_REF][START_REF] Bhayo | New trigonometric and hyperbolic inequalities[END_REF][START_REF] Mitrinovic | Analytic Inequalities[END_REF][START_REF] Aharonov | More Jordan type inequalities[END_REF][START_REF] Neuman | Inequalities involving inverse circular and inverse hyperbolic functions[END_REF][START_REF] Sándor | On an inequality of Redheffer[END_REF][START_REF] Becker | On a hierarchy of quolynomial inequalities for tanx[END_REF][START_REF] Klén | On Jordan type inequalities for hyperbolic functions[END_REF][START_REF] Bagul | New inequalities involving circular, inverse circular, hyperbolic, inverse hyperbolic and exponential functions[END_REF][START_REF] Bagul | Inequalities involving circular, hyperbolic and exponential functions[END_REF][START_REF] Lv | A note on Jordan type inequalities for hyperbolic functions[END_REF][START_REF] Yang | New sharp Jordan type inequalities and their applications[END_REF][START_REF] Yang | Jordan Type inequalities for hyperbolic functions and their applications[END_REF][START_REF] Qi | Refinements, generalizations and applications of Jordan's inequality and related problems[END_REF][START_REF] Chu | On Alzer and Qiu's conjecture for complete elliptic integral and inverse hyperbolic tangent function[END_REF][START_REF] Jiang | Convexity of the generalized sine function and the generalized hyperbolic sine function[END_REF][START_REF] Yang | Sharp inequalities for trigonometric function[END_REF][START_REF] Song | A note on generalized trigonometric and hyperbolic functions[END_REF][START_REF] Yang | A sharp double inequality for trigonometric functions and its applications[END_REF][START_REF] Yang | A note on Jordan, Adamović-Mitrinović and Cusa inequalities[END_REF][START_REF] Yang | Lazarević and Cusa type inequalities for hyperbolic functions with two parameters and their applications[END_REF][START_REF] Yang | Sharp Cusa type inequalities with two parameters and their applications[END_REF][START_REF] Sun | Necessary and sufficient conditions for the two parameters generalized Wilker-type inequalities[END_REF][START_REF] Chu | Generalized Wilkertype inequalities with parameters[END_REF][START_REF] Yang | A sharp double inequality involving trigonometric functions and its applications[END_REF][START_REF] Yang | Monotonicity and absolute monotonicity for the two-parameter hyperbolic and trigonometric functions with applications[END_REF]. We give a short summary of some already proved results relating the main results of this paper. R. Klén, M. Visuri et al. [START_REF] Klén | On Jordan type inequalities for hyperbolic functions[END_REF] proved the following inequalities

6 -x 2 6 < sin x x < 1 - 2x 2 3π 2 ; x ∈ - π 2 , π 2 (1.2) sin x x < x sinh x ; x ∈ 0, π 2 (1.3) cosh x < 1 cos x ; x ∈ (0, 1) (1.4) 
and 5 5 + x 2 < x sinh x < 6 6 + x 2 ; x ∈ (0, 1).

(1.5)

In fact (1.4) is true in (0, π/2). The double inequality

π 2 -4x 2 π 2 < x tan x < π 2 -4x 2 8 ; 0 < x < π 2 (1.6)
is due to M. Becker and E. L. Stark [START_REF] Becker | On a hierarchy of quolynomial inequalities for tanx[END_REF].

The bounds of tanh x

x in [START_REF] Bagul | New inequalities involving circular, inverse circular, hyperbolic, inverse hyperbolic and exponential functions[END_REF] for x ∈ (0, 1) are given as below e -x 2 /3 < tanh x x < e -λx 2 ; where λ ≈ 0.272342.

(1.7)

In this work, we aim to refine lower bound of (1.5), upper bounds of (1.2), (1.6) and give more sharp bounds of (1.7) by using simple rational functions. Though there are stronger bounds in the recent papers ([6, 11, 12, 13, 14, 15, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30]) than the bounds obtained in this paper, they are much complex. Our bounds are easy to deal with.

The Main Results and Their Proofs

To obtain our main results we shall use L'Hospital's Rule of Monotonicity [START_REF] Anderson | Conformal Invarients, Inequalities and Quasiconformal maps[END_REF] which is given as follows Lemma 1. (The L'Hospital's rule [START_REF] Anderson | Conformal Invarients, Inequalities and Quasiconformal maps[END_REF] in monotone form ) : Let f, g : [a, b] → R be two continuous functions which are differentiable on (a, b) and g = 0 in (a, b). If f /g is increasing (or decreasing) on (a, b), then the functions

f (x)-f (a) g(x)-g(a) and f (x)-f (b) g(x)-g(b)
are also increasing (or decreasing) on (a, b). If f /g is strictly monotone, then the monotonicity in the conclusion is also strict.

Lemma 2. For x ∈ (0, ∞) x sinh x < cosh x (2.1)
holds.

Proof. We know that x < sinh x and cosh x > 1 in (0, ∞). This proves the lemma.

We now state our Main results and their proofs as follows.

Theorem 1. For x ∈ (0, π/2), one has

a a + x 2 < sin x x < b b + x 2 (2.2)
with the best possible constants a ≈ 4.322735 and b = 6. Equivalently,

π 2 π 2 + 2(π -2)x 2 < sin x x < 6 6 + x 2 . Proof. Let f (x) = x 2 sin x x -sin x = f 1 (x) f 2 (x) ,
where

f 1 (x) = x 2 sin x and f 2 (x) = x -sin x with f 1 (0) = f 2 (0) = 0. Differ- entiation gives f 1 (x) f 2 (x) = x 2 cos x + 2x sin x 1 -cos x = f 3 (x) f 4 (x)
where

f 3 (x) = x 2 cos x+2x sin x and f 4 (x) = 1-cos x with f 3 (0) = f 4 (0) = 0.
By differentiation we get

f 3 (x) f 4 (x) = 4x cot x -x 2 + 2 = g(x), Now, g (x) = 4[cot x -x cosec 2 x] -2x.
Using (1.3), (1.4) and (2.1), we have

cos x < x sin x i.e. cos x sin x < x sin 2 x ; x ∈ (0, π/2), which implies that, cot x < x sin 2 x + x 2 . Therefore, 4[cot x -xcosec 2 x] -2x < 0. i.e. g (x) < 0. By lemma 1, f (x) is strictly decreasing in (0, π/2). So that f (0+) > f (x) > f (π/2) ; for any x in (0, π/2).
Consequently, a = f (π/2) = (π/2) 2 π/2-1 ≈ 4.322735 and b = f (0+) = 6, by L'Hospital's rule.

Note: For more sharp bounds of sin x

x one may refer the recent papers e.g. [START_REF] Alzer | On Jordan's inequality[END_REF], [START_REF] Bhayo | On Jordan's, Redheffer's and Wilker's inequality[END_REF], [START_REF] Sándor | On an inequality of Redheffer[END_REF], [START_REF] Nenezić | Some improvements of Jordan-Steckin and Becker-Stark inequalities[END_REF], [START_REF] Yang | Sharp inequalities for trigonometric function[END_REF], [START_REF] Yang | A sharp double inequality for trigonometric functions and its applications[END_REF], [START_REF] Yang | A sharp double inequality involving trigonometric functions and its applications[END_REF] etc. Remark 1. Combining (1.2) and (2.2), we have

6 -x 2 6 < sin x x < 6 6 + x 2 ; x ∈ (0, π/2) (2.3)
The upper bound of (1.2) is sharpened in Theorem 1. Next we refine the lower bound of (1.5).

Theorem 2. For x ∈ (0, 1), the inequalities

c c + x 2 < x sinh x < 6 6 + x 2
(2.4) are true with the best possible constants c ≈ 5.707724 and 6.

Proof. Introduce

f (x) = x 3 sinh x -x = f 1 (x) f 2 (x)
where

f 1 (x) = x 3 and f 2 (x) = sinh x -x with f 1 (0) = 0 = f 2 (0). Differenti- ation gives us f 1 (x) f 2 (x) = 3x 2 cosh x -1 = f 3 (x) f 4 (x)
where f 3 (x) = 3x 2 and f 4 (x) = cosh x -1 with f 3 (0) = f 4 (0) = 0. By differentiation we get

f 3 (x) f 4 (x) = 6x sinh x = f 5 (x) f 6 (x)
where f 5 (x) = 6x and f 6 (x) = sinh x with f 5 (0) = f 6 (0) = 0. Again by differentiation f 5 (x)

f 6 (x) = 6 cosh x ,
which is clearly strictly decreasing in (0, 1). By lemma 1, f (x) is strictly decreasing in (0, 1). On account of which,

f (0+) > f (x) > f (1) for 0 < x < 1.
Therefore, c = f (1) = 1 sinh 1-1 ≈ 5.707724 and f (0+) = 6, by L'Hospital's rule.

Remark 2. The statement of Theorem 2 can be generalized for x ∈ (0, η) where η > 0 with c = η 3 sinh η-η .

Now we sharp the upper bound of (1.6) by using rational function. More sharp and generalized versions are given by Marija Nenezić and Ling Zhu in [START_REF] Nenezić | Some improvements of Jordan-Steckin and Becker-Stark inequalities[END_REF]. Theorem 3. For x ∈ (0, δ) where δ < π 2 one has

k k + x 2 < x tan x < 3 3 + x 2 (2.5)
with the best possible constants k = δ 3 tan δ-δ and 3.

Proof. Let f (x) = x 3 tan x -x = f 1 (x) f 2 (x)
where

f 1 (x) = x 3 and f 2 (x) = tan x -x with f 1 (0) = f 2 (0) = 0. By differen- tiation we have f 1 (x) f 2 (x) = 3x 2 sec 2 x -1 = f 3 (x) f 4 (x)
where

f 3 (x) = 3x 2 and f 4 (x) = sec 2 x -1 with f 3 (0) = f 4 (0) = 0. Again differentiating f 3 (x) f 4 (x) = 3x sec 2 x tan x = f 5 (x) f 6 (x)
where f 5 (x) = 3x and f 6 (x) = sec 2 x tan x with f 5 (0) = f 6 (0) = 0. Differentiation gives us

f 5 (x) f 6 (x) = 3 sec 4 x + 2 sec 2 x tan 2 x
which is clearly decreasing in (0, π/2). By lemma 1, f (x) is also decreasing in (0, π/2). Therefore, f (0+) > f (x) > f (π/2) ; for any x in (0, π/2).

Hence, k = f (δ) = δ 3
tan δ-δ and f (0+) = 3, by L'Hospital's rule.

Lastly, we give sharp bounds of (1.7).

Theorem 4. For x ∈ (0, 1), one has

3 3 + x 2 < tanh x x < d d + x 2 (2.6)
where the constants 3 and d ≈ 3.194528 are best possible.

Proof. Introduce

f (x) = x 2 tanh x x -tanh x = f 1 (x) f 2 (x)
where f 1 (x) = x 2 tanh x and f 2 (x) = x -tanh x with f 1 (0) = f 2 (0) = 0. Differentiation gives

f 1 (x) f 2 (x) = x 2 cosech 2 x + 2x coth x = h(x). Hence, h (x) = 2 coth x (1 -x 2 cosech 2 x).
Now, coth x is positive in (0, 1) and 1 -x 2 cosech 2 x > 0, as x < sinh x. This yields, h (x) > 0. Therefore h(x) is strictly increasing in (0, 1). By lemma 1, f (x) is strictly increasing in (0, 1), so Note: For even more stronger upper bound of (2.5), one may refer [START_REF] Bhayo | New trigonometric and hyperbolic inequalities[END_REF]. which has been already proved in [START_REF] Bagul | New inequalities involving circular, inverse circular, hyperbolic, inverse hyperbolic and exponential functions[END_REF].

f (0+) < f (x) < f ( 
Corollary 1. For x ∈ (0, 1) sin x sinh x < tan x tanh x (2.8)

Proof. The proof follows immediately by combining (1.3) and (2.6) 

Remark 3 .

 3 1) ; for x ∈ (0, π/2).Consequently, f (0+) = 3 by l'Hôpital's rule and d = f (1) = tanh1 1-tanh 1 ≈ 3.194528. The statement of Theorem 4 can be generalized for x ∈ (0, µ) where µ > 0 with d = µ 2 tanh µ µ-tanh µ .

Remark 4 .

 4 As a corollary, Theorem 3 and Theorem 4 give us