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Abstract

Let p be prime number, K be a p-adically closed field, X C K™ a semi-algebraic set
defined over K and L(X) the lattice of semi-algebraic subsets of X which are closed in X. We
prove that the complete theory of L(X) eliminates quantifiers in a certain language Lasc, the
Lasc-structure on L(X) being an extension by definition of the lattice structure. Moreover
it is decidable, contrary to what happens over a real closed field for m > 1. We classify
these Lasc-structures up to elementary equivalence, and get in particular that the complete
theory of L(K™) only depends on m, not on K nor even on p. As an application we obtain
a classification of semi-algebraic sets over countable p-adically closed fields up to so-called
“pre-algebraic” homeomorphisms.

1 Introduction

This paper explores the model-theory of various classes of lattices coming from algebraic geometry,
real geometry or p-adic geometry, with special emphasis on the p-adic case. We obtain model-
completion and decidability results for some of them. Before entering in technical details let us
present the main motivations for this, coming from geometry and model-theory of course, but also
from proof theory and non-classical logics.

Given an expansion of a topological field K and a definabld] set X C K", we consider the
lattice L(X) of all definable subsets of X which are closed in X, and the ring C(X) of all continuous
definable functions from X to K. These rings are central objects nowadays in functional analysis,
topology and geometry. To name an example, they are rings of sections for the sheaf of continuous
(say, real valued) functions on a topological space and as such play the algebraic part in the study
of topological (Hausdorff) spaces. In most cases L(X) is interpretable in C(X), and the prime
filter spectrum of L(X) is homeomorphic to the prime ideal spectrum of C(X). Thus L(X) is a
first-order structure interpretable in C(X), which captures all the topological (hence second-order)
information on the spectrum of the ring C(X). For the real field R for example, it is known since
[10] that L(R™) is undecidable for every n > 2, hence can be held liable for the undecidability of
C(R™). On the contrary L(R) is decidable, and so is the lattice of all closed subsets of the real line
[13]. Recently this has been strengthen and widely generalised in [I5]. However these undecidability
results for L(X) strongly depend on the existence of irreducible or connected components, hence
do not apply to the p-adic case. But even in that case it is proved in [7] that C(Q}) is undecidable,
this time for every n > 1. On the contrary, our main result implies that for every n > 1:

e 1(Q}) is decidable, and;

e The theory of L(QZ) eliminates the quantifier in a natural expansion by definition of the
lattice language.

*Keywords: model-theory, p-adic, scaled lattice, Heyting algebra, quantifier elimination, decidability, model-
completion, uniform interpolant.
MSC classes: 03C10, 06D20, 06D99.

IWe assume the reader to be familiar with basic notions from model theory, in particular definable sets and
functions. In simplest cases “definable” boils down to “semi-algebraic” over the field R of real numbers, or the field
Qp of p-adic numbers.



In another direction, the model-theory of these geometric lattices L(X) is tightly connected to
the existence of uniform interpolants for propositional calculus in certain intermediatdq and modal
logics. Indeed, thanks to the one-to-one correspondence between intermediate logics and varieties
of Heyting algebras, the existence of uniform interpolants for a logic £ can be rephrased, mutatis
mutandis, as the existence of a model-completion for the theory of the corresponding variety V(L)
(see [9]). As lattices of closed sets, all our lattices L(X) are co-Heyting algebras, that is Heyting
algebras with the order reversed. Moreover, their structure is mostly determined by the geometry
of X. This geometric intuition coming from X was essential to our model-completion results, with
natural axiomatisations, for certain theories of (expansions of) co-Heyting algebras (theorems [Bl
and [C] below). See also [1], [6] for related results.

Now we are going to present our results in more detail. They are based on a careful study
of certain expansions of lattices, all inspired by the geometric examples of lattices of closed sets
over an o-minimal, P-minimal or C-minimal expansion of a field K. More general structures will
be considered in the appendix section [IT], where precise definitions are given of what we call here
“tame” topological structures. The point is that there a good dimension theory for definable sets
over such structures.

Example 1.1 Let £ = (K,...) be a tame topological structure. For every definable sets A, B C
X C K™let A— B = A\ BN X where the overline stands for the topological closure. For
every a € A, the local dimension of A at a is the maximum of the dimensions of the definable
neighborhoods of @ in A, and A is called pure dimensional if it has the same local dimension at
every point. For every non-negative integer i let

Ci(A)={ac A dim(A,a) =i} N A.

This is a definable subset of A, closed in A, called the i-pure component of A. We call Ljer(X)
the lattice of all the definable subsets of X which are closed in X, enriched with the above functions
“_” and C* for every i. This is a typical example (Proposition [IT.6]) of what we are going to call
a d-scaled lattice.

Let L1a, = {0,1,V, A} be the language of lattices, and Lsc = L1atU{—, (C?);>0} be its expansion
by the above function symbols. Finally let SCqef(KC, d) be the class of the Lgco-structures Lger(X)
of Example[LT] for all the sets X of dimension at most d definable over K. A similar construction
can be done over a pure field K, with the Zariski topology on K™. We let SCyz,,(K,d) denote
the corresponding class of Lgc-structures. Surprisingly enough, we prove that in most cases the
universal theory of SCqet(KC, d) (resp. SCyzar (K, d)) does not depend on K (resp. K)!

Theorem A Given any non-negative integer d, the universal theories of SCaet(KC,d) (resp.
SCzar (K, d)) in the language Lsc are the same for every tame expansion K of a topological field
K (resp. for every infinite field K ).

In order to prove this we give in Section [2] an explicit list of universal axioms for a theory Ty in
Lsc, the models of which we call d-subscaled lattices. All the examples given above are d-scaled
lattices, a natural subclass of d-subscaled lattices (the class of d-scaled lattices is elementary but
not universal). After some technical preliminaries in Section B] we prove in Section M that every
finitely generated d-subscaled lattice is finite. Combining this with a linear representation for finite
d-subscaled lattices (Proposition[(.3]) and with the model-theoretic compactness theorem, we then
prove in Section [ that, whatever is K or K in Example [[LT], the theory of d-subscaled lattices is
exactly the universal theory of SCyef(K, d) and of SCza, (K, d) (Theorem B.3)).

A detailed study of the minimal finitely generated extensions of finite d-subscaled lattices,
achieved in Section [6] leads us in Section [ to the next result (Theorem [[3]and Corollary [Z.H).

Theorem B For every non-negative integer d, the theory of d-subscaled lattices admits a model-
completion Ty which is finitely axiomatizable and Rg-categorical. Moreover, Ty has finitely many
prime models, hence it is decidable as well as all its completions.

2 An intermediate logic is logic which stands between classical and intuitionist logic.



The axiomatization of T,; given in Section [7] consists of a pair of axioms expressing a “Catenar-
ity” and a “Splitting” property which both have a natural topological and geometric meaning. In
particular the Splitting Property expresses a very strong form of disconnectedness, which implies
that the models of Ty are atomless.

Remark 1.2 Since 0-subscaled lattices are exactly non-trivial boolean algebras, the above model-
completion result for subscaled lattices is a generalisation to arbitrary finite dimension d of the
classical theorem on the model-completion of boolean algebras.

We develop in Sections B and [0 a variant of this quantifier elimination result in a language
Lasc = Lsc U {Atg}r>1, where each Aty is a unary predicate symbol, to be interpreted as the set
of elements which are the join of exactly k& atoms. The model-completion TC{” that we obtain is
axiomatized by the Catenarity Property and a small restriction of the Splitting Property which
preserves the atoms. This theory TC{” has Ny prime models which can easily be classified in terms
of the prime models of T, from which it follows that it is decidable as well as all its completions
(Theorem [0.4)).

In the initial version of this paper [3] we conjectured that Laer(Q¢) might be a natural model of
TC{”. This intuition proved to be crucial in the proof of the triangulation of semi-algebraic sets over
a p-adically closed field [4]. Conversely it follows from this triangulation that Lges(X) is indeed a
model of Tj‘t, for every semi—algebraicﬁ set X C K™ of dimension < d, from which we derive the
following result in the last section (Theorem [T0.2)).

Theorem C Let K be a p-adically closed field, X C K™ a semi-algebraic set. Then the complete
theory of L(X) is decidable, and eliminates quantifier in Lasc.

The prime Lagc-substructure of Lger(X) (which is generated by the empty set) is finite. By
Theorem[(]it determines the complete theory of Laer(X ). We expect this invariant to play also a de-
cisive role in the classification of semi-algebraic sets over p-adically closed fields up to semi-algebraic
homeomorphisms. Such a classification is far from being achieved, but a weaker classification, up
to “pre-algebraic” homeomorphisms over countable p-adically closed fields, is done here by means
of this invariant (Theorem [I0.H]).

2 Notation and definitions

N denotes the set of non-negative integers, and N* = N \ {0}. If A/ is an unbounded non-empty
subset of N (resp. the empty subset) we set max AN = +oo (resp. maxAN = —o0). The symbols
C and C denote respectively inclusion and strict inclusion. The logical connectives ‘or’, ‘and’ and
their iterated forms will be denoted by \/, A, \W and A\ respectively.

2.1 Lattices and dimension

In this paper a lattice is a partially ordered set in which every finite subset has a greatest lower
element and a least greater bound. This applies in particular to the empty subset, hence our
lattices must have a least and a greatest bound. We let L1, = {0,1,V,A} is the language of
lattices, each symbol having its obvious meaning. As usual b < a is an abbreviation for a Vb =a
and similarly for b < a, b > a and b > a. Iterated V and A operations are denoted by Wer a;
and M\;cs a; respectively. If the index set I is empty then W;cra; = 0 and M;cra; = 1. Given a
subset S of a lattice L, the upper semi-lattice generated in L by S is the set of finite joins of
elements of S.

The spectrum of a lattice L is the set Spec(L) of all prime filters of L, endowed with the
so-called Zariski topology, defined by taking as a basis of closed sets all the sets

P(a) = {p € Spec(L)|a € p}

3 A generalization to definable sets over more general P-minimal fields, if possible, has still to be done.




for a ranging over L. Stone’s duality asserts that if L is distributive (which is always the case in
this paper) the map a — P(a) is an isomorphism between L and the lattice of closed subsets S of
Spec(L) such that the complement of S in Spec(L) is compact.

We call a lattice noetherian if it is isomorphic to the lattice of closed sets of a noetherian
topological space. By Stone’s duality a lattice L is noetherian if and only if its spectrum is a
noetherian topological space. In such a lattice every filter is principal and every element a can
be written uniquely as the join of its (finitely many) V-irreducible components, which are the
maximal elements in the set of V-irreducibld] elements of L smaller than a. We denote by 7 (L)
the set of all V-irreducible elements of L.

We define the dimension of an element « in a lattice L, denoted dimy, a, as the least upper
bound (in N U {—o00,+00}) of the set of non-negative integers n such that

dpo C -+ C pn € P(a).

This is nothing but the ordinary topological or Krull dimension (defined by chains of ir-
reducible closed subsets) of the spectral space P(a). By construction dimp0 = —oo and
dimz, a V b = max(dimp, a,dimy, b). The subscript L is necessary since dimy a is not preserved
by Liat-embeddings, but we will omit it whenever the ambient lattice is clear from the context.
We let the dimension of L be the dimension of 17, in L.

The following definable relation will give us a first-order definition of the dimension of the
elements of L inside L, when L is a co-Heyting algebra (see Fact [24] below):

b<a <= Ve(c<a=bVe<a)

This is a strict order on L\ {0} (but not on L because 0 < a for every a, including a = 0).

2.2 Co-Heyting algebras

We let L1 = Lias U {—} with ‘= a binary function symbol. A Lrc-structure L is a co-Heyting
algebra if its Lj,¢-reduct is a lattice and if every element b has in L a topological complement
relatively to every element, denoted a — b. By definition a — b is the least element ¢ such that
a < bV ec. Equivalently P(a —b) is the topological closure of the relative complement P(a) \ P(b),
hence the notation a — b. Reversing the order of a co-Heyting algebra L gives a Heyting algebra
L*, with b — a in L* corresponding to a — b in L, and every co-Heyting algebra is of this form.
From the theory of Heyting algebras (see for example [12]) we know that every co-Heyting algebra
is distributive and that the class of all co-Heyting algebras is a variety (in the sense of universal
algebra). Observe that in co-Heyting algebras the < relation is quantifier-free definable since

b<a < b<a-—hb

So it will be preserved by Lrc-embeddings. On the other hand, dimension will not be preserved
in general by Lrc-embeddings.

We will use the following rules, the proof of which are elementary exercises (using either Stone’s
duality or corresponding properties of Heyting algebras).

TCy: a=(aAb)V (a—Db).
In particular if @ is V-irreducible then b < a — b < a.

TC,: (a1 \Y ag) —-b= (a1 — b) \Y (a2 — b)

TCs: (a—b)—b=a—0b.
In particular (¢ —b) Ab <K a—b < a.

TCy4: More generally a — (by V ba) = (a — by) — bo.
So if a — by = a then a — (b1 V b)) = a — bs.

4An element z of a lattice L is V-irreducible if it is non-zero and if a V b = x implies a = = or b = x.



Fact 2.3 (Theorem 3.8 in [5]) For every element a # 0 in a co-Heyting algebra L, dimp a is
the least upper bound of the set of positive integers n such that there exists aq, . ..,a, € L such that

DA o <o K- K a, <a.

In all the geometric examples given in the introduction, a set A is said to be pure dimensional
if and only if dim U = dim A for every non-empty definable subset U of A which is open in A. This
motivates the next definition: given an integer k we say that an element a of a distributive lattice
L is k-pure in L if and only if

VWoeL (a—b#0=dimpa—b=k).

Then either a = 0 or dimy, a = k. In the latter case we say that a has pure dimension k in L.
If L is any of the lattices Lgef(X) or Lyza(X) in Example [[LT] for every A € L we will show in
Section [[I] that dimy, A is exactly the usual (geometric) dimension of A. It follows that A is pure
dimensional in L if and only if it so in the geometric sense.

There is a well-established duality between (co-)Heyting algebras and so-called Esakia spaces
with p-morphisms, from which we will pick up Fact 24 below. We first need a notation. Given an
element x in a poset I and a subset X of I let

xiz{yeﬂygx} X¢:U:cl.

xel

The dual notation 2T and X1 is defined accordingly. The family D¥(I) of decreasing subsets of
I (that is the sets X C I such that X| = X) are the closed sets of a topology on I, hence a
co-Heyting algebra with respect to the following operations.

XVY =XUY XAY=XnY X-Y=(X\Y)
The V-irreducible elements of D¥(I) are precisely the sets z+ for z € I.

Fact 2.4 Let L be a finite co-Heyting algebra and T an ordered set. Assume that there is a
surjective increasing map  : T — Z(L) such that w(z") C w(x)t for every x € Z(L). Then there
exists an Lrc-embedding ¢ of L into D¥(I) such thafl m(p(a)) = a* NZ(L) for everya € L.

2.5 (Sub)scaled lattices.
Recall that Lsc = Lias U {—, C'lien = Lrc U {C'}ien where {C'}ien is a family of new unary

function symbols. With the examples of the introduction in mind, we define the sc-dimension of
a non-zero element a of an Lsc-structure L as

sc-dima = min{k € Nja= W
0<i<k

C'(a)}.
Of course this is defined only if sc-dima = Wo<i<k Ci(a)7 for some k. If it is not defined we let
sc-dima = 400, and by convention sc-dim 0 = —co. The sc-dimension of L, denoted sc-dim (L),
is the sc-dimension of 1;. In general the dimension of an element in a co-Heyting algebra is
not preserved by Lrc-embeddings. On the contrary the sc-dimension of an element is obviously
preserved by Lgc-embeddings, and this is the “raison d’étre” of this structure.

A d-subscaled lattice is an Lgc-structure whose Lrpc-reduct is a co-Heyting algebra and
which satisfies the following list of axioms:
SS{: w Ci(a)=a and Vi>d, C'(a)=0.

0<i<d
SSgd: vI C{0,...,d}, Vk:

; 0 ifkgl
ck(w CZ(a)) 0 ke
iel C¥(a) ifkel
5Note that the composition 7 o ¢ is not defined. In this proposition ¢(a) is a decreasing subset of Z and

m(p(a)) = {m(&) € € p(a)}.




SS3: Vk > max(sc-dim(a), sc-dim(b)), C¥(aV b) = C*(a) v CF(b)

SS4: Vi # j, sc-dim (C'(a) A C7(a)) < min(i, )

SSs: Vk > sc-dim(b), CF(a) — b= C*(a) — C*(b).

SSe: If b <« a then sc-dim b < sc-dim a.

It is a d-scaled lattice if it satisfies in addition the following property:
SCop: sc-dima = dima

All the geometric Lgc-structures in SCqet (K, d) or SCyay (K, d) (defined after Example [1]) are
d-scaled lattices (see Proposition [[T.6). However SCpy does not follow from the other axioms as
the following example shows.

Example 2.6 Let L be an arbitrary noetherian lattice, and D: Z(L) — {0,...,d} be a strictly
increasing map. For every a,b € L, if C(a) denotes the set of all V-irreducible components of a, let

a—b=wW{ceC(a)|c L b},
(Vk)  CK%(a) = w{ceC(a)| D(c) = k}.

This is a typical example of a d-subscaled lattice in which the sc-dimension does not coincide with
the dimension, except of course if D(a) = dimy, a for every a € Z(L). Conversely, every noetherian
(in particular every finite) d-subscaled lattice is of that kind.

We call (sub)scaled lattices the Lgc-structures whose Lgc-reduct is a d-(sub)scaled for some
d € N. Of course this is not an elementary class. On the contrary, for any fixed d € N, SS{ to
SSg) are expressible by a universal formula and S by a first order formula in Lsc, hence d-scaled
(resp. d-subscaled) lattices form elementary class. As the terminology suggests, we will see that
d-subscaled lattices are precisely the Lgc-substructures of d-scaled lattices.

Remark 2.7 SS{ to SSp) are actually expressible by equations in Lgc, hence define a Varietyﬁ (in
the sense of universal algebra). This is clear for SS¢ and SS3. The other ones can then be written
as follows.

SSg (Ve >1), C*(wici C'(a) v C(b)) = C* (Wi C(a)) v C*(Wi<y C' (D))
SSg Vi > j, C'a) A Cl(a) = Wie; C¥(C¥(a) A CV(a))
SSp VE >0, CF(a) — W<k C'(b) = C¥(a) — C*(b)

By analogy with our guiding geometric examples, we say that an element a in a d-subscaled
lattice is k-sc-pure if
Vbe L (a—b# 0= sc-dim(a —b) = k).

We will see that a is k-sc-pure if and only if = C¥(a) (this is SSr3) in Section [3). Then either
a = 0 or sc-dima = k. In the latter case we say that a has pure sc-dimension k. For any a,
the element C* (a) is called the k-sc-pure component of a, or simply its k-pure component if
L is a scaled lattice. By construction these notions coincide with their geometric counterparts in
SCaef (K, d) and SCy, (K, d).

The following notation will be convenient in induction arguments. If £ is any of our languages
Liat, L1c or Lgc we let £* = £\ {1}. Given an L-structure L whose reduct to L is a lattice,
for any a € L we let

L(a)={be L|b<a}.

L(a) is a typical example of L£*-substructure of L.

61s this the variety generated by d-scaled lattices? This question might be of importance for further developments
in non-classical logics.



3 Basic properties and embeddings

The next properties follow easily from the axioms of d-subscaled lattices.

SS7: sc-dima = max{k| C*(a) # 0}.
In particular Vk, sc-dim C*(a) = k <= C*(a) # 0.

SSg: Vk > sc-dim(a), sc-dim(bAa) < k = C¥(a) — b = C¥(a).

SSg: sc-dima V b = max(sc-dim a, sc-dim b).
In particular b < a = sc-dimb < sc-dim a.

SS10: Vk > sc-dim(a), C¥(a) is the largest k-sc-pure element smaller than a.
SSi1: dima < sc-dim a.

: - e - ‘ = “(a).
8812 VI - {0, ,d}, a z\é/lc (0,) lg\)(/IC (0,)

In particular sc-dim (a — Z.\g/k C'(a)) < k.

SSis: Vk, CFa)=a <= Vb (a—b+# 0= sc-dima—b=k).
That is a is k-sc-pure if and only if a = C*(a).
In particular if a is V-irreducible then a is sc-pure by SS{.

Proof:  (Sketch) S follows from SS{ and SS§; SSgj from SSgj and SS7; SSg) from SS§, SSgj and
SS7p SSpq) from SSY and SSgp SS17) from SSg by Fact Only the two last properties require a
little effort.

Sy Foreveryl € I, C'(a) < Wier C¥(a) hence C!(a)—W;c; C'(a) = 0. On the other hand for
every | ¢ I and every i € I, C'(a) — C(a) = C'(a) by SS7 and S5 So CHa) = Wier C'(a) = Cl(a)
by TCg. Finally by SS¢ and T,

_ iy Loy i _ 1
a— W Cla) = w (¢'@) - w C'(0) W C'(a)

SHI3; Assume that a = C*(a) and a—b # 0 for some b. Then sc-dim a = k so sc-dim(a—b) < k

and sc-dim(a A b) < k by SSg}. Since a = (a — b) V (a A b) it follows by SSg) that

C*(a)=C* ((a—b) vV (aAb)) = C¥(a—b) v CFanb).

By assumption C*(a) = a, and C*(aAb) < aAbby SS¢. Soa < C¥(a—b)V(anb) < CFa—b) Vb
which implies that a — b < C¥(a — b). In particular C*(a — b) # 0. Since sc-dim(a — b) < k it
follows that sc-dim(a — b) = k by S§g

Conversely assume that a # C*(a) (hence a # 0). For b = C*(a) we then have a — b # 0 on
one hand and sc-dim(a — b) # k by SS7 on the other hand, because C*(a —b) = 0 by SS19) and
SSg.
[

Proposition 3.1 The Lgc-structure of a d-scaled lattice L is uniformly definable in the
Lias-structure of L. In particular it is uniquely determined by this Lyat-structure.

Proof: Clearly the Lrc-structure is an extension by definition of the lattice structure of L. For
every positive integer k the class of k-pure elements is uniformly definable, using the definability
of < and Fact Then so is the function C* for every k, by decreasing induction on k. Indeed
by SS17y and SS9, C*(a) is the largest k-pure element ¢ such that ¢ < a — W;sx C¥(a).

]

We need a reasonably easy criterion for an Lj,i-embedding of subscaled lattices to be an
Lsc-embedding. In the special case of a noetheriar[l embedded lattice, it is given by Proposi-
tion below, whose proof will use the following characterisation of sc-pure components.

7Although we won’t use it, let us mention that in the general case of an L),;-embedding ¢ : I — L’ between
arbitrary subscaled lattices, one may easily derive from Proposition[3.3] by means of the Local Finiteness Theorem [£.]]
and the model-theoretic compactness theorem, that ¢ is an Lgc-embedding if and only if it preserves sc-dimension
and sc-purity, that is for every a € L and every k € N, C¥(a) = a = CF(p(a)) = ¢(a).



Proposition 3.2 Let L be a subscaled lattice and a, ao, . ..,aq € L be such that a = W;<q a;, each
a; is i-sc-pure and sc-dim(a; A a;) < min(é, j) for every ¢ # j. Then C'(a) = a; for every i.

Proof: Note first that Ck(ak) = ay, for every k < d by Sqr3 Hence for every k < i < d we have
by SSg and SS3

c ( W ak) = W C'(ar) = W C' (CM(ax) = C'(ar) = a. (1)

k<i

In particular C%(a) = ag. Now assume that for some i < d we have proved that C’(a) = a; for
i < j <d. By S§g and SS4 we then have

C'(a— Wa;)=C"(a— W C(a)) = C" (W C(a)) = Ca). 2
(0 Wa;) = O (o~ W O(@) = O (W, 0'(@)) = C'(a) ©)
On the other hand a— W j>; aj = Wi<a(ar — W > a;) by Ty For k > i obviously ax —W;>; a; =
0. For k < i, ay = C*(a) and a; = C7(a) imply that sc-dim(ay A a;) < k for j > i by SSz Hence
ap — a; = ay by SSE and finally ar — Wj>;a; = ax by Tqm, SO

a— j\é/i a; = k\);/z ag. (3)
By @), @), @) we conclude that C*(a) = a;. The result follows for every i by decreasing induction.
|

Proposition 3.3 Let Ly be a noetherian subscaled lattice, L a subscaled lattice, and ¢ : Ly — L
an Liac-embedding such that for every a € Z(Ly), p(a) is sc-pure and has the same sc-dimension
as a. Then ¢ is an Lgc-embedding.

Remark 3.4 Clearly the same statement remains true with L1,y and Lgc replaced respectively
by Ly, and L. We will freely use these variants.

Proof: We have that Ly and L are d-subscaled lattices for some d € N. Given a € Ly and k
a non-negative integer, we first check that ¢(C*(a)) is k-sc-pure. Note that every V-irreducible
component ¢ of C¥(a) in Ly has sc-pure dimension k. Indeed CF(a) is k-sc-pure by SS13) and
¢ = CF(a) — b # 0 where b is the join of all the other V-irreducible components of C*(a), hence
sc-dim(c) = sc-dim(C*(a) — b) = k. Moreover ¢ is sc-pure because it is V-irreducible, hence ¢ is
k-pure. By our assumption on ¢ it follows that ¢(c) is k-sc-pure. Every finite union of k-sc-pure
elements being k-sc-pure by SSg), it follows that

@(Ck(a)) is k-sc-pure. 4)

Now for every | # k we have sc-dim(C"(a) A C'(a)) < min(k,1) by SSg- It follows that each
V-irreducible component ¢ of C*(a) A C'(a) has sc-dimension strictly less than min(k, 1), hence so
does p(c) by assumption. By SSg) we conclude that

sc-dim (C*(a) A C'(a)) < min(k,1) (VI # k). (5)

We have that ¢(a) = Wi<q ©(C*(a)) by SS¢ and because ¢ is an Li,-embedding. By @), (&)
and Proposition B2 it follows that C*(p(a)) = ¢(C*(a)) for every k < d. Since ¢ is injective, this
implies by S57) that for every a € Lo

sc-dim a = sc-dim ¢(a). (6)

It only remains to check that ¢(a —b) = p(a) — ¢(b) for every a,b € Lo. By TCfg, replacing if
necessary a by its V-irreducible components, we may assume w.l.o.g. that a itself is V-irreducible
in Lo. This implies that a = C*(a) for some k, hence ¢(a) is k-sc-pure by assumption on . It
then remains two possibilities for a — b:



e If b > a then ¢(b) > p(a), hence a — b = 0 and ¢(a) — ¢(b) = 0, so p(a —b) = ¢(0) =0 =
p(a) = p(b).

e Otherwise b A a < a hence a — b = a by T(. So we have to prove that p(a) — p(b) = p(a).
By SSg sc-dim b A a < sc-dim a, hence sc-dim(p(b) A ¢(a)) < sc-dim(p(a)) = k by (@). Since
¢(a) is k-sc-pure it follows that p(a) — p(b) = ¢(a) by SSg;

Corollary 3.5 Let Lo be a noetherian lattice embedded in a subscaled lattice L. Assume that every
b < beI(Ly) are sc-pure in L and sc-dimb’ < sc-dimb in L. Then the restrictions to Lo of the

Lsc-operations “—7 and “C;” of L turn Lg into an Lsc-substructure which is a subscaled lattice.

Proof: The assumptions imply that the map D : a — sc-dima is a strictly increasing map from
Z(Lo) to N. Endow Lo with the structure of subscaled lattice determined by D as in Example
By construction the inclusion map from Lg to L is an Lj,t-embedding which preserves the sc-purity
and sc-dimension of every b € Z(Lg), hence is an Lgc-embedding by Proposition B3

]

4 Local finiteness

We prove in this section that every finitely generated subscaled lattice is finite. This result is
far from obvious, due to the lack of any known normal form for terms in Lgc. It contrasts with
the general situation in co-Heyting algebras, which can be both infinite and generated by a single
element. Our main ingredient, which explains this difference, is the uniform bound given a priori
for the sc-dimension of any element in a given d-subscaled lattice.

Theorem 4.1 Any d-subscaled lattice L generated by n elements is finite. More precisely, the
cardinality of Z(L) is bounded by the function u(n,d) defined by

,LL(TL, d) = 2n + M(2n+17 d - 1)
ford >0, and p(n,d) =0 for d < 0.

Proof: The only subscaled lattice of sc-dimension d < 0 is the one-element lattice {0}, so the
result is trivial in this case. Assume that d > 0 and that the result is proved for every d’ < d and
every non-negative integer n.

Let L be a subscaled lattice of sc-dimension d generated by elements x1,...,z,. Let £, be the
family of all subsets of {1,...,n} (so Qo = {0}). For every I € Q,, let I¢ =, \ I and

yr = (Z/%(\I:cz) - ( W zi), z] = Cd(y[).

iele

The family of all Yr = (,c; P(x:) N (;cze P(x:)¢ is a partition of Spec(L). Indeed the Y;’s are
the atoms of the boolean algebra generated in the power set P(Spec(L)) by the P(z;)’s. Moreover
each P(y) is the topological closure Y of Yy in Spec(L) hence for every x € L

Pz)= |J P@)nyic | P(zm?,:P(Ie%nsz,).

IeQ, IeQ,

Soz < 1% (z Ayr) by Stone’s duality. The reverse inequality being obvious we have proved that
e n

L = :
VeeL, Ié)%n(ac AYr) (7)
In particular SSg also gives
d _ a —
c*(1)=Cc¢C (Ié)gn yI) _Ié)gn 1. (8)



For every I # J € Q,, if for example I € J choose any ¢ € I\ J and observe that y; < x; and
ys <1—wx;s0yr ANyy; <1—x; by T(g By SSg and the d-sc-purity of the z;’s it follows that

sc-dimzy A zy <d hence z;—z;=z;. (9)

It follows from SSgj, SS9 and @) above, that the element

d
a=(1-C41) v (Ievgln(yf - zf)) v (#%Qn(zf A zJ))

has sc-dimension strictly smaller than d. So the induction hypothesis applies to the
Lsc-substructure Ly of L(a) generated by the (yr — z7)’s and the (27 A a)’s: L is finite, with at
most (2[€2,|,d — 1) V-irreducible elements. Note that L, is an L§c-substructure of L (recall that
Lic = Lsc \ {1}). Finally let L, be the upper semi-lattice generated in L by Ly U{zr}1eq,. By
construction Ly is finite and Z(L1) € Z(Lg )U{z1}1eq,,, 5o |Z(L1)] < 2"+ p(2"H d—1) = p(n, d).
It is then sufficient to show that L; = L.

We first prove that L, is a lattice. By (), C%(1)Va = Wieq, 2z1Va € Ly hence 1 = C*(1)Va €
Ly. For every I € Q, and every b € Ly, zr Ab = (21 Aa) Ab € Ly. For every I # J € Q,,
ziNzg=(zr Na)A(zg Aa) € Ly. So by the distributivity law, L; is a sublattice of L.

In order to conclude that Lp is an Lgc-substructure of L, by Corollary it only remains
to check that for every ' < b € Z(L1), b is sc-pure in L and sc-dimb’ < sc-dimb in L. Since
Z(L1) CI(Ly) U{zr}treq, we can distinguish two cases.

Case 1: b € I(Ly). Then b is sc-pure in L, by SSg hence also in L since L, is an
L-substructure of L. Similarly ¥ < b in L, by T(q that is b — b = b in Ly hence also in
L. Thus V' < b in L which implies that sc-dim b’ < sc-dim b in L by SSg.

Case 2: b= z; for some I € Q,,. Then b = Cd(yj) is sc-pure in L and sc-dimb=d. If b/ = z;
for some other J € €, then on one hand sc-dim(d’) = d and on the other hand I # J hence
b = b Ab = zr A z; has sc-dimension < d by (@), a contradiction. So necessarily b’ € Z(Lg ), in
particular & < a hence sc-dim(b') < sc-dim(a) < d

So L; is indeed an Lgc-substructure of L. Finally every yr = (yr — z1) V z1r € Ly and (@) gives,
for every i < n,

T = Iéﬂﬂn Ti Nyr < Ife\)gz”' yr < x;.
So equality holds, hence each x; € Ly, which finally proves that L; = L.
|

Corollary 4.2 For every n,d there are finitely many non-isomorphic subscaled lattices of
sc-dimension d generated by n elements.

Proof: ~ Any such subscaled lattice L is finite, with |Z(L)| < u(n,d) by Theorem Bl Clearly
there are finitely many non-isomorphic lattices such that |Z(L)| < u(n,d) and each of them admits
finitely many non-isomorphic Lgc-structures of d-subscaled lattices.

|

5 Linear representation

In this section we prove that the theory of d-subscaled lattices is the universal theory of various
natural classes of geometric d-scaled lattices, including SCqet(K,d) in Example [[LT] as well as
SCyar(K,d). The argument is based on an elementary representation theorem for d-subscaled
lattices, combined with the local finiteness result of Section [

Given an arbitrary field K, a non-empty linear variety X C K™ is determined by the data of
an arbitrary point P € X and the vector subspace X of K™, via the relation X = P+ ? (the orbit
of P under the action of ? by translation). We call X a special linear variety (resp. a special
linear set) if X is a linear variety such that ? is generated by a subset of the canonical basis
of K™ (resp. if X is a finite union of special linear varieties). The family Ly, (X) of all special
linear subsets of X is the family of closed sets of a noetherian topology on X, hence a noetherian
lattice. For every A € Ljin(X) we let D(A) be the dimension of A in the sense of linear algebra.
This endows L (X) with a natural structure of scaled lattice as in Example

10



Remark 5.1 For every A € Ljj (X)), if K is infinite then sc-dim A = dimL“n(X) A = the dimension
of A as defined in linear algebra. It coincides with the Krull dimension as well. If moreover A
is V-irreducible in Lj, (X) then it is pure dimensional, hence it is sc-pure both in Ly, (X) and
Lz.:(X). By Proposition B3l it follows that Ly, (X) is an Lgc-substructure of Ly, (X). Similarly
if K is a tame expansion of a topological field then Ly, (X) is an Lgc-substructure of Lges(X).

In what follows K™ is identified with K™ x {0}" C K™*". The very easy result below prepares
the proof of Proposition

Proposition 5.2 For every two special linear sets C C B C K™ and every non-negative integer
n > dim C there exists a special linear set A C K™ ™ of pure dimension n such that ANB = C.

Proof: The result being rather trivial if C is empty, we can assume w.l.o.g. that C # (. Let

(€1,...,€m4n) be the canonical basis of K™*". If I is a subset of {1,...,m + n} we let E(I)
denote the vector space generated in K™ by (e;)icr. Decompose C' as a union of special linear

varieties C1, ..., C)p, and write each C; = P; + E(Jl) with |J;] = dimC; < n. Let I; = J; U{m +
1,...,m+n—1|J;|} and A; = P, + E(I;) for every ¢ < p. Finally let A = A, U---UA,. By

construction each A; has pure dimension |I;| = n, hence A has pure dimension n. Clearly each
A;NK™ = (;, hence AN K™ = C and a fortiori AN B =C.
]

Proposition 5.3 (Linear representation) Let K be an infinite field, d > 0 an integer and L a
finite d-subscaled lattice. Then there exists a special linear set X over K of dimension < d and an
Lsc-embedding ¢ : L — Ly (X).

Proof: By induction on the number r of V-irreducible elements of an arbitrary d-subscaled lattice
L, we prove that there exists an L£§--embedding ¢ of L into Ly (K™) for some m depending on
L. Taking X = ¢(1,) then gives the conclusion. Indeed X is a special linear set over K, dim X =
sc-dim(1y) < d because ¢ preserves the sc-dimension, and ¢ is obviously an Lgc-embedding of L
into Ly (X).

If = 0 then L is the one-element lattice {0}, hence an L£§-substructure of Ly (K). So, given
a fixed r > 1, we can assume by induction that the result is proved for r—1. Let L be a d-subscaled
lattice with V-irreducible elements aq,...,a,. Let ¢ = a, and b = Wi<i<r a;.

Renumbering if necessary we may assume that a, is maximal among the a;’s. By maximality,
the V-irreducible elements of L(b) are aq,...,a,—1. Let c=aAb and ¢ an L§--embedding of L(b)
into some Ly, (K™) given by the induction hypothesis. Since a is V-irreducible in L it is sc-pure.
Moreover ¢ < a by T(g, hence a has pure sc-dimension n for some n > sc-dim(c) by SSg Let
B, C be the respective images of b, ¢ by . Proposition 5.2 gives a special linear set A C K™% of
pure dimension n such that AN B = C. Identifying K™ with K™ x {0} C K™*" turns ¢ into
an Lc-embedding of L(b) into Ly, (K™+™).

Every x € L can be written uniquely as z, V 2 with z, € {0,a} and 2, € L(b) by grouping
appropriately the V-irreducible components of . So we can let

N o(xp) if x, =0,
Plz) = { AU(zp) if 2, =a.

This is a well-defined £}, -embedding of L into Ly, (K™*™). Moreover ¢ is an L§,-embedding by

a

Proposition [3.31 This finishes the induction.
|

Given an infinite field K and positive integer d let SCji, (K, d) be the class of d-scaled lattices
Liin (X) with X ranging over the special linear sets over K of dimension at most d.

Theorem 5.4 The universal theories of SCaet(K,d) (resp. SCzar(K,d), SCin(K,d)) in the lan-
guage Lsc are the same for every fixed integer d > 0 and every tame expansion IKC of a topological
field K (resp. for every infinite field K ). This is the theory of d-subscaled lattices.
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Proof: As explained in Section [[I] for every such expansion K of K the good properties of the
dimension theory for definable sets X C K™ ensure that Lger(X) is a d-scaled lattice. Obviously
the same holds true for Lj,(X) and Lz, (X). So the universal theory of any of these classes
contains the theory of d-subscaled lattices. For the converse, thanks to Remark [5.1] it suffices to
prove that every d-subscaled lattice L embeds into a model of the theory of SCyy, (K, d). If L is
finite this is Proposition The general case then follows from the model-theoretic compactness
theorem, because L is locally finite by Theorem A1l

]

6 Minimal extensions

Minimal proper extensiondi of any finite subscaled lattices are entirely determined by so-called
“SC-signatures” (see below). Since this is a special case of minimal extensions of finite co-Heyting
algebras, we first recall the main results of [6] on this subject, and try to reduce to them as much
as possible.

We need some specific notation and definitions. Given a finite lattice Lo, a Ljt-extension L,
elements a € Lo and z € L we write:

e a” =wW{be Lo|b<a}.
e g(x,Lg) =M{a € Ly|z < a}.

Clearly a € Z(Ly) if and only if a~ is the unique predecessor of a in Ly (otherwise a= = a).

Assume that Lo and L are co-Heyting algebras (or topologically complemented lattices, or
TC-lattice for short). A TC-signature in Lg is a triple (g, H,r) where g € Z(Ly), H is a set of
one or two elements hi, ho € Lo and r € {1,2} are such that:

e cither r =1 and h; = hy < g;
e or 7 =2 and hy V hs is the unique predecessor of g.

A couple (21, z2) of non-zero elements of L is TC-primitive over L if there is g € Z(Lg) such
that

P1 g~ Azy and g~ A x5 belong to Ly.
P2 One of the following happens:
l.zy=a2and g~ Ay € 71 <€ g.
2. k1 #F X2, 11 N2 € Lgand g — x1 = T2, g — T2 = T71.

This implies that each x; & Lo, that ¢ = g(x1, Lo) = g(z2, Lo) and that the triple orc(z1,22) =
(g9, H,r) defined as follows is a SC-signature in Lg, called the SC-signature of (x1,z2) in Lo.

g = g(x1, Lo) H={g9" Nx1,9” N2} r = Card{xy,z2}

Finally we say that L is a TC-primitive extension of L if it is Lpc-generated over Ly by
a TC-primitive couple. For the convenience of the reader we collect here all the properties of
TC-signatures and TC-primitive extensions that we are going to use.

We will refer to the k-th item of the next proposition as Proposition [G.Il%.

Proposition 6.1 ([6]) Let Lo be a finite co-Heyting algebra and L an ETC—eItensiOTE.

1. ([6, Theorem 3.3]) If L is Lrc-generated over Ly by a TC-primitive tuple (x1,x2), then L
is exactly the upper semi-lattice generated over Lo by x1 and xo. It is a finite co-Heyting
algebra and one of the following holds:

8When we talk about an extension L of a lattice, a co-Heyting algebra or a subscaled lattice Lo, it is always
understood that L is also a lattice, a co-Heyting algebra or a subscaled lattice respectively.
9See Footnote [{
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(a) x1 =22 and Z(L) = Z(Lo) U {z1}.
(b) 1 # x2 and (L) = (Z(Lo) \ {g}) U {21, 22}
2. (|6, Remark 3.6]) The TC-signatures in Lo and the TC-primitive extensions of Lo are in
one-to-one correspondence: every TC-signature in Lo is the TC-signature of a TC-primitive

extension, and two TC-primitive extensions of Ly are Lrc-isomorphic over Lo if and only if
they have the same TC-signature in Lg.

3. ([6, Corollary 3.4]) If L is finite, the following are equivalent.

(a) L is a minimal proper extension of Lg.
(b) L is a TC-primitive extension of Lg.
(c) Card(Z(L)) = Card(Z(Lo)) + 1.

As a consequence every finite Lrc-extension L' of Lo is the union of a tower of TC-primitive
extensions Lo C Ly C -+ C Ly = L' with n = Card(Z(L')) — Card(Z(Ly)).

If L is a TC-primitive extension of a finite co-Heyting algebra Lg, by Proposition it is
Lrc-generated over Lo by a unique (up to permutation) TC-primitive tuple (21, x2). We then call
orc(z1,x2) the TC-signature of L in L and denote it opc(L).

Now let Lo be a finite subscaled lattice and L a Lgc-extension. A SC-signature in Lg is a
triple o = (g, H, q) where g € Z(Lg), H is a set of one or two elements hi, ho € Lo and ¢ € N are
such that:

e cither sc-dimhy; < ¢ < sc-dimg and hy = he < g;
e or ¢ =sc-dimg and hy V hy = g~.

Let 7, = 1if ¢ < sc-dimg, 7, = 2 if ¢ = sc-dimg, and ¢T¢ = (g, H,r,). By construction this
is a TC-signature in Lg. Given a Lgc-extension L of Lo, a tuple (x1,x2) of elements of L is
SC-primitive over L if it is TC-primitive over LOTc and if in addition

P3 x1, x5 are sc-pure of the same sc-dimension.

Such a SC-primitive couple (x1,x2) determines its so-called SC-signature in L, denoted by
osc(z1,z2) = (g9, H, q) and defined as follows.

g = g(x1, Lo) H={9g" Nz1,9” Nz} q = sc-dim x;

Note that, by condition P2 of the definition of TC-signatures, x1 = x5 if and only if 21 < g, and
otherwise sc-dim z; = sc-dim x5 = sc-dim g. This ensures that orc(21,72) = (osc (21, 72))TC.

Let LEC and LTC denote the respective Lrc-reducts of Ly and L. For every subset X, of L
we let:

o Lo(Xo) = the Lgc-structure generated by Lo U Xy in L;
e LIC(Xy) = the Lrc-structure generated by Li® U Xq in LTC.

We say that L is a SC-primitive extension of Lo, if there exists a tuple (z1,22) SC-primitive
over Lo such that L = Lo{x1,x2) (then clearly L = Lo(x1) = Lo{(x2)). By Lemma below and
Proposition [6.1I0] such a tuple is necessarily unique.

Lemma 6.2 Let Ly be finite subscaled lattice, and L a Esc—extensioﬂ generated over Lg by an
SC-primitive tuple (x1,72). Then LTC = LIC(x1,29), (w1,22) is TC-primitive over LI and
orc(z1,2) = (osc(1, 2))TC.

10See Footnote {
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Proof:  That (x1,2) is TC-primitive over L{®¢ and orc(z1,22) = (0sc(w1,22))TC is only a

reminder: it follows directly from the definitions. Let Ly = LT (21, 25), in order to conclude that
Ly = L it only remains to prove that L; is an Lgc-substructure of L. By Corollary B0 it suffices
to check that for every b/ < b€ Z(L1), b is sc-pure in L and sc-dim b’ < sc-dimb in L.

If b € Z(Ly), then b is sc-pure in Lo by SS13) hence also in L because Ly is an Lsc-substructure
of L. Otherwise b = x; for some i € {1,2}. Then b is sc-pure in L by definition of SC-primitive
tuples over L.

In both cases b' < b in Ly by T(, that is b — b’ = b in Ly, hence also in L because L; is an
Lrc-substructure of L. So b" < b in L hence sc-dim (') < sc-dim(b) in L by SSg,

]

Lemma 6.3 Let Ly be finite subscaled lattice, Ly a Lrc-extension generated over LIC by a
TC-primitive tuple (x1,72), and 7 = (g,{h1,h2},q) a SC-signature in Lo such that 77 =
orc(z1,x2). Then there exists a unique structure of subscaled lattice expanding L1 which makes it
a Lgc-extension of Lo such that (x1,x2) is SC-primitive over Lo and osc(x1,22) = 7.

Proof: By Proposition 610 Z(L1) C Z(Lg) U {z1,x2}. For every x € Z(Lg) let D(z) = sc-dimz,
and let D(x1) = D(x2) = ¢. This defines by restriction a function from Z(L;) to N. Assume that
D is strictly increasing. Then it determines as in Example an Lgco-structure on L; expanding
its Lrc-structure. Let us denote it L, so that LT¢ = L;. Every V-irreducible element of L
remains sc-pure in L with the same sc-dimension, hence by Proposition 8.3 the inclusion of Ly into
L is an Lgc-embedding. This is clearly the only possible Lgc-structure on L; which makes it an
Lsc-extension of L such that sc-dimz; = sc-dimxy = ¢g. So it only remains to prove that D is
strictly increasing.

Let b < a in Z(L), if a,b € Z(Lo) then D(b) < D(a) by SSg. So we can assume that a or b does
not belong to Z(Lg). By Proposition[E Il one of them must belong to {x1, z2} and the other one to
Z(Lo). Note that our assumption opc(r1,z2) = 0 T¢ implies that (for i = 1,2) g = g(=;, Lo), and
h; = z; Ag~ (up to re-numbering) and: either x; = xq9, h1 = ha < ¢ and sc-dim h; < ¢ < sc-dim g;
or x1 # x3, h1 V hg = ¢~ and ¢ = sc-dim g.

Case 1: b = x1 or b = xa, hence D(b) = q. Then a € Z(Ly), in particular a € Ly, hence g < a
and so sc-dim g < sc-dim a. If 21 = 25 then ¢ < sc-dim g < sc-dim a hence D(b) < D(a). If 21 # x2
then ¢ = sc-dim g, and g is not V-irreducible in L hence g # a. So g < a (because g < a and a is
V-irreducible) hence sc-dim g < sc-dim a by SSgj, that is D(b) < D(a).

Case 2: a = x1 or a = x3, hence D(a) = q. Then again b € Ly, and b < a < g hence b < g~.
If x1 = a9, since b < a A g~ = hy we get sc-dimb < sc-dim hy < ¢, hence D(b) < D(a). If 21 # x4
then sc-dim g = ¢. Since b < g we have b < g (because ¢ is V-irreducible) hence sc-dim b < sc-dim g
by SSg So sc-dimb < ¢, that is D(b) < D(a).

]

We can now pack all this together. We will refer to the k-th item of the above proposition as

Proposition 6.4l k.

Proposition 6.4 Let Ly be a finite subscaled lattice and L a Esc—emtensio.

1. If L is Lgc-generated over Ly by a SC-primitive tuple (x1,x2), then L is exactly the upper
semi-lattice generated over Lo by x1 and xo. It is a finite subscaled lattice and one of the
following holds:

(a) x1 =22 and Z(L) = Z(Lo) U {z1}.
(b) @1 # w2 and I(L) = (Z(Lo) \ {g}) U {w1, z2}.

2. SC-signatures in Lo and SC-primitive extensions of Lo are in one-to-one correspondence: ev-
ery SC-signature in Lg is the SC-signature of a SC-primitive extension, and two SC-primitive
extensions of Lo are Lsc-isomorphic over Ly if and only if they have the same SC-signature
m Lo.

3. If L is finite, the following are equivalent.

11See Footnote ®
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(a) L is a minimal proper Lsc-extension of Ly.
(b) L is a SC-primitive extension of L.
(c) Card(Z(L)) = Card(Z(Lo)) + 1.

As a consequence every finite Lsc-extension L' of Ly is the union of a tower of SC-primitive
extensions Lo C Ly C -+ C Ly = L' with n = Card(Z(L')) — Card(Z(Lyo)).

If L is a SC-primitive extension of a finite subscaled lattice Ly, by Proposition [G.4l0] it is gen-
erated over Lo by a unique (up to permutation) SC-primitive couple (z1,x2). We call osc (21, 22)
the SC-signature of L in Lj and denote it ogc(L).

Proof: () If L is Lgc-generated over Ly by an SC-primitive tuple (z1,22), then by Lemma [6.2]
L™ is also Lc-generated over LS by (21, 22), which is TC-primitive. The first item the follows
from Proposition [G.II1

@) Let o be an SC-signature in Ly. Then ¢ 7€ is a TC-signature in Lg. Proposition G2 gives
a TC-primitive Lrc-extension Ly of LIC with TC-signature ¢C in Lg. Lemma then gives a
unique structure of subscaled lattice expanding L; which makes it an SC-primitive extension of L
with signature o in Lo. Let us denote it L, so that LT¢ = L;. Now if L’ is another SC-primitive
extension with signature o in Lg, by Proposition L'TC is Lrpc-isomorphic to LTC over Ly.
The image of L’ via this endomorphism defines an Lgc-structure expanding LTC, which makes
it an SC-primitive extension of Ly with the same signature as L. By the uniqueness of such a
structure, given by Lemma 6.3} it follows that this Lc-isomorphism from L'TC to LTC is actually
an Lgc-isomorphism, which proves the result.

@) We prove (Ba)=(BDh)=Bd)=Ba). Note that (Bb)=-Bd) follows from item [I).

Bd=@a). Let L' be a proper Lsc-extension of Ly contained in L. Then L'TC is a proper
Lrc-extension of LI contained in LTC. By Proposition G118, ([Bd) implies that LTC is a minimal
proper Lrc-extension of LIC. So L'TC = LTC| thus necessarily L' = L, which proves that L is
minimal.

Ba)=(BL). Let z; be a minimal element in Z(L) \ Z(Lo). Let g = g(z1,Lo),; if z1 < g
let 9 = x1, otherwise let 9 = g — 21. The proof of Corollary 3.4 in [6] shows that (z1,x2) is
TC-primitive over L{€. In particular 1,22 € Z(L) so they are sc-pure by SS13+ The same holds
true for g, hence if x1 # x2 then 7 = g — x2 and 9 = g — z1 have the same dimension (the
dimension of g, by definition of the sc-purity of g). So (x1,x2) is actually SC-primitive. Since
LEC(x1,22) = LTC, a fortiori Lo(z1,72) = L, hence L is SC-primitive over L.

]

7 Model-completion of scaled lattices

We say that a subscaled lattice L is a super scaled lattice, if L satisfies the following additional
properties, both of which are clearly axiomatizable by V3-formulas in Lgc. Moreover, if sc-dim L <
d, we say that L is a super d-scaled lattice.

Catenarity For every non-negative integers r < g < p and every elements ¢ < a # 0, if ¢
is r-sc-pure and a is p-sc-pure then there exists a non-zero g-sc-pure element b such that
c<b<a.

If SpecL is noetherian this property is equivalent to the usual notion of catenarity, namely
that any two maximal chains in SpecL having the same first and last elements have the same
length. In particular every d-scaled lattice L of type Lz, (X) or Lj,(X) satisfies this property.
If K is an o-minimal field and X C K™ is any definable set, then Lger(X) also satisfies the
Catenarity Property: given A,C € Lges(X), respectively p-pure and r-pure, the Triangulation
Theorem reduces to the case where A is a simplex and C one of its faces, and it then suffices to
take for B a face of A of dimension p containing C' In contrast, none of these scaled lattices satisfy
the next property, as it implies that L is atomless.
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Splitting For every elements b1, b2, a, if b1 V by < a # 0 then there exists non-zero elements
a1 > by and ag > by such that:
a;y =a— a9
g = a — ay
aj A as = bl AN bQ

We will then say ai, as split a along by, bs.

Remark 7.1 If r < p < ¢ in the Catenarity axiom, the conclusion can be strengthen to ¢ < b < a.
Indeed b has pure sc-dimension ¢ and ¢ A b = ¢ has sc-dimension < ¢ hence b — ¢ = b by SSg. In
particular every subscaled lattice satisfying the Catenarity aziom is a scaled lattice. Indeed, given
any element a of sc-dimension d > 1, repeated applications of the Catenarity axiom to Cd(a), c=0
and each integer p from 0 to d, gives a chain of sc-pure elements ag, . .., aq such that

Ofa<Ka; < <Kaqg<a.

By Fact it follows that dima > d, and by S§y7j that dima = d.

Lemma 7.2 Let a,by,bs be elements of a finite subscaled lattice Ly. If by V ba < a # 0 then Lg
embeds in a finite subscaled lattice L containing non-zero elements a1, as which split a along by,
by. Moreover, if C° (a) = 0 we can requir that all the atoms of L belong to Ly.

Proof: We are going to prove by induction on d = sc-dim a a slightly more precise result, namely
that in addition « < a for every € Z(L) \ Z(Lo). Let ¢1,...,gn be the V-irreducible components
of a in L. Note that n > 1 because a # 0. If d = 0 our assumption that b; V by < a implies by
SSg) that by = by = 0. If n = 1, that is a = g1 is V-irreducible, then o = (g,{0},0) is a signature
in L. Proposition [64I2] gives an SC-primitive couple (a1, az) generating an Lgc-extension Ly over
L with signature o. This signature ensures that (a1, az) splits a along (0,0). If n > 2, a; = ¢
and as = a — a1 will do the job. So the result is proved for d = 0.
Now assume that d > 1 and the result is valid until d—1. Note that g; V---Vg,, is the greatest
element ¢ € L such that ¢ < a, in particular
bl\/b2§gl_\/"'\/97

n -

(10)

Let u = (Wi<n g, ) — (b1 V ba) and u* = u — C°(u). Since u < a we have sc-dimu < d by SSg;

We are claiming that Ly embeds in a finite subscaled lattice L without new atoms, in which all
the g;’s are still V-irreducible with the same predecessor as in Ly, and in which there are elements
ui, us which satisfy all the conditions to split u* along by A u*, ba A u*, except that uj, u5 might
be zero elements.

By Tg}, (b1 V b2) Au* < u* so if sc-dimu < 0 we can simply take uj = u3 = 0 and Lo = L.
On the other hand, if sc-dimw > 0 the induction hypothesis applies to u*, by Au*, bo Au*. It gives
a finite subscaled lattice L containing Lo and elements uj,u5 € Lo which split u* along b1 A u*,
by A u*. Moreover we can require that L do not contain any new atom because C°(u*) = 0, and
that < u* for every « € Z(L) \ Z(Lg). For every x € Z(L) such that z < g; for some i < n, if
x € Lo then x < g; (where g; still denotes the predecessor of g; in Ly). If x ¢ Ly then x < u*
by construction hence x < g; A u*. The latter belongs to Ly and is strictly smaller than g;, hence
smaller than g;, so x < g;. It follows that g, is still the unique predecessor of g; in L. In particular
g; remains V-irreducible in L. This proves our claim in both cases.

Now let u; = C°(u) V uf and up = ub. We have in particular

(V51 \/UQ == \<X/ gz_ - (b1 \/b2) (11)

Since u — by = u by T(g) necessarily by A ¢ < ¢ for every V-irreducible component ¢ of u, hence
by A C°(u) < C%u). By SSg it follows that by A C°(u) = 0 hence by A u; = by A uf. Similarly
u* A C°(u) = 0 because u* — C%(u) = u* by Sy and TCg. A fortiori uj A C°(u) = 0 hence

12This additional requirement when C°(a) = 0 will be used only later, in Section
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us Auy = ujAuj. Note also that by Aus = by Au"Aus < uiAud, and symmetrically ba Auj < uj Aus.
Altogether, since us = u3 and u} Aul < by A be by construction, this gives

(bl AN UQ) \Y (bg A\ ul) \Y (Ul AN UQ) S (bl A\ b2)

hence
(bl \/ul) A\ (bg V ’U,g) = (bl A\ bg) V (bl N ’U,g) \Y (bg N ul) \Y (u1 /\UQ) = (bl N bg) (12)

After this preparation, for each i let
hix=g; N (b1 Vu), hio=g; N (b2 V us), oi = (i, {hi, hi2}, sc-dim g;)

Using () we get

hiiVhio=g; A(b1VuiVbsVus)
:g;/\ |:b1\/b2\/ <\X/ gj(bl\/b2)>:|
Jj<n

=9; Aj\évng; =Y -
So each o, is an SC-signature in Lg. In particular Proposition 6412l gives an SC-primitive extension
Ly = Lo{ai 1,a1,2) with SC-signature o in Lo. By Proposition B4, Z(L1) = (Z(Lo) \ {91}) U
{a11,a12}. In particular go € Z(L;1), hence o9 is still an SC-signature in L;. Repeating the
construction n times (note that a # 0 ensures that n > 1) gives a chain of Lgc-extensions (L;)i<n
and for each ¢ > 0, an SC-primitive couple (a; 1, a;2) generating L; over L,_; with signature o; in
L;_1. Each g; = a;1 V a;,2 and by Proposition 6.4/

I(Ln) = (I(Lo) \ {91, e ,gn}) U {alyl, a172, ceey anﬁl, anﬁg} (13)

SO G1,1,01,2,---,0n,1,0n 2 are the V-irreducible components of @ in L,. Moreover every ¢ € Z(L,,)
such that ¢ < a; ) for some 7,k must belong to Lo, hence the predecessor of a;j is the same in
every L; and belongs to Lg. We can then denote it a;, without ambiguity, and by construction
we have 7

a-_k =a;k N\ g(ai, Li—l) =a;k Ngi = hi,k- (14)

7,
Let a1 = Wi<n @51, a2 = Wi<n @52, hi = Wi<n hi,l and hy = Wi<n hi,g. We are going to check
that ay, as split a along b1, bz. Both of them are non-zero and since the a; ;’s are the V-irreducible
components of a we have a —a; = az, a —az = a1. Each a; 1 > h; 1 by construction, hence a; > hy
and symmetrically as > he. Moreover for k € {1,2}

hiy = W hix > W g; Nbg = by
i<n i<n

where the last equality comes from ([I0), so ax > bx. It remains to check that a; A ag = b1 A ba.
For i # j, a;1 and a; 2 are mutually incomparable hence by (I4)

a; 1 A aj2 = a;l AN a;2 = h@l A hij.

On the other hand a; 1 A a;2 = hi1 A hi2 by construction. The conclusion follows, with L = L,
using (I2).
ar Nag =Wa;1 Najo = Whi,l A\ hj72
i,j i,j
= })(5 (9 A (b1 Vun)] A [gy A (ba Vug)]
= %(g; Ag; ) A[(byVur) A (b2 Voug)]

= (\);/91_) A (\é/g]_) A (01 Vur) A (by V us)]

= (bl \/ul) A\ (bg \/UQ) = by A bo.
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Theorem 7.3 The theory of super d-scaled lattices is the model-completion of the theory of
d-subscaled lattices. In particular, it eliminates the quantifiers in Lsc.

Proof:  The last statement follows from the first one, as is usual for the model-completion of
a universal theory. By standard model-theoretic arguments it then suffices to prove that every
existentially closed d-subscaled lattice is super d-scaled, and that for every super d-scaled lattice
L, every finitely generated d-subscaled lattice L and every common Lgc-substructure Ly, there is
an embedding of L into L over Ly.

Let L be an existentially closed d-subscaled lattice, and Lg a finitely generated substructure.
By Theorem 1] Lo is finite. By Proposition B3l Ly Lgc-embeds the d-scaled lattice Lger(X)
of some special linear set X, which is in particular a Catenary lattice. By the model-theoretic
compactness Theorem it follows that L is catenary. Similarly Theorem Il Lemma and the
model-theoretic compactness Theorem prove that L has the Splitting property, hence L is super
d-scaled.

Conversely assume that Lisa super d-scaled lattice, L a finitely generated d-subscaled lattice,
and Lo is a common Lgc-substructure of both. By Theorem E.1] and Proposition [6.43al we
are reduced to the case where L is a primitive extension of Lg. Let o = (g,{h1,ha},q) be its
SC-signature. By Proposition [6.42]it suffices to find a z1, 22 € L such that (21, x2) is SC-primitive
over Ly and osc (21, 22) = 0. We distinguish two cases, and let g~ denotes the predecessor of g in
L.

Case I: sc-dimh; < ¢ < sc-dimg and h; = hy < g. Let p = sc-dim g and r = sc-dim hy. Let
Y1,Y2 € L which split g along h1,g~. For 0 < i < d, either ¢ < q or Ci(hl) = 0 (because sc-dim hy =
r < ¢), hence sc-dim Ci(hl) < q < sc-dim g. Recall that g is sc-pure and y; = g — y2 # 0, so and
y1 has pure sc-dimension p like g. The Catenarity property then applies to C*(hy) < y1 = CP(y1)
and gives x; € L such that Ci(hl) < z; < y; and z; has pure sc-dimension ¢. Let © = Wo<i<q %,
by construction hy = Wi<q Ci(hl) < 2 < y; and = has pure sc-dimension ¢. In particular

hi<zANg <y Ayp=hAg =h

hence x A g~ = hy € Lg. Moreover x A g~ = h; < x because sc-dimh; < g and x has pure
sc-dimension ¢. Finally z < g because dimx; = ¢ < p and ¢ has pure sc-dimension p. Altogether
this proves that (z,z) is an SC-primitive tuple over Ly with SC-signature o.

Case 2: ¢ = sc-dimg and h1Vhe = g~. Let y1,y2 € L which split g along hq, hy. By construction
y1 Vys = g, and since g has pure sc-dimension ¢ so does each y;. In addition y1 Ays = h1 Ahe € Lg.
Moreover

y1 Ahe <y Ayz = h1 Ahg
hence y1 A (h1Vha) = h1V (y1 Ahe) = hy. Since hyVhe = g~ it follows that y3 Ag~ = hy € Lo, and
symmetrically y2 A g~ = ha € Lg. So (y1,¥2) is an SC-primitive tuple over Ly with SC-signature
.
]

Remark 7.4 The proof of Theorem [Z.3] shows that if Lg is a finite Lgc-substructure of a super
scaled lattice L, then every signature o in Ly is the signature of an SC-primitive extension of Lg
in L.

The completions of the theory of super d-scaled lattices are easy to classify. Let us say that a
d-subscaled lattice is prime if it does not contain any proper d-subscaled lattice, or equivalently if
it is generated by the empty set. Every prime d-subscaled lattice is finite. By Corollary .2 there
exists finitely many prime d-subscaled lattices up to isomorphism.

Corollary 7.5 The theory of super d-scaled lattices containing (a copy of) a given prime
d-subscaled lattice is No-categorical, hence complete. It is also recursively axiomatizable, hence
decidable. Fvery completion of the theory of super d-scaled lattices is of that kind, and the theory
of super d-scaled lattices is decidable.

Proof: Let L, L' be any two countable super d-scaled lattices containing isomorphic prime
d-subscaled lattices Lo and Lj. By Remark [[4] any partial isomorphism between L and L’, ex-
tending the given isomorphism between Lo and L, can be extended by a back and forth process.
This proves the first statement. The other ones are immediate consequences.

]
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8 Atomic scaled lattices

Every super scaled lattice is atomless because of the Splitting Property, hence none of the
geometric scaled lattice amongst SCgef(K, d), SCrzar (K, d), SCin(K,d) can be super scaled. In
order to apply our study to some of them, we now introduce a variant of subscaled lattices
intended to protect atoms against splitting.

Let Lasc = Lsc U {Atg}rens, with each Aty a new unary predicate symbol. For any
Lasc-structure L we denote by Aty(L) the set of elements @ in L such that L = Atg(a), and
we let Ato(L) = L\ U Atr(L). We call L an ASC-lattice if its Lsc-reduct is a scaled lattice
and if it satisfies the following condition.

ASCy: (Vk >0), a € Ati(L) if and only if a is the join of exactly k atoms in L.

Remark 8.1 This condition can be expressed by V3 formulas in Lasc by saying first that Atq (L)
is the set of atoms of L, and then that Aty (L) is the set of elements of L which are the join of
exactly k elements of Aty (L).

Every ASC-lattice obviously satisfies also the following schemes (for k,I > 0) of universal
axioms:

ASCy: (Vk,1>0, k#1), Va, Atg(a) — = Ati(a)
ASC,: (Vk >0), Va,ap,...,as, Atg(a) —
N\ (ai < a) — W (ai = aj) /\sc-dima =0
0<i<2k 0<i<j<2k

ASCj: (Vk >0), Va,a1,as,

[(a:al\/ag)/\(al/\agzo)/\(al 750)/\(@ 750)}
Aty (a) +— W (Atl(al)/\Atk_l(ag))]

o0<i<k

—

We call sub-ASC-lattices the Lagco-structures L whose Lgc-reduct is a subscaled lattice and
which satisfy ASC) to AS(g) (but not necessarily ASClg).

The scheme ASCj obviously means that (Aty(L))keN is a partition™ of L. For any a € L we
then define asc(a) as the unique k € N such that a € Aty (L).

The scheme ASCgsays that if asc(a) = k > 0 then L(a) has at most 2* element and sc-dim(a) =
0. Then dim(a) = 0 by SSqso L(a) is a co-Heyting algebra with dimension 0, hence a Boolean
algebra. So ASCgj actually says that sc-dima = 0 and L(a) is a Boolean algebra with n atoms for
some non zero n < k. In particular every a € At;(L) is an atom of L.

The scheme AS(g| says that if a is the join of two non-zero disjoint elements a1, az then asc(a)
is non-zero if and only if asc(ay) and asc(ag) are non-zero, in which case asc(a) = asc(aq)+asc(az).
By a straightforward induction this extends to any decomposition of a as the join of finitely
many pairwise disjoint elements. In view of ASCp) it then says that asc(a) > 0 if and only if
a is the join of finitely many atoms ai,...,a, of L such that each asc(a;) > 0, in which case

asc(a) = 219'571 asc(a;).

Remark 8.2 It follows immediately that a Lsc-embedding of sub-ASC-lattices ¢: L — L’ is an
Lasc-embedding if and only if asc(a) = asc(p(a)) for every atom a € L.

Remark 8.3 Obviously every finitely generated substructure of a sub-ASC-lattices is finite by the
Local Finiteness Theorem 1] because Lasc expands Lgc only by relational symbols.

Every scaled lattice L admits a unique structure of ASC-lattice which is an expansion by
definition of its lattice structure. We denote by LAt this expansion of L.

13By a “partition” a set S, we mean here a collection of disjoint sets X covering S. In particular, we do not
require these sets X to be non-empty.
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Proposition 8.4 (Linear representation) Let K be an infinite field and Lo be a finite sub-ASC-
lattice. For every integer N > 0 there exists a special linear set Xy over K and a L} yo-embedding
on: Lo — LEY(K™) such that for every atom a of Lo we have:
o Ifasc(a) > 0 then asc(on(a)) = asc(a).
o Ifasc(a) =0 then on(a) is greater than at least N atoms.

Proof: By induction on lexicographically ordered tuples of integers (r, s) we prove that the result
is true for every finite sub-ASC-lattice Lo having r V-irreducible elements, s of which have the
same sc-dimension as L.

If r = 0 then s = 0 and the unique embedding of Lo = {0} into Lt(P), for an arbitrary point
P of K, has the required property. So let us assume that » > 1 and that the result is proved
for every (r',s") < (r,s). Let d = sc-dim Lo and ay,...,a, be the elements of Z(Lgy) ordered by
increasing sc-dimension, so that sc-dima, =d > 0.

Case 1: d = 0. Then Ly is a boolean algebra and ay,...,a, are its atoms. Let A;j,..., A, be
pairwise disjoint subsets of K such that:

e If asc(a;) > 0 then A; has asc(a;) elements, so asc(4;) = asc(a;).
e If asc(a;) = 0 then A; has N elements, so asc(4;) = N.

Let X be the union of all these A;’s. Clearly the map ¢ which maps each a; to A; extends uniquely
to an Lgc-embedding of Ly into L{*(X) which has the required properties.

Case 2: d > 0. The upper semi-lattice L, generated by a1,...,a,—1 is an L}g-substructure
of Ly to which the induction hypothesis applies. This gives for some integer m a special linear set
B C K™ over K and an Lsc-embedding ¢: Ly — LAY(B) having the required properties. Let

C= 50(1Lg Aa,) and n = sc-dim a,.. Proposition 5.2 gives a special linear set A C K™ such that
AN B = C. One can extend ¢ to an Lsc-embedding ¢ of Ly into Lt (A U B) exactly like in the

lin
proof of Proposition 5.3l Then ¢ inherits from 1 the required properties because all the elements
x € Lo such that asc(z) # 0 already belong to Ly . Indeed, a, is the only V-irreducible element of
Ly which doesn’t belong to L, so every a € Lo \ Ly is greater than a,. But sc-dima, = d > 0
implies that sc-dima > 0, hence asc(a) = 0 by ASCpg. Moreover p(a) > ¢(a;) = A contains
infinitely many atoms (because dim A = d > 0), and the conclusion follows.
]

Let ASCz.: (K, d), ASCyin(K,d), ASCqet(K,d) denote the class of all ASC-lattices LA for L
ranging over SCyz. (K, d), SChin (K, d), SCqet (K, d) respectively.

Corollary 8.5 For every integer d > 0, the universal theories of ASCqet(KC,d) (resp. of
ASCy. (K, d) or ASCyn(K,d)) is the same for every o-minimal or P-minimal expansion of a
field K (resp. every infinite field K ). This is the theory of sub-ASC-lattices.

Proof: Since ASCji, (K, d) is contained in the other classes, all of which are contained in the class
of ASC-lattices, it suffices to prove that conversely every sub-ASC-lattice Lasc-embeds into an
ultraproduct of elements of ASCy;, (K, d). By the model-theoretic compactness theorem, it suffices
to prove it for any finitely generated sub-ASC-lattice Ly.

By Theorem A1, Ly is finite. For any integer N > 0 let on : Lo — Lf?rtl(XN) be an
Lsc-embedding given by Proposition[84l Let I/ be a non principal ultrafilter in the Boolean algebra
of subsets of N, and consider the ultraproduct L = [ yen Lt (Xn)/U. Then ¢ =[] yen on /U is
an Lgg-embedding of Lg into the L. In order to prove that it is an £agc-embedding, by Remark 8.2
it remains check that for every atom a of Ly, asc(¢(a)) = asc(a). So let a be an atom of Ly and
k = asc(a).

If k > 0 then for every N > k, Lit
that is asc(p(a)) = k.

If k = 0, let [ be any strictly positive integer. For every N > [, L& (Xy) = Atn(¢n(a)) by
construction, hence LAY (X ) ¥ Ati(¢on(a)). So L = Ati(p(a)), and this being true for every [ > 0
it follows that asc(p(a)) = 0.

(Xn) E Ati(¢on(a)) by construction. So L |= Atg(¢(a)),
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9 Model-completion of atomic scaled lattices

Let us call super ASC-lattices those ASC-lattices which satisfy the following axioms, all of
which are axiomatizable by V3-formulas in Lasc. We are going to show that this theory is the
model-completion of the theory of sub-ASC-lattices of dimension at most d (resp. exactly d).

Atomicity Every element x is the least upper bound of the set of atoms smaller than x.

Catenarity For every non-negative integers r < ¢ < p and every elements ¢ < a # 0, if ¢
is r-sc-pure and a is p-sc-pure then there exists a non-zero g-sc-pure element b such that
c<b<a.

ASC-Splitting For every b1, ba, a, if b1 Vby < a # 0 and Co(a) = 0 there exists non-zero elements
a1 > by and as > by such that:
a;y =a— a9
as = a — ay
a1 Nas = by Aby

Remark 9.1 An immediate consequence of the atomicity axiom is that for every elements x,y in
a super ASC-lattice L such that y < x and sc-dim(x — y) > 1, there are infinitely many atoms
a € L such that a < x and a Ay = 0. Indeed let A be the set of atoms a € L such that a <z —y,
and B the subset of those a such that a A y = 0. Assume for a contradiction that B is finite and
let b = Waep a. Note that b < y and sc-dimb = dimb = 0. Then by the Atomicity axiom

r—y= WAagy\/b, hence z —y < (yVb)—y=b—y <b.
ac

This implies that sc-dim(z — y) < sc-dimb = 0, a contradiction.

The notions of ASC-primitive tuples and ASC-primitive extensions are defined for sub-ASC-
lattices exactly like for subscaled lattices. Here is a typical example of what we are going to call
an ASC-signature.

Example 9.2 Let Ly be a finite sub-ASC-lattice, and L an Lgc-extension of Ly generated by a
(necessarily unique) SC-primitive tuple (x1,x2). Let (g, {h1, h2}, q) be the SC-signature of L in Ly
and k; = asc(z;). The following properties are immediate.

1. If ¢ < sc-dim g then k; = ko (because x1 = x5 in that case).

2. If ¢ # 0 then k1 = ko = 0 (because each x; has sc-pure dimension > 0 in that case) .

3. If ky =0 or k2 = 0 then asc(g) = 0 (because g > x1 V x3).

4. If k1 # 0, ko # 0 and sc-dim g = 0 then asc(g) = k1 + ko (because g = x1 V x5 in that case).

We define ASC-signatures in a finite sub-ASC-lattice Lo as triples (g, H,q) with H a set
of non-necessarily distinct couples (h1,k1), (he,k2) in Lo x N, such that (g,{h1,h2},q) is a
SC-signature in the Lgc-reduct of Ly and all the conditions enumerated in Example hold
true. In particular we call the ASC-signature in this example the ASC-signature of L and of
(x1,22) in Ly. Note that if ¢ < sc-dim g then h; = ha because (g, {h1, h2}, q) is a SC-signature.

The same argument as in Proposition shows (using Remark B2]) that two SC-primitive
extensions of a finite sub-ASC-lattice L are L£asc-isomorphic over Ly if and only if they have the
same ASC-signature in L.

Lemma 9.3 Let Lo be a finite Lagc-substructure of a super ASC-lattice L. Let opy =
(9,4,{(h1,k1), (ho,k2)}) be an ASC-signature in Lg. Assume that ¢ # 0 or kike # 0. Other-
wise assume that L is Ro-saturated. Then there exists a primitive tuple (x1,x2) € L over Lo whose
ASC-signature is ot .-
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Proof: Let o = (g,{h1,h2},q). This is a SC-signature in Ly (more precisely in its Lgc-reduct).

Case 1: sc-dimg > 1 and ¢ > 1. Then Co(g) = 0 and by definition of ASC-signatures
k1 = ko = 0. By Remark [[4] there is an SC-primitive tuple (z1,z2) in L with signature o in L.
Moreover each ascx; = 0 (because sc-dimz; = p > 1) and each k; = 0, so the ASC-signature of
(x1,22) 18 oAt

Case 2: sc-dimg > 1 and ¢ = 0. Then C%(g) = 0 again and since sc-dim(h; V ha) < ¢ = 0
by definition of SC-signatures we get that hy = hy = 0. Finally k; = ko by definition of ASC-
signatures since ¢ = 0 < sc-dim g. By Remark [0.1] there are infinitely many atoms z in L such that
z<gand zAg~ = 0. If k; > 0 let = be the join of k; such atoms of L. Otherwise L is Np-saturated
by assumption hence it contains an element = < g of dimension 0 such that x A g~ = 0 and I:(x)
has infinitely many atoms. By the Atomicity Property asc(z) = 0. So in both cases (z,x) is an
SC-primitive tuple over Ly with ASC-signature oay.

Case 3: sc-dimg = 0. Then ¢ = 0, g is an atom of Ly and h; = he = 0. In each of the two
remaining sub-cases, we build a tuple (z1,z2) and leave as an exercise to check that (z1,z2) is
SC-primitive over Ly with ASC-signature oay.

If k1 and ko are non-zero then asc(g) = k1 + k2 hence i/(g) contains k; + ko atoms. Let z1 be
the join of k; of them and x5 be the join of the others.

Otherwise, by symmetry we can assume that k; = 0. Then asc(g) = 0 by definition of
ASC-signatures so ﬁ(g) contains infinitely many atoms. By Ng-saturation it follows that L contains
an element x smaller than g such that both ﬁ(z) and ﬁ(g — ) contain infinitely many atoms, hence
asc(x) = asc(g — ) = 0. If ky = 0 let (z1,22) = (x,9 — x). Otherwise let 22 be the join of ko
atoms in i/(g) and let 1 = g — .

]

Theorem 9.4 The theory of super ASC-lattices of sc-dimension at most d (resp. exactly d) is
the model-completion of the theory of ASC-lattices of dimension at most d (resp. exactly d).
In particular, it eliminates the quantifiers in Lasc. It admits Ry completions, each of which is
decidable, and it is decidable.

Proof: ~ We first only sketch the proof of the first statement, as it essentially the same as for
Theorem [.3]

On one hand, given a finite sub-ASC-lattice Lg, we can embed it in an extension satisfying the
Atomicity and Catenarity Property by Proposition B4, and the ASC-Splitting Property by means
of Lemmal[7.2 applied to any a, by, by € Lg such that b; Vby < a # 0 and Co(a) = 0 (note that this
last assumption ensures that the extension built in Lemma [[2]is an £agc-extension). That every
existentially closed sub-ASC-lattice is a super ASC-lattice then follows, by the model-theoretic
compactness theorem.

On the other hand, given an Ry-saturated super ASC-lattice i/, a finite Lagc-substructure Lo
and a finite extension L of Ly, we reduce to the case where L is SC-primitive and let ¢ be its
ASC-signature in Lg. Lemma gives an SC-primitive extension L; of Ly in L with the same
signature in Lo, hence an embedding of Ly into L over Ly (which maps L to Lq). This proves the
first statement.

Quantifier elimination follows, as usual for the model-completion of a universal theory. More-
over there are finitely many (-generated subscaled lattices of dimension at most d (resp. exactly
d). Each of them (except the trivial ones, in which 0 = 1) can be enriched with X different struc-
tures of sub-ASC-lattices obtained as follows: given a finite d-subscaled lattice L and a partitio
(Xx)ren of the set of atoms a of L such that C°(a) = a, we let asc(a) = k for every a € Xj,; we
then expand L to an Lasc-structure according to AS(g,. So the completions of the theory of super
ASC-lattices, which are determined by their prime model, can be recursively enumerated.

]

We say that a sub-ASC-lattice L is standard if every element of sc-dimension 0 belongs to
some Aty (L) for some k > 0. The existence of standard super ASC-lattices (see Section [I0]) and
non-standard super ASC-lattices (by the model theoretic compactness theorem) implies that the
theory of super ASC-lattices containing a given prime sub-ASC-lattice is not Ny-categoric, contrary

14 Necessarily X3 = () for all but finitely many k’s, see Footnote [[3}
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to what happens for super scaled lattice. However we can recover Xg-categorical by restricting to
standard models.

Proposition 9.5 Let Ly, Lo be two standard countable super ASC-lattices.  Then every
Lasc-isomorphism from a finite sub-ASC-lattice Lo C L1 to a sub-ASC-lattice Loy C Lo ex-
tends to an Lasc-isomorphism from Ly to La. In particular Ly and Lo are isomorphic if and only
if their prime Lasc-substructures (those generated by the empty set) are isomorphic.

Proof:  Let ¢ be an Lagc-isomorphism from Ly o to Lag. Pick any element € Ly \ L1 . The
subscaled lattice generated in L1 by Li gU{z} (more precisely their Lgc-reducts) is finite hence by
Proposition [6.48] there is a chain Ly, C L1y C --- C L1, of SC-primitive extensions of subscaled
lattices such that LU {z} C Ly ,. Endow each L;; with the Lagc-structure induced by L;.
It suffices to prove that ¢ extends to an Lagc-embedding ¢1 : Li1 — Lo. Indeed, repeating
the argument will give an Lagc-embedding ¢, : L1, — Lo extending ¢, and by symmetry the
conclusion will then follow by a back and forth argument.

Identifying L1 o with its image by ¢ we can replace L; g and Ly o by a common Lagc-structure
Ly of Ly and Ly. Now Ly 1 is generated over Ly by an SC-primitive tuple (z1,x2) with signature
oat = (9, {(h1,k1), (ha,k2)},q). In particular ¢ = sc-dimz; and k; = asc(z;) for i = 1,2. Iff ¢ =0
then for each i, sc-dimxz; = 0 hence k; > 0 because L; is standard. In other words ¢ # 0 or
k1ke # 0 hence Lemma [0.3] gives an sc-primitive tuple (y1,y2) in Lo with signature oay. Let La g
be the asc-substructure of Ly generated by L1 1 U {y1,y2}. By Proposition ¢ extends to an
Lgc-isomorphism ¢; from Ly 1 to L2 1 which maps each z; to y;. By construction asc(z;) = asc(y;),
and by Proposition[6.4l ¢4 is the identity map on Lo, so asc(p1(2)) = asc(z) for every z € (L1 1).
Hence 1 is an Lasc-isomorphism by Remark B2l which proves the result.
]

10 Applications to lattices of p-adic semi-algebraic sets

In this section K denotes a fixed p-adically closed field. For every semi-algebraic set X contained
in K™ we let L(X) denote the lattice of semi-algebraic subsets of X closed in X, endowed with its
natural structure of ASC-lattice. Note that every A € L(X) of dimension 0 is finite, hence L(X)
is standard.

As already mentioned in the introduction, the results of the previous section lead us to conjec-
ture in [3] and finally to prove in [4] the following result.

Theorem 10.1 (Theorem 3.4 in [4]) Let X be a non-empty semi-algebraic subset of K™ with-
out isolated points. Assume that X is open in its topological closure X and let Y1,...,Y, be a
collection of closed semi-algebraic subsets of 0X = X \ X such that Y1 U---UY, = 0X. Then there
18 a partition of X in non-empty semi-algebraic sets X1, ..., X such that 0X; =Y; for 1 <i<s.

We can now combine this theorem with the results of Section [I[0] in order to get the following
applications.

Theorem 10.2 Let X be any semi-algebraic subset of K™. Then L(X) is a super ASC-lattice.
In particular its complete theory is decidable and eliminates quantifiers in Lasc.-

Proof: By construction L(X) is an ASC-lattice satisfying the Atomicity property. The Catenarity
Property will be proved in the appendix in much more general settings (Proposition [T.§). We
focus here to the Splitting Property. So let A, By, By € L(X) such that B; U Bs < A and A has
no isolated point.

The same holds true for their closures in K™, denoted A, B1, Bs. Indeed Z\ A< Aand

A\ (B1UB3) C (A\A) U (A\ (B1U By)).

Apply Theorem [0 Tto W = A\ (B,UB>), Y} = By and Y, = By. It gives a partition of W in non-
empty semi-algebraic sets W7, W whose frontiers are respectively By, Bs. Then W, U W4 = A,
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Wl OWQ = El ﬂgg and each Wl =W; UEZ'. Let A = Wl NA= (Wl N A) U B; and define A,
accordingly. We have to check that A;, As split A along By, Bs.

Ais dense in A =W and Wy = W\ (Wo U B U By) = W \ (W U By) is open in W, hence
AN Wi is dense in Wi. In particular A N Wy # (), and symmetrically A N W5 # (). Clearly
Ay UAs = A, A1 N Ay = By N Bs and each A; O B; by construction. So it only remains to check
that A — A; = Ay in L(X), that is that the closure of A\ A; in X (hence in A) is A;. Note that
A\A1 = A\Wl and

Z\Wl = (W1UW2UF1 UEQ)\(Wl UFl) =WyU (EQ\Fl)

In particular A\ A; = A\W; = (A\W;)N A contains W5 N A and is contained in (WoUBs)NA =
WynN A = Ay. The conclusion will follow, if we can prove that W N A is dense in Ay. Since
Az = (Wa N A) U By it suffices to check that By C Wi N A. But this is clear since Wo N A is dense
in WQ, hence in WQ = WQ UEQ.

[

Corollary 10.3 Let F be a q-adically closed field (for some prime q not necessarily equal to p).
Let X CK™ andY C F™ be two semi-algebraic sets.

1. Ifm=n, KX F and X =Y NK" then L(X) < L(Y).

2. L(X) = L(Y) <= their prime Lasc-substructures are isomorphic.
In particular L(K™) = L(F™) if and only if m = n.

3. If K and F are countable then L(X) = L(Y) < L(X) ~ L(Y).

Proof: The two first points follow immediately from Theorem Note that L(K™) = L(F™)
is a special case because their prime sublattice is just the two-element lattice with the same
Lasc-structure, because K™ and F™ both have pure dimension m. The last point follows from
Proposition @5 since both L(X) and L(Y) are standard and countable.

]

Given a pair of semi-algebraic sets X C K™ and Y C F", we say that a homeomorphism
¥ : X — Y is pre-algebraic if for every semi-algebraic sets A C X and B C Y defined over
K and F respectively, 1/(A) and ¢~1(B) are still semi-algebraic sets defined over K and F. It is
obviously sufficient to check this for semi-algebraic sets A, B closed in X, Y respectively. In other
words, a bijection 1 : X — Y is a pre-algebraic if and only if taking direct images by v defines an
Lasc-isomorphism from L(X) to L(Y) (which also ensures that v is a homeomorphism). When
K = F, semi-algebraic homeomorphisms are obviously pre-algebraic. The converse is false, as the
following example shows.

Example 10.4 Assume that the p-valuation of K has value group Z, and let R be its valuation
ring. Applying Theorem below to X = K and Y = R gives a pre-algebraic homeomorphism
¢ : K — R. Since its value group is Z, the p-valuation defines a metric on K and its completion
K’ is known to be an elementary extension of K. If ¢ would be semi-algebraic, it would then
uniquely extend to a semi-algebraic homeomorphism from K’ to its p-valuation ring R’. But this
is not possible because R’ is compact and K’ is not. Thus ¢ is not semi-algebraic.

Theorem 10.5 Let K, F be countable p-adically closed fields, and X C K™, Y C F™ be two
semi-algebraic sets. Let L°(X) and L°(Y) be the prime Lasc-substructures of L(X) and L(Y)
respectively. Then X and Y are pre-algebraically homeomorphic if and only if L°(X) and L°(Y)
are Lagc-isomorphic. In particular, any two semi-algebraic sets over K and F with the same pure
dimension d > 1 are pre-algebraically homeomorphic.

Proof:  One direction is obvious: every pre-algebraic homeomorphism ¢ : X — Y induces an
Lasc-isomorphism from L(X) to L(Y), which maps their respective prime £agc-substructures
one to each other. Conversely, assume that an £agc-isomorphism is given from L(X) to LO(Y).
By Proposition it extends to an Lagc-isomorphism ¢ : L(X) — L(Y). For every t € X, ¢
maps {t} to an atom {t'} of L(Y). Let ¢(t) = ¢/, this defines a bijection 1 : X — Y such that
P(A) = p(A) for every A € L(X), hence 9 is a pre-algebraic homeomorphism. The last statement
follows.

]
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11 Appendix: scaled lattices in tame topological structures

We have claimed that Lges(X) in Example [l is a scaled lattice. In order to prove this, we first
need a simpler axiomatisation of scaled lattices.

Fact 11.1 Let L be a co-Heyting algebra and a € L an i-pure element. For every b € L, if
dimb < ¢ thena—b=a.

Proof: Let Y = a — b, and assume for a contradiction that b’ # a. Then dima — b’ = 7 because a
is i-pure. But a = (a Ab) V (a —b) by T(, so a — " = (a Ab) — (a — b) by T In particular
a—b <aAnb<b sodima—b <dimb < 7, a contradiction.
|

Given a co-Heyting algebra L, let us say that an element a € L has a pure decomposition in L
if for some integer k, a = Wo<i<k a; with each a; an i-pure element of L and dim a; Aa; < min(s, j)
for every i # j. Of course in that case dim a is the largest integer ¢ such that a; # 0.

Proposition 11.2 If an element a in a co-Heyting algebra L has a pure decomposition a =
Wo<i<d @i then aq is the largest d-pure element in L smaller than a, and a — aqg = Wo<i<d ;.
In particular, such a pure decomposition (with fixed d) is unique.

Proof: Assume that b € L is d-pure and b < a, so that b—a = 0. For every i < d, dim a; < d hence
b—a; = b by Fact[IIl Sob—a =b—ay by T, hence b—ag = 0 that is b < ag. This determines
aq as the largest d-pure element in L smaller than a. Moreover a — ag = W;<q(a; — aq) by qu,
and each a; — aq = a; by Fact [Tl (because a; is i-pure and dim a; A aq < @ by assumption). The
uniqueness of the pure decomposition follows by decreasing induction.

[

Proposition 11.3 Let L be a Lgc-expansion of a co-Heyting algebra. L is a d-scaled lattice if and
only if, for every a € L:

SCY: a = Wo<i<aC'(a) and Vi>d, C'(a) = 0.
SCy: Vi, C(a) is i-pure.
SCs: Vi #j, dimC'(a) A C?(a) < min(i, j).
Proof:  Clearly SS{ is SC{. Moreover S implies that SSp<SCg) and STz SUg. So every

d-scaled lattice satisfies conditions SC{ to SCm. Reciprocally, assume that L satisfies these condi-
tions. Then it satisfies SO (by SCpgj and SC{) hence also SS{, SSz and SSg. The uniqueness of
the pure decomposition of a implies that L satisfies also SS$.

For every b € L and every k > dimy, b, we have b = W;<; C*(b) by SC{, and C*(a) — C'(b) =
C*(a) by Fact [T and SCg). So C*(a) — b = C*(a) — C*(b) by TCp} which proves SCpg.

It remains to check SSg, for every a,b € L of dimension < k. Clearly C*(a) v C*(b) is smaller
than a V b and k-pure, hence smaller than ck (a VvV b) by Proposition On the other hand by
SC¢ and TCy

(a v b) = (CH(a) v C*(b)) = W (C'(a) v C'(B)) — (C*(a) v C*(h)) < W C'(a) v C'().  (15)

Actually we have equality, by SC¢ and Fact ITIl Anyway (aV b) — (C¥(a) v C*(b)) has dimension
< k by [@E). On the other hand, by SC{ and TCyg, (a V b) — (C*(a) v C*(b)) is the join of
Ci(a Vv b) — (C*(a) vV C*(b)) for i < k. Since dim(a V b) — (C¥(a) v C¥(b)) < k this implies that
C*(a v b) — (C*(a) v C* (b)) = 0 hence C*(a v b) < C¥(a) v C*(b). The conclusion follows.

[

From now on, let £ = (K, ...) be a first-order structure defining a topology on K. Endow K™
with the product topology, and define the dimension of a non-empty definable set X C K" as the
largest integer > 0 such that for some coordinate projectiorﬂ m: K™ — K", 7(X) has non-empty

15A coordinate projection m : K™ — KT is a function defined by 7 (z1,...,2m) = (i, ..., %, ) for some fixed
i1 <o <ipin{l,...,m}.

25



interior. By convention dim ) = —oo. Recall that for every z € X the local dimension dim (X, x) is
the minimum of dim U N X as U ranges over the definable neighbourhood of . Let Wy, (X) denote
the set of x € X such that there is a definable neighbourhood B of z and a coordinate projection
7 : K™ — K* which induces by restriction a homeomorphism between BN X and an open subset
of K*. We say that K is a tame topological structure if it satisfies the following properties, for
every definable sets X, Y C K™ and every definable function f: X — K™.

Dim1: dim(f(X)) < dim(X).

Dim2: dim X UY = max(dim X, dimY").

Dim3: dim(X) = dim(X) and if X # (), then dim(X \ X) < dim(X).
Dim4: If dim(X) = d > 0 then dim(X \ Wg(X)) < d.

Example 11.4 Ever o-minimal, C-minimal or P-minimal expansion of a field K is tame (see [16],
[11], [2]). More generally, every dp-minimal expansion of a field K which is not strongly minimal
is tame (see [I4]). Following [8] we may also consider the models of visceral theories having finite
definable choice and no space-filling function: all of them are tame. This applies in particular, with
the interval topology, to every divisible ordered Abelian group whose theory is weakly o-minimal.

Note that by (Dim]), dim f(X) = dim X if f is bijective. For every integer k > 0 we let
Ap(X) ={r € X|dim(X,z) = k}.

In particular, X has pure dimensional if and only if X = A4(X) with d = dim X. The sets Ag(X)
form a partition of X. For every k > 0, J;>) Ai(X) is closed in X (for every k), while W}, (X) is
open in X. -

Proposition 11.5 With the above notation and assumptions, Wi (X) is a dense subset of Ap(X).
If non-empty, they have dimension k. In particular, X has pure dimension k if and only if Wi (X)
is non-empty and dense in X.

Proof: Tf x € Wi(X), there is a definable neighborhood U of z in X, a coordinate projection
7 : K™ — K* and an open subset V of K* such that 7 induces by restriction a homeomorphism
between U and V. In particular dim U = k by (dindIl), hence dim Wy (X) > k. For every sufficiently
small neighbourhood U’ of z in X we have U’ C U, hence 7 induces by restriction a homeomorphism
between U’ and an open subset of K*, so dimU’ = k. This proves that dim(X,z) = k hence
Wi(X) C Ap(X).

We turn now to density. Pick z € Ag(X) and a neighbourhood U of z in X. By shrinking
U if necessary we may assume that dim U = k. From (Dinfd]) we know that Wy (U) # (). On the
other hand, W (U) C Wy (X) because U is open in X. Consequently Wy (U) C BN W (X) and so
BN Wy(X) # 0. This proves density.

By (Dimf3) we have dim Ag(A) = dim Wy (A), so it only remains to check that Wj(X) has
dimension k, provided it is not empty. Clearly dim Wy (X) > k. If dim Wy (X) = [ > k then by
(Dimfd) W (Wy(X)) is non-empty. But Wy (X) is open in X, hence Wi(W; (X)) is contained in
Wi(X). So Wi (Wg(X)) is contained both in W;(X) and in Wj(X), a contradiction since W;(X)
and Wy (X) are disjoint (they are contained in Ay (X) and A;(X) respectively).

The last point follows, since X has pure dimension % if and only if X = Ap(X) # 0.
|

Recall that Lqet(X) denotes the co-Heyting algebra of all the definable sets A € X closed in
X, expanded by the functions (C");en defined by C*'(A) = A;(A4) N A.

Proposition 11.6 Let K = (K,...) be a tame topological structure, and X C K™ be a definable
set.

1. For every A € L, dimy,, . (x) A = dim A.
2. Laet(X) is a d-scaled lattice, with d = dim X .

Remark 11.7 The first item ensures that A € L is k-pure in Lger(A) if and only if it is so in the
geometric sense, that is A = Ay (A) or equivalently (by Proposition [T.H) Wi (A) is dense in A.
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Proof: In order to ease the notation let L = Lge(X).

@) We can assume that A # (. By Fact 23] dimy, A is then the foundation of rank of A in
L\ {0} for the strong order <. It suffices to prove, by induction on k, that dimy A > k if and only
if dim A > k. This is clear for £ = 0 so let us assume that k£ > 1 and the result is proved for k£ — 1.

If dim A > k there is a coordinate projection 7 : K™ — K* and a non-empty definable open set
U C K* contained in 7(K). Let Y be any hyperplane of K* intersecting U, and B = 7~ (YNU)NA.
Clearly Y CU\Y hence B C A\ B, that is B < A. Since dimY =k — 1 we have dim B > k — 1
by (), hence dimy, B > k — 1 by induction hypothesis, and finally dim;, A > k since B < A.

Reciprocally, if dimp A > k by FactR3lthere is B € L such that B < A and dimy B > k—1. By
induction hypothesis dim B > k—1. We have B C A\ BNB C A\ B\(4\B), sodim B < dim A\ B
by (Dindfd)). A fortiori dim B < dim A hence dim A > k.

@) For every i < m and every A € Lqet(X), C'(A) = A;(A) N A = W;(A) N A by Proposi-
tion The scheme SC{ then follows from (Dinfd]) by a straightforward induction. Moreover
each C'(A) is i-pure in L by Remark [[T.7} hence SCpg) holds true. Finally, for every i < j, since

W;(A) is open in A and disjoint from W;(A), it is also disjoint from W;(A) N A hence

C(A) N CI(A) = Wi(A) N W, (A) N A C W, \ W

So dim C*(A) N C?(A) < i by (Dinf3)), which proves SOz So Laer(X) is a scaled lattice by Propo-
sition
[

We turn now to the Catenarity Property. We do not expect it to be completely general. This
property is well known over for o-minimal fields (it follows immediately from the triangulation
theorem). We are going to prove it for every dp-minimal expansion X = (K,v,...) of a non-
trivially valued field having definable Skolem functions. This assumption on Skolem function is
somewhat restrictive but it includes the case of any p-adic field with its semi-algebraic structure
(or even its subanalytic structure), which is sufficient for our needs. We will use Proposition 3.7
n [I4], which says that:

Dim5: Every definable function f : X € K* — K! is continuous on a definable set X’ dense in
X.

Proposition 11.8 Let K = (K,v,...) be a dp-minimal expansion of a non-trivially valued field
(K, v) having definable Skolem functions. For every non-negative integers 0 < r < q¢ < p <m and
every definable sets C C A C K™, if A is p-pure and dim C < r, there exists a q-pure definable set
B C A such that C C B.

The catenarity of Lger(X), for every definable set X C K™, follows immediately.

Proof: We are going to simplify the problem several times, using repeatedly the obvious facts
that: (i) every open subset of a p-pure set is p-pure, and so is its closure; (ii) the union of finitely
many p-pure sets is p-pure, and; (iii) if 7 C S € K™ then 7(T) C (S)r(S) for every coordinate
projection 7 : K™ — K.

Step 1. For every I C {1,...,m} with p elements let 77 : (%;)1<i<m — (zi)ier be the corre-
sponding coordinate projection. Let A; be the set of a € A such that 7y induces by restriction a
homeomorphism between a neighbourhood of a in A and an open subset of KP, and let C; = CNA;.
Each Aj is p-pure, and by Proposition [[T.5 their union is dense in A, hence C' is the union of the
Cr’s. So it suffices to find for each I a g-pure definable set B; C I such that C; C By, and let B
be their union. This reduces to the case where A = Ay and C = C7 for some I.

Step 2. Observe that that m;(C) is contained in the closure of 77(A). By the previous step
71(A) is open in KP, hence p-pure. Assume that we can find a ¢-pure subset Y of 7;(A) whose
closure contains 77 (C). Let B = 7;'(Y) N A, this is a p-pure subset of A (because the restriction
of 77 to A is a local homeomorphism) and C' C B. So it suffices to solve the problem for 7;(A)
and 77 (C). With other words, we can assume that A is an open subset of K™, hence p = m.

Step 3. For every J C {1,...,m} with s < r elements, let C; be the set of ¢ € C such
that 7; (defined as in the first reduction) induces by restriction a homeomorphism between a
neighbourhood of ¢ in C' and an open subset of K®. If we can find for each J a p-pure definable set
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Bj C A such that C; is contained in the closure of B, then we are done by letting B be the union
of the B;’s. This (and a decreasing induction on r) reduces to the case where C' = C; for some J,
hence 7 is a local homeomorphism from C to an open subset of K. Reordering the coordinates
if necessary we can then assume that J = {1,...,r}.

Step 4. Let Z = m;(C) and X = 7;(A). We have Z C X hence the dimension of Z \ X is < r
by (Dimf3)). So is the dimension of 7;'(Z \ X)N C (because 7 is now a local homeomorphism).
Since C is the union of 7;'(Z \ X) N C and 7;'(Z N X) N C, by a straightforward induction on
the dimension of C' this reduces to the case where C = 7;'(Z N X)NC, that is ZNX = Z, or
equivalently 7;(C) C m;(A).

Step 5. Since 7 is a local homeomorphism on C, over any point z € 7;(C) the fibers C, =
77'(2) N C are discrete, hence finite by Proposition 1.1 in [I4]. The same holds true in every
elementary extension of I so, by the model-theoretic compactness theorem, their cardinality must
be uniformly bounded by some integer N. For every k < N let C be the set of ¢ € C such that the
fibers of m; over m;(c) has cardinality k. This is a finite partition of C' in definable set. It suffices
to solve the problem separately for A and each C}, which reduces to the case where C = CY for
some k.

Step 6. We can find definable Skolem functions fi,..., fi from 7;(C) to K™ such that for
each z € m;(C), the fiber 7;(2) N C = {fi(2),..., fx(2)}. For each I < k let C; = fi(m;(C)).
This is again a finite partition of C' in definable sets. So the problem boils down to the case where
C = C for some [, that is 7 induces a bijection from C to Z = 7;(C), and f = f; is the reciprocal
bijection. After this reduction we cannot assume anymore that Z = 7 ;(C) is open in K. However,
the complement in Z of the interior of Z in K" has dimension < r by (Dimf]). By (Dim5) the
set of discontinuities of f also has dimension < r. Hence, by a straightforward induction on the
dimension of C, we can reduce to the case where Z is open, and f : Z — C and the restriction of
s are reciprocal homeomorphisms.

Step 7. One can easily check that C is contained in the closure of A’ = ﬂ';l(Z) N A. The
latter is open. This reduces to the case where A = A’ that is 7;(A) = 7;(C). In particular, the
restriction p of fom; to AUC then defines a continuous retraction onto C' (that is p is continuous
on AUC and p(c) = ¢ for every c € C).

Using this retraction we can now finish the proof. We do it when ¢ = m — 1, that is
q = p — 1, the result for smaller values of ¢ following immediately by decreasing induction.
For every k € {1,...,m} and every a = (a1,...,amn) € A let pi(a) be the k-th coordinate of
pla), so that p(a) = (p1(a),...,pm(a)). Note that m;(a) = m;(p(a)) by construction, hence
pla) = (a1,...,ar, pry1(a),...,pm(a)). For each k € {r+1,...,m} let

Ay = {a €Al v(ak - pk(a)) > I&ilrclv(al — pl(a))}.
This is the set of points a € A such that ay is not strictly further from pi(a) than is a from p(a)
(see Figure[l)). Clearly Ay is definable, open, and A is the union of the Ax’s. In particular C' is

contained in the union of the Ag’s.

B, L

)(1 [ $699°°0000000000

C X5

Figure 1: In K2, the dashed line splits A (in gray) in two parts Ay, As.

For each k € {r +1,...,m} let m : K™ — K™~! be the projection which forgets the k-th
coordinate. Let 0, be a definable section of the restriction of 7 to Ay (given by definable Skolem
functions). By (Dim5) there is a definable set X, C mi(Ag) dense in m(Ag) such that 6y is
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continuous on Xj. Finally let By, = 05 (X}) (the dotted lines in Figure[d]). Recall that Ay is open
in K™, hence so is 7, (Ag) in K™~!. In particular 7 (Ag) is (m — 1)-pure, hence so is Xj. By
construction, the restriction of 6 to Xy is a homeomorphism, so By is (m — 1)-pure. Letting B
be the union of the By’s, it only remains to check that C' C B.

In order to do so, pick any ¢ = (c1,...,¢y) € C. Thereis k € {r+1,...,m} such that c € Ay,
hence 7 (c) € X}. It suffices to prove that 0 () tends to ¢ as  tends to 74 (c) in X}, in order to
conclude that ¢ € By, and finally that C C B. Let Mok : K™ 1 5 K" be such that 7; = Tk O M.

For every x € Xy, let a = (a1, ..., am) = Oi(r) and observe that 7y(a) = 7 r(z), so
fomy(a) = fomyp(®) ——— fomk(m(c)) = foms(c). (16)
—— z—mr(c) N——
=p(a) =p(c)=c

Consequently 7 (p(a)) ——— m(c), so

w7 (c)
me(a) — 7k (p(a)) = x — m (p(a)) m mi(c) — m(c) = (0,...,0),
that is
1;1712]1211)(@1 — pi(a)) m +o0. (17)

We have a = 0, (x) € Ay so, by definition of Ag,

1rgx}ignmv(al —pia)) = Iln;éillclv(al — pi(a)) (18)

By([I@) and (I8)), we get that a — p(a) tends to (0,...,0) as z tends to m;(c). So by (L8]

Or(z) = a = p(a) + (a — p(a)) m c.
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