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On the model completion of scaled lattices and the

co-Heyting algebras of closed p-adic semi-algebraic sets∗

Luck Darnière

September 11, 2018

Abstract

Let p be prime number, K be a p-adically closed field, X ⊆ Km a semi-algebraic set
defined over K and L(X) the lattice of semi-algebraic subsets of X which are closed in X.
We prove that the complete theory of L(X) eliminates the quantifiers in a certain language
LASC, the LASC-structure on L(X) being an extension by definition of the lattice structure.
Moreover it is decidable, contrary to what happens over a real closed field. We classify
these LASC-structures up to elementary equivalence, and get in particular that the complete
theory of L(Km) only depends on m, not on K nor even on p. As an application we obtain
a classification of semi-algebraic sets over countable p-adically closed fields up to so-called
“pre-algebraic” homeomorphisms.

1 Introduction

This paper explores the model-theory of various classes of lattices coming from algebraic geom-
etry, real geometry or p-adic geometry, with special emphasis on the p-adic case. We obtain
model-completion and decidability results for some of them. Before entering in technical details
let us present the main motivations for this, coming from geometry and model-theory of course,
but also from proof theory and non-classical logics.

Given an expansion of a topological field K and a definable1 set X ⊆ Kn, we consider
the lattice L(X) of all definable subsets of X which are closed in X, and the ring C(X) of
all continuous definable functions from X to K. These rings are central objects nowadays in
functional analysis, topology and geometry. To name an example, they are rings of sections for
the sheaf of continuous (say, real valued) functions on a topological space and as such play the
algebraic part in the study of topological (Hausdorff) spaces. In most cases L(X) is interpretable
in C(X), and the prime filter spectrum of L(X) is homeomorphic to the prime ideal spectrum
of C(X). Thus L(X) is a first-order structure interpretable in C(X), which captures all the
topological (hence second-order) information on the spectrum of the ring C(X). For the real
field R for example, it is known since [Grz51] that L(Rn) is undecidable for every n ≥ 2, hence
can be held liable for the undecidability of C(Rn). Recently this has been strengthen and widely
generalised in [Tre17]. However these undecidability results for L(X) strongly depend on the

∗Keywords: model-theory, p-adic, scaled lattice, Heyting algebra, quantifier elimination, decidability, model-
completion, uniform interpolant.
MSC classes: 03C10, 06D20, 06D99.

1We assume the reader to be familiar with basic notions from model theory, in particular definable sets and
functions. In simplest cases “definable” boils down to “semi-algebraic” over the field R of real numbers, or the
field Qp of p-adic numbers.
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existence of irreducible or connected components, hence do not apply to the p-adic case. But
even in that case it is proved in [DT18] that C(Qn) is undecidable, this time for every n ≥ 1. At
the contrary, our main result implies that for every n ≥ 1:

• L(Qn
p ) is decidable, and;

• The theory of L(Qn
p ) eliminates the quantifier in a natural expansion by definition of the

lattice language.

In another direction, the model-theory of these geometric lattices L(X) is tightly connected
to the existence of uniform interpolants for propositional calculus in certain intermediate2 and
modal logics. Indeed, thanks to the one-to-one correspondence between intermediate logics
and varieties of Heyting algebras, the existence of uniform interpolants for a logic L can be
rephrased, mutatis mutandis, as the existence of a model-completion for the theory of the
corresponding variety V(L) (see [GZ97]). As lattices of closed sets, all our lattices L(X) are
co-Heyting algebras, that is Heyting algebras with the order reversed. Moreover, their structure
is mostly determined by the geometry of X. This geometric intuition coming from X was
essential to our model-completion results, with natural axiomatisations, for certain theories of
(expansions of) co-Heyting algebras (theorems B and C below). See also [CG17], [DJ18] for
related results.

Now we are going to present our results in more detail. They are based on a fine-grain study
of certain expansions of lattices, all inspired by the following geometric example.

Example 1.1 Let K be an o-minimal, P -minimal or C-minimal expansion3 of a field K. For
every definable sets A,B ⊆ X ⊆ Km let A − B = A \B ∩X where the overline stands for the
topological closure. For every a ∈ A, the local dimension of A at a is the maximum of the
dimensions of the definable neighborhoods of a in A, and A is called pure dimensional if it
has the same local dimension at every point. For every non-negative integer i let

C
i(A) = {a ∈ A

/
dim(A, a) = i} ∩A.

This is a definable subset of A, closed in A, called the i-pure component of A. We call
Ldef(X) the lattice of all the definable subsets of X which are closed in X, enriched with the
above functions “−” and Ci for every i.

Let Llat = {0,1,∨,∧} be the language of lattices, and LSC = Llat ∪ {−, (Ci)i≥0} be its ex-
pansion by the above function symbols. Finally let SCdef(K, d) be the class of the LSC-structures
Ldef(X) of Example 1.1, for all the sets X of dimension at most d definable over K. A similar con-
struction can be done over a pure field K, with the Zariski topology on Km. We let SCZar(K, d)
denote the corresponding class of LSC-structures. Surprisingly enough, we prove that in most
cases the universal theory of SCdef(K, d) (resp. SCZar(K, d)) does not depend on K (resp. K)!

Theorem A Given any non-negative integer d, the universal theories of SCdef(K, d) (resp.
SCZar(K, d)) in the language LSC are the same for every o-minimal, C-minimal or P -minimal
expansion K of a field K (resp. for every infinite field K).

2An intermediate logic is logic which stands between classical and intuitionist logic.
3More generally we may consider a dp-minimal expansion of a field with a definable uniform structure (dp-

minimality is a stability-theoretic notion which contains the above mentioned minimality notions) provided that:
(i) K has no isolated point, and; (i) every infinite definable subset of K has non-empty interior. It then follows from
[SW18] that every definable set over K decomposes in pure-dimensional components, and this decomposition has
very nice properties. This generalises known results for o-minimal fields [vdD98] and P -minimal fields [CKDL17].
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In order to prove this we give in Section 2 an explicit list of universal axioms for a theory Td in
LSC, the models of which we call d-subscaled lattices. All the examples given above are d-scaled
lattices, a natural subclass of d-subscaled lattices (the class of d-scaled lattices is elementary but
not universal). After some technical preliminaries in Section 3 we prove in Section 4 that every
finitely generated d-subscaled lattice is finite. Combining this with a linear representation for
finite d-subscaled lattices (Proposition 5.3) and with the model-theoretic compactness theorem,
we then prove in Section 5 that, whatever is K or K in Example 1.1, the theory of d-subscaled
lattices is exactly the universal theory of SCdef(K, d) and of SCZar(K, d) (Theorem 5.3).

A detailed study of the minimal finitely generated extensions of finite d-subscaled lattices,
achieved in Section 6, leads us in Section 7 to the next result (Theorem 7.3 and Corollary 7.5).

Theorem B For every non-negative integer d, the theory of d-subscaled lattices admits a model-
completion T̄d which is finitely axiomatizable and ℵ0-categorical. Moreover T̄d has finitely many
prime models, hence it is decidable as well as all its completions.

The axiomatization of T̄d given in Section 7 consists in a pair of axioms expressing a “Catenar-
ity” and a “Splitting” property which both have a natural topological and geometric meaning. In
particular the Splitting Property expresses a very strong form of disconnectedness, which implies
that the models of T̄d are atomless.

Remark 1.2 Since 0-subscaled lattices are exactly non-trivial boolean algebras the above model-
completion result for subscaled lattices is a generalisation to arbitrary finite dimension d of the
classical theorem on the model-completion of boolean algebras.

We develop in Sections 8 and 9 a variant of this quantifier elimination result in a language
LASC = LSC ∪ {Atk}k≥1, where each Atk is a unary predicate symbol, to be interpreted as the
set of elements which are the join of exactly k atoms. The model-completion T̄Atd that we obtain
is axiomatized by the Catenarity property and a little restriction of the Splitting property which
preserves the atoms. This theory T̄Atd has ℵ0 prime models which can easily be classified in
terms of the prime models of T̄d, from which it follows that it is decidable as well as all its
completions (Theorem 9.4).

In the initial version of this paper [Dar06] we conjectured that Ldef(Q
d
p) might be a natural

model of T̄Atd . This intuition proved to be crucial in the proof of the triangulation of semi-
algebraic sets over a p-adically closed field [Dar17]. Conversely it follows from this triangulation
that Ldef(X) is indeed a model of T̄Atd , for every semi-algebraic4 set X ⊆ Km of dimension ≤ d,
from which the next result follows in the last section (Theorem 10.2).

Theorem C Let K be a p-adically closed field, X ⊆ Km a semi-algebraic set. Then the complete
theory of L(X) is decidable, and eliminates the quantifier in LASC.

The prime LASC-substructure of Ldef(X) (which is generated by the empty set) is finite.
By Theorem C it determines the complete theory of Ldef(X). We expect this invariant to play
also as decisive role in the classification of semi-algebraic sets over p-adically closed fields up to
semi-algebraic homeomorphisms. Such a classification is far from being achieved, but a weaker
classification, up to “pre-algebraic” homeomorphisms over countable p-adically closed fields, is
done here by means of this invariant (Theorem 10.5).

4A generalization to definable sets over more general P -minimal fields, if possible, has still to be done.
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2 Notation and definitions

N denotes the set of non-negative integers, and N∗ = N \ {0}. If N is an unbounded non-empty
subset of N (resp. the empty subset) we set maxN = +∞ (resp. maxN = −∞). The symbols
⊆ and ⊂ denote respectively the inclusion and the strict inclusion. The logical connectives ‘or’,
‘and’ and their iterated forms will be denoted by

∨
,
∧

,
∨∨

and
∧∧

respectively.

2.1 Lattices and dimension

In this paper a lattice is a partially ordered set in which every finite subset has a greatest lower
element and a least greater element. This applies in particular to the empty subset, hence our
lattices must have a least and a greatest element. Llat = {0,1,∨,∧} is the language of lattices,
each symbol having its obvious meaning. As usually b ≤ a is an abbreviation for a ∨ b = a and
similarly for b < a, b ≥ a and b > a. Iterated ∨ and ∧ operations are denoted by ∨∨i∈I ai and
∧∧i∈I ai respectively. If the index set I is empty then ∨∨i∈I ai = 0 and ∧∧i∈I ai = 1. Given a
subset S of a lattice L, the upper semi-lattice generated in L by S is the set of finite joins of
elements of L. We will make intensive use of the following definable relation:

b� a ⇐⇒ ∀c (c < a⇒ b ∨ c < a)

This is a strict order on L \ {0} (but not on L because 0� a for every a including a = 0).

The spectrum of a lattice L is the set Spec(L) of all prime filters of L, endowed with the
so-called Zariski topology, defined by taking as a basis of closed sets all the sets

P (a) = {p ∈ Spec(L)
/
a ∈ p}

for a ranging over L. Stone’s duality asserts that if L is distributive (which is always the case in
this paper) the map a 7→ P (a) is an isomorphism between L and the lattice of closed subsets S
of Spec(L) such that the complement of S in Spec(L) is compact.

We call a lattice noetherian if it is isomorphic to the lattice of closed sets of a noetherian
topological space. By Stone’s duality a lattice L is noetherian if and only if its spectrum is
a noetherian topological space. In such a lattice every filter is principal and every element a
writes uniquely as the join of its (finitely many) ∨-irreducible components, which are the
maximal elements in the set of ∨-irreducible5 elements of L smaller than a. We denote by I(L)
the set of all ∨-irreducible elements of L.

We define the dimension of an element a in a lattice L, denoted dimL a, as the least
upper bound (in N ∪ {−∞,+∞}) of the set of non-negative integers n such that

∃p0 ⊂ · · · ⊂ pn ∈ P (a).

This is nothing but the ordinary topological or Krull dimension (defined by chains of irreducible
closed subsets) of the spectral space P (a). By construction dimL 0 = −∞ and dimL a ∨ b =
max(dimL a,dimL b). The index L is necessary since dimL a is not preserved by Llat-embeddings,
but we will omit it whenever the ambient lattice is clear from the context. We let the dimension
of L be the dimension of 1L in L.

In all the geometric examples given in the introduction, a set A is pure dimensional if and
only if dimU = dimA for every non-empty definable subset U of A which is open in A. This

5An element c of a lattice L is ∨-irreducible if it is non-zero and if a ∨ b = x implies a = x or b = x.
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motivates the next definition: given an integer k we say that an element a of a distributive lattice
L is k-pure in L if and only if

∀b ∈ L (a− b 6= 0⇒ dimL a− b = k).

Then either a = 0 or dimL a = k. In the latter case we say that a has pure dimension k in L.

Fact 2.2 If L = L(X) is any of the lattices of the introduction, then for any A ∈ L(X),
dimL(X)A is exactly the usual dimension of A as a semi-algebraic set over K, and A is pure
dimensional in L(X) if and only if it so in the geometric sense.

The second assertion in Fact 2.2 follows from the first, which itself follows from Fact 2.4
below.

2.3 Co-Heyting algebras

We let LTC = Llat∪{−} with ‘−’ a binary function symbol. An LTC-structure L is a co-Heyting
algebra if its Llat-reduct is a lattice and if every element b has in L a topological complement
relatively to every element, denoted a − b. By definition a − b is the least element c such that
a ≤ b∨c. Equivalently P (a−b) is the topological closure of the relative complement P (a)\P (b),
so the name of a − b. Reversing the order of a co-Heyting Heyting algebra L gives a Heyting
algebra L∗, with b → a in L∗ corresponding to a − b in L, and every co-Heyting algebra is of
this form. From the theory of Heyting algebras (see for example [Joh82]) we know that every
co-Heyting algebra is distributive and that the class of all co-Heyting algebras is a variety (in the
sense of universal algebra). Observe that in co-Heyting algebras the � relation is quantifier-free
definable since

b� a ⇐⇒ b ≤ a− b.
So it will be preserved by LTC-embeddings. On the other hand the dimension will not be
preserved in general by LTC-embeddings.

We will use the following rules, the proof of which are elementary exercises (using either
Stone’s duality or corresponding properties of Heyting algebras).

TC1: a = (a ∧ b) ∨ (a− b).
In particular if a is ∨-irreducible then b < a =⇒ b� a.

TC2: (a1 ∨ a2)− b = (a1 − b) ∨ (a2 − b).

TC3: (a− b)− b = a− b.
In particular (a− b) ∧ b� a− b ≤ a.

TC4: More generally a− (b1 ∨ b2) = (a− b1)− b2.
So if a− b1 = a then a− (b1 ∨ b2) = a− b2.

Fact 2.4 (Theorem 3.8 in [DJ11]) For every element a in a co-Heyting algebra L, dimL a is
the least upper bound of the set of positive integers n such that there exists a0, . . . , an ∈ L such
that

0 6= a0 � a1 � · · · � an ≤ a.

There is a well-established duality between (co-)Heyting algebras and so-called Esakia spaces
with p-morphisms, from which we will pick up Fact 2.5 below. We first need a notation. Given
an element x in a poset I and a subset X of I let

x↓ =
{
y ∈ I

/
y ≤ x

}
X↓ =

⋃
x∈I

x↓.
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The dual notation x↑ and X↑ is defined accordingly. The family D↓(I) of decreasing subsets of
I (that is the sets X ⊆ I such that X↓ = X) are the closed sets of a topology on I, hence a
co-Heyting algebra with respect to the following operations.

X ∨ Y = X ∪ Y X ∧ Y = X ∩ Y X − Y = (X \ Y )↓

The ∨-irreducible elements of D↓(I) are precisely the sets x↓ for x ∈ I.

Fact 2.5 Let L be a finite co-Heyting algebra and I an ordered set. Assume that there is a
surjective increasing map π : I → I(L) such that π(x↑) ⊆ π(x)↑ for every x ∈ I(L). Then there
exists an LTC-embedding ϕ of L into D↓(I) such that6 π(ϕ(a)) = a↓ ∩ I(L) for every a ∈ L.

2.6 (Sub)scaled lattices.

Recall that LSC = Llat ∪ {−,Ci}i∈N = LTC ∪ {Ci}i∈N where {Ci}i∈N is a family of new unary
function symbols. With the examples of the introduction in mind, define the sc-dimension of
a non-zero element a of an LSC-structure L as

sc-dim a = min
{
k ∈ N

/
a = ∨∨

0≤i≤k
C
i(a)

}
.

Of course this is defined only if sc-dim a = ∨∨0≤i≤k Ci(a) for some k. If it is not defined we
let sc-dim a = +∞, and by convention sc-dim0 = −∞. The sc-dimension of L, denoted
sc-dim(L), is the sc-dimension of 1L. In general the dimension of an element in a co-Heyting
algebra is not preserved by LTC-embeddings. At the contrary the sc-dimension of an element is
obviously preserved by LSC-embeddings, and this is the “raison d’être” of this structure.

A d-subscaled lattice is an LSC-structure whose LTC-reduct is a co-Heyting algebra and
which satisfies the following list of axioms:

SCd
1 : ∨∨

0≤i≤d
C
i(a) = a and ∀i > d, Ci(a) = 0.

SC2: ∀I ⊆ {0, . . . , d}, ∀k:

C
k
(
∨∨
i∈I

C
i(a)

)
=

{
0 if k 6∈ I

Ck(a) if k ∈ I

SC3: ∀k ≥ max(sc-dim(a), sc-dim(b)), Ck(a ∨ b) = Ck(a) ∨ Ck(b)

SC4: ∀i 6= j, sc-dim
(
Ci(a) ∧ Cj(a)

)
< min(i, j)

SC5: ∀k ≥ sc-dim(b), Ck(a)− b = Ck(a)− Ck(b).

SC6: If b� a then sc-dim b < sc-dim a.

It is a d-scaled lattice if it satisfies in addition the following property:

SC0 : sc-dim a = dim a

All the geometric LSC-structures in SCdef(K, d) or SCZar(K, d) (defined after Example 1.1)
are d-scaled lattices (see Fact 2.2). However SC0 does not follow from the other axioms as the
following example shows.

6Note that the compositum π ◦ ϕ is not defined. In this proposition ϕ(a) is a decreasing subset of I and
π(ϕ(a)) = {π(ξ)

/
ξ ∈ ϕ(a)}.
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Example 2.7 Let L be an arbitrary noetherian lattice, and D : I(L)→ {0, . . . , d} be a strictly
increasing map. For every a, b ∈ L, if C(a) denotes the set of all ∨-irreducible components of a,
let

a− b = ∨∨{c ∈ C(a)
/
c 6≤ b},

(∀k) C
k
D(a) = ∨∨{c ∈ C(a)

/
D(c) = k}.

This is a typical example of a d-subscaled lattice in which the sc-dimension does not coincide
with the dimension, except of course if D(a) = dimL a for every a ∈ I(L). Conversely, every
noetherian (in particular every finite) d-subscaled lattice is of that kind.

We call (sub)scaled lattices the LSC-structures whose LSC-reduct is a d-(sub)scaled for
some d ∈ N. Of course this is not an elementary class. At the contrary, for any fixed d ∈ N, SCd

1

to SC5 are expressible by equations, SC6 by a universal formula and SC0 by a first order formula
in LSC, hence d-scaled (resp. d-subscaled) lattices form elementary class. As the terminology
suggests, we will see that d-subscaled lattices are precisely the LSC-substructures of d-scaled
lattices.

By analogy with our guiding geometric examples, we say that an element a in a d-subscaled
lattice is k-sc-pure if

∀b ∈ L (a− b 6= 0⇒ sc-dim(a− b) = k).

We will see that a is k-sc-pure if and only if a = Ck(a) (this is SC13 in Section 3). Then either
a = 0 or sc-dim a = k. In the latter case we say that a has pure sc-dimension k. For any a,
the element Ck(a) is called the k-sc-pure component of a, or simply its k-pure component
if L is a scaled lattice. By construction these notions coincide with their geometric counterparts
in SCdef(K, d) and SCZar(K, d).

The following notation will be convenient in induction arguments. If L is any of our languages
Llat, LTC or LSC we let L∗ = L \ {1}. Given an L-structure L whose reduct to Llat is a lattice,
for any a ∈ L we let

L(a) = {b ∈ L
/
b ≤ a}.

L(a) is a typical example of L∗-substructure of L.

3 Basic properties and embeddings

The next properties follow easily from the axioms of d-subscaled lattices.

SC7: sc-dim a = max{k
/

Ck(a) 6= 0}.
In particular ∀k, sc-dim Ck(a) = k ⇐⇒ Ck(a) 6= 0.

SC8: ∀k ≥ sc-dim(a), sc-dim(b ∧ a) < k =⇒ Ck(a)− b = Ck(a).

SC9: sc-dim a ∨ b = max(sc-dim a, sc-dim b).
In particular b ≤ a⇒ sc-dim b ≤ sc-dim a.

SC10: ∀k ≥ sc-dim(a), Ck(a) is the largest k-sc-pure element lower than a.

SC11: dim a ≤ sc-dim a.

SC12: ∀I ⊆ {0, . . . , d}, a− ∨∨
i∈I

C
i(a) = ∨∨

i6∈I
C
i(a).

In particular sc-dim
(
a− ∨∨

i≥k
C
i(a)

)
< k.

7



SC13: ∀k, C
k(a) = a ⇐⇒ ∀b

(
a− b 6= 0⇒ sc-dim a− b = k

)
.

That is a is k-sc-pure if and only if a = Ck(a).
In particular if a is ∨-irreducible then a is sc-pure by SCd

1 .

Proof: (Sketch) SC7 follows from SCd
1 and SC2; SC8 from SC5 and SC7; SC9 from SC2, SC3

and SC7; SC10 from SC2 and SC3; SC11 from SC6 by Fact 2.4. Only the two last properties
require a little effort.

SC12: For every l ∈ I, Cl(a) ≤ ∨∨i∈I Ci(a) hence Cl(a)−∨∨i∈I Ci(a) = 0. On the other hand
for every l 6∈ I and every i ∈ I, Cl(a)−Ci(a) = Cl(a) by SC4 and SC5. So Cl(a)−∨∨i∈I Ci(a) =

Cl(a) by TC4. Finally by SCd
1 and TC2,

a− ∨∨
i∈I

C
i(a) = ∨∨

l≤d

(
C
l(a)− ∨∨

i∈I
C
i(a)

)
= ∨∨
l 6∈I

C
l(a).

SC13: Assume that a = Ck(a) and a−b 6= 0 for some b. Then sc-dim a = k so sc-dim(a−b) ≤
k and sc-dim(a ∧ b) ≤ k by SC9. Since a = (a− b) ∨ (a ∧ b) it follows by SC3 that

C
k(a) = C

k
(
(a− b) ∨ (a ∧ b)

)
= C

k(a− b) ∨ C
k(a ∧ b).

By assumption Ck(a) = a, and Ck(a∧b) ≤ a∧b by SCd
1 . So a ≤ Ck(a−b)∨(a∧b) ≤ Ck(a−b)∨b

which implies that a − b ≤ Ck(a − b). In particular Ck(a − b) 6= 0. Since sc-dim(a − b) ≤ k it
follows that sc-dim(a− b) = k by SC7.

Conversely assume that a 6= Ck(a) (hence a 6= 0). For b = Ck(a) we then have a− b 6= 0 on
one hand and sc-dim(a− b) 6= k by SC7 on the other hand, because Ck(a− b) = 0 by SC12 and
SC2.

Proposition 3.1 The LSC-structure of a d-scaled lattice L is uniformly definable in the
Llat-structure of L. In particular it is uniquely determined by this Llat-structure.

Proof: Clearly the LTC-structure is an extension by definition of the lattice structure of L. For
every positive integer k the class of k-pure elements is uniformly definable, using the definability
of � and Fact 2.4. Then so is the function Ck for every k, by decreasing induction on k. Indeed
by SC10 and SC12, Ck(a) is the largest k-pure element c such that c ≤ a− ∨∨i>k Ci(a).

We need a reasonably easy criterion for an Llat-embedding of subscaled lattices to be an
LSC-embedding. In the special case of a noetherian7 embedded lattice, it is given by Proposi-
tion 3.3 below, whose proof will use the next characterisation of sc-pure components.

Proposition 3.2 Let L be a subscaled lattice and a, a0, . . . , ad ∈ L be such that a = ∨∨i≤d ai,
each ai is i-sc-pure and sc-dim(ai ∧ aj) < min(i, j) for every i 6= j. Then Ci(a) = ai for every i.

Proof: Note first that Ck(ak) = ak for every k ≤ d by SC13. Hence for every k ≤ i ≤ d we have
by SC3 and SC2

C
i
(
∨∨
k≤i

ak

)
= ∨∨
k≤i

C
i(ak) = ∨∨

k≤i
C
i
(

C
k(ak)

)
= C

i(ai) = ai. (1)

7Although we won’t use it, let us mention that in the general case of an Llat-embedding ϕ : L→ L′ between
arbitrary subscaled lattices, one may easily derive from Proposition 3.3, by means of the Local Finiteness The-
orem 4.1 and the model-theoretic compactness theorem, that ϕ is an LSC-embedding if and only if it preserves
sc-dimension and sc-purity, that is for every a ∈ L and every k ∈ N, Ck(a) = a⇒ Ck(ϕ(a)) = ϕ(a).
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In particular Cd(a) = ad. Now assume that for some i < d we have proved that Cj(a) = aj for
i < j ≤ d. By SC12 and SC2 we then have

C
i
(
a− ∨∨

j>i
aj
)

= C
i
(
a− ∨∨

j>i
C
j(a)

)
= C

i
(
∨∨
j≤i

C
j(a)

)
= C

i(a). (2)

On the other hand a−∨∨j>i aj = ∨∨k≤d(ak−∨∨j>i aj) by TC2. For k > i obviously ak−∨∨j>i aj =
0. For k < i, ak = Ck(a) and aj = Cj(aj) imply that sc-dim(ak ∧ aj) < k for j > i by SC4.
Hence ak − aj = ak by SC8 and finally ak − ∨∨j>i aj = ak by TC4, so

a− ∨∨
j>i

aj = ∨∨
k≤i

ak. (3)

By (1), (2), (3) we conclude that Ci(a) = ai. The result follows for every i by decreasing
induction.

Proposition 3.3 Let L0 be a noetherian subscaled lattice, L a subscaled lattice, and ϕ : L0 → L
an Llat-embedding such that for every a ∈ I(L0), ϕ(a) is sc-pure and has the same sc-dimension
as a. Then ϕ is an LSC-embedding.

Remark 3.4 Clearly the same statement remains true with Llat and LSC replaced respectively
by L∗lat and L∗SC. We will freely use these variants.

Proof: L0 and L are d-subscaled lattices for some d ∈ N. Given a ∈ L0 and k a non-negative
integer, we first check that ϕ(Ck(a)) is k-sc-pure. Note that every ∨-irreducible component c of

Ck(a) in L0 has sc-pure dimension k. Indeed Ck(a) is k-sc-pure by SC13, and c = Ck(a) − b 6=
0 where b is the join of all the other ∨-irreducible components of Ck(a), hence sc-dim(c) =
sc-dim(Ck(a) − b) = k. Moreover c is sc-pure because it is ∨-irreducible, hence c is k-pure. By
our assumption on ϕ it follows that ϕ(c) is k-sc-pure. Every finite union of k-sc-pure elements
being k-sc-pure by SC3, it follows that

ϕ
(

C
k(a)

)
is k-sc-pure. (4)

Now for every l 6= k we have sc-dim(Ck(a) ∧ Cl(a)) < min(k, l) by SC4. It follows that each
∨-irreducible component c of Ck(a) ∧ Cl(a) has sc-dimension strictly less than min(k, l), hence
so does ϕ(c) by assumption. By SC9 we conclude that

sc-dim
(

C
k(a) ∧ C

l(a)
)
< min(k, l) (∀l 6= k). (5)

ϕ(a) = ∨∨k≤d ϕ(Ck(a)) by SCd
1 and because ϕ is an Llat-embedding. By (4), (5) and Propo-

sition 3.2 it follows that Ck(ϕ(a)) = ϕ(Ck(a)) for every k ≤ d. Since ϕ is injective, this implies
by SC7 that for every a ∈ L0

sc-dim a = sc-dimϕ(a). (6)

It only remains to check that ϕ(a− b) = ϕ(a)−ϕ(b) for every a, b ∈ L0. By TC2, replacing if
necessary a by its ∨-irreducible components, we may assume w.l.o.g. that a itself is ∨-irreducible
in L0. This implies that a = Ck(a) for some k, hence ϕ(a) is k-sc-pure by assumption on ϕ. It
then remains two possibilities for a− b:

• If b ≥ a then ϕ(b) ≥ ϕ(a), hence a− b = 0 and ϕ(a)− ϕ(b) = 0, so ϕ(a− b) = ϕ(0) = 0 =
ϕ(a)− ϕ(b).

9



• Otherwise b ∧ a < a hence b ∧ a � a by TC1, that is a − b = a. So we have to prove
that ϕ(a) − ϕ(b) = ϕ(a). By SC6 sc-dim b ∧ a < sc-dim a, hence sc-dim(ϕ(b) ∧ ϕ(a)) <
sc-dim(ϕ(a)) = k by (6). Since ϕ(a) is k-sc-pure it follows that ϕ(a)−ϕ(b) = ϕ(a) by SC5.

Corollary 3.5 Let L0 be a noetherian lattice embedded in a subscaled lattice L. Assume that
every b′ < b ∈ I(L0) are sc-pure in L and sc-dim b′ < sc-dim b in L. Then the restrictions to L0

of the LSC-operations “−” and “Ci” of L turn L0 into an LSC-substructure which is a subscaled
lattice.

Proof: The assumptions imply that the map D : a 7→ sc-dim a is a strictly increasing map
from I(L0) to N. Endow L0 with the structure of subscaled lattice determined by D as in
Example 2.7. By construction the inclusion map from L0 to L is an Llat-embedding which
preserves the sc-purity and sc-dimension of every b ∈ I(L0), hence is an LSC-embedding by
Proposition 3.3.

4 Local finiteness

We prove in this section that every finitely generated subscaled lattice is finite. This result is far
non-obvious, due to the lack of any known normal form for terms in LSC. It contrasts with the
general situation in co-Heyting algebras, which can be both infinite and generated by a single
element. Our main ingredient, which explains this difference, is the uniform bound given a priori
for the sc-dimension of any element in a given d-subscaled lattice.

Theorem 4.1 Any d-subscaled lattice L generated by n elements is finite. More precisely, the
cardinality of I(L) is bounded by the function µ(n, d) defined by

µ(n, d) = 2n + µ(2n+1, d− 1).

for d ≥ 0, and µ(n, d) = 0 for d < 0.

Proof: The only subscaled lattice of sc-dimension d < 0 is the one-element lattice {0}, so the
result is trivial in this case. Assume that d ≥ 0 and that the result is proved for every d′ < d
and every non-negative integer n.

Let L be a subscaled lattice of sc-dimension d generated by elements x1, . . . , xn. Let Ωn be
the family of all subsets of {1, . . . , n} (so Ω0 = {∅}). For every I ∈ Ωn let Ic = Ωn \ I and

yI =
(
∧∧
i∈I

xi

)
−
(
∨∨
i∈Ic

xi

)
, zI = C

d(yI).

The family of all YI =
⋂
i∈I P (xi)∩

⋂
i∈Ic P (xi)

c is a partition of Spec(L). Indeed the Yi’s are the
atoms of the boolean algebra generated in the power set P(Spec(L)) by the P (xi)’s. Moreover
each P (yI) is the topological closure YI of YI in Spec(L) hence for every x ∈ L

P (x) =
⋃
I∈Ωn

P (x) ∩ YI ⊆
⋃
I∈Ωn

P (x) ∩ YI = P
(
∨∨
I∈Ωn

x ∧ yI
)
.

So x ≤ ∨∨
I∈Ωn

(x ∧ yI) by Stone’s duality. The reverse inequality being obvious we have proved

that
∀x ∈ L, x = ∨∨

I∈Ωn

(x ∧ yI). (7)
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In particular SC3 also gives

C
d(1) = C

d
(
∨∨
I∈Ωn

yI

)
= ∨∨
I∈Ωn

zI . (8)

For every I 6= J ∈ Ωn, if for example I 6⊆ J choose any i ∈ I \ J and observe that yI ≤ xi and
yJ ≤ 1− xi so yI ∧ yJ � 1− xi by TC3. By SC6 and the d-sc-purity of the zI ’s it follows that

sc-dim zI ∧ zJ < d hence zI − zJ = zI . (9)

It follows from SC9, SC12 and (9) above, that the element

a =
(
1− C

d(1)
)
∨
(
∨∨
I∈Ωn

(yI − zI)
)
∨
(
∨∨

I 6=J∈Ωn

(zI ∧ zJ)
)

has sc-dimension strictly smaller than d. So the induction hypothesis applies to the
LSC-substructure L−0 of L(a) generated by the (yI − zI)’s and the (zI ∧ a)’s: L−0 is finite, with at
most µ(2|Ωn|, d−1) ∨-irreducible elements. Note that L−0 is an L∗SC-substructure of L (recall that
L∗SC = LSC \{1}). Finally let L1 be the upper semi-lattice generated in L by L−0 ∪{zI}I∈Ωn

. By
construction L1 is finite and I(L1) ⊆ I(L−0 )∪{zI}I∈Ωn

, so |I(L1)| ≤ 2n+µ(2n+1, d−1) = µ(n, d).
It is then sufficient to show that L1 = L.

We first prove that L1 is a lattice. By (8), Cd(1) ∨ a = ∨∨I∈Ωn zI ∨ a ∈ L1 hence 1 =

Cd(1) ∨ a ∈ L1. For every I ∈ Ωn and every b ∈ L−0 , zI ∧ b = (zI ∧ a) ∧ b ∈ L−0 . For every
I 6= J ∈ Ωn, zI ∧ zJ = (zI ∧ a) ∧ (zJ ∧ a) ∈ L−0 . So by the distributivity law, L1 is a sublattice
of L.

In order to conclude that L1 is an LSC-substructure of L, by Corollary 3.5 it only remains
to check that for every b′ < b ∈ I(L1), b is sc-pure in L and sc-dim b′ < sc-dim b in L. Since
I(L1) ⊆ I(L−0 ) ∪ {zI}I∈Ωn we can distinguish two cases.

Case 1: b ∈ I(L−0 ). Then b is sc-pure in L−0 by SC13 hence also in L since L−0 is an
L∗SC-substructure of L. Similarly b′ � b in L−0 by TC1 that is b− b′ = b in L−0 hence also in L.
Thus b′ � b in L which implies that sc-dim b′ < sc-dim b in L by SC6.

Case 2: b = zI for some I ∈ Ωn. Then b = Cd(yI) is sc-pure in L and sc-dim b = d. If b′ = zJ
for some other J ∈ Ωn then on one hand sc-dim(b′) = d and on the other hand I 6= J hence
b′ = b′ ∧ b = zI ∧ zJ has sc-dimension < d by (9), a contradiction. So necessarily b′ ∈ I(L−0 ), in
particular b′ ≤ a hence sc-dim(b′) ≤ sc-dim(a) < d

So L1 is indeed an LSC-substructure of L. Finally every yI = (yI − zI) ∨ zI ∈ L1 and (7)
gives, for every i ≤ n,

xi = ∨∨
I∈Ωn

xi ∧ yI ≤ ∨∨
I∈Ωn
i∈I

yI ≤ xi.

So equality holds, hence each xi ∈ L1, which finally proves that L1 = L.

Corollary 4.2 For every n, d there are finitely many non-isomorphic subscaled lattices of
sc-dimension d generated by n elements.

Proof: Any such subscaled lattice L is finite, with |I(L)| ≤ µ(n, d) by Theorem 4.1. Clearly
there are finitely many non-isomorphic lattices such that |I(L)| ≤ µ(n, d) and each of them
admits finitely many non-isomorphic LSC-structures of d-subscaled lattices.
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5 Linear representation

In this section we prove that the theory of d-subscaled lattices is the universal theory of various
natural classes of geometric d-scaled lattices, including SCdef(K, d) in Example 1.1 as well as
SCZar(K, d). The argument is based on an elementary representation theorem for d-subscaled
lattices, combined with the local finiteness result of Section 4.

Given an arbitrary field K, a non-empty linear variety X ⊆ Km is determined by the data of

an arbitrary point P ∈ X and the vector subspace
−→
X of Km, via the relation X = P +

−→
X (the

orbit of P under the action of
−→
X by translation). We call X a special linear variety (resp. a

special linear set) if X is a linear variety such that
−→
X is generated by a subset of the canonical

basis of Km (resp. if X is a finite union of special linear varieties). The family Llin(X) of all
special linear subsets of X is the family of closed sets of a noetherian topology on X, hence a
noetherian lattice. For every A ∈ Llin(X) we let D(A) be the dimension of A in the sense of
linear algebra. This endows Llin(X) with a natural structure of scaled lattice as in Example 2.7.

Remark 5.1 For every A ∈ Llin(X), if K is infinite then sc-dimA = dimLlin(X)A = the dimen-
sion of A as defined in linear algebra. It coincides with the Krull dimension as well. If moreover
A is ∨-irreducible in Llin(X) then it is pure dimensional, hence it is sc-pure both in Llin(X)
and LZar(X). By Proposition 3.3 it follows that Llin(X) is an LSC-substructure of LZar(X).
Similarly if K is an o-minimal, C-minimal or P -minimal expansion of K, then Llin(X) is an
LSC-substructure of Ldef(X).

In what follows Km is identified to Km×{0}r ⊆ Km+r. The very easy result below prepares
the proof of Proposition 5.3.

Proposition 5.2 For every two special linear sets C ⊆ B ⊆ Km and every non-negative integer
n ≥ dimC there exists a special linear set A ⊆ Km+n of pure dimension n such that A∩B = C.

Proof: The result being rather trivial if C is empty, we can assume w.l.o.g. that C 6= ∅.
Let (e1, . . . , em+n) be the canonical basis of Km+n. If I is a subset of {1, . . . ,m + n} we let
−→
E (I) denote the vector space generated in Kn by (ei)i∈I . Decompose C as a union of special

linear varieties C1, . . . , Cp, and write each Ci = Pi +
−→
E (Ji) with |Ji| = dimCi ≤ n. Let

Ii = Ji∪{m+1, . . . ,m+n−|Ji|} and Ai = Pi+
−→
E (Ii) for every i ≤ p. Finally let A = A1∪· · ·∪Ap.

By construction each Ai has pure dimension |Ii| = n, hence A has pure dimension n. Clearly
each Ai ∩Km = Ci, hence A ∩Km = C and a fortiori A ∩B = C.

Proposition 5.3 (Linear representation) Let K be an infinite field, d ≥ 0 an integer and L
a finite d-subscaled lattice. Then there exists a special linear set X over K of dimension ≤ d and
an LSC-embedding ϕ : L→ Llin(X).

Proof: By induction on the number r of ∨-irreducible elements of an arbitrary d-subscaled lattice
L, we prove that there exists an L∗SC-embedding ϕ of L into Llin(Km) for some m depending
on L. Taking X = ϕ(1L) then gives the conclusion. Indeed X is a special linear set over
K, dimX = sc-dim(1L) ≤ d because ϕ preserves the sc-dimension, and ϕ is obviously an
LSC-embedding of L into Llin(X).

If r = 0 then L is the one-element lattice {0}, hence an L∗SC-substructure of Llin(K). So,
given a fixed r ≥ 1, we can assume by induction that the result is proved for r − 1. Let L be a
d-subscaled lattice with ∨-irreducible elements a1, . . . , ar.
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Renumbering if necessary we may assume that ar is maximal among the ai’s. Let a = ar,
b = ∨∨1≤i<r ai, c = a ∧ b and ϕ an L∗SC-embedding of L(b) into some Llin(Km) given by the
induction hypothesis. Since a is ∨-irreducible in L it is sc-pure. Moreover c ≤ a by TC1, hence
a has pure sc-dimension n for some n ≥ sc-dim(c) by SC6. Let B,C be the respective images
of b, c by ϕ. Proposition 5.2 gives a special linear set A ⊆ Km+n of pure dimension n such that
A ∩ B = C. Identifying Km with Km × {0}n ⊆ Km+n turns ϕ into an L∗SC-embedding of L(b)
into Llin(Km+n).

Every x ∈ L writes uniquely xa∨xb with xa ∈ {0, a} and xb ∈ L(b) by grouping appropriately
the ∨-irreducible components of x, using the maximality of an. So we can let

ϕ̄(x) =

{
ϕ(xb) if xa = 0,

A ∪ ϕ(xb) if xa = a.

This is a well-defined L∗lat-embedding of L into Llin(Km+n). Moreover ϕ̄ is an L∗SC-embedding
by Proposition 3.3. This finishes the induction.

Given an infinite field K and a positive integer d, we let SClin(K, d) be the class of d-scaled
lattices Llin(X) with X ranging over the special linear sets over K of dimension at most d.

Theorem 5.4 The universal theories of SCdef(K, d) (resp. SCZar(K, d), SClin(K, d)) in the
language LSC are the same for every fixed integer d ≥ 0 and every o-minimal, C-minimal or
P -minimal expansion8 K of a field K (resp. for every infinite field K). This is the theory of
d-subscaled lattices.

Proof: As already mentioned, for every such expansion K of K the good properties of the
dimension theory for definable sets X ⊆ Km ensure that Ldef(X) is a d-scaled lattice. Obviously
the same holds true for Llin(X) and LZar(X). So the universal theory of any of these classes
contains the theory of d-subscaled lattices. For the converse, thanks to Remark 5.1 it suffices to
prove that every d-subscaled lattice L embeds into a model of the theory of SClin(K, d). If L is
finite this is Proposition 5.3. The general case then follows from the model-theoretic compactness
theorem, because L is locally finite by Theorem 4.1.

6 Minimal extensions

Minimal proper extensions of any finite subscaled lattices are entirely determined by so-called
“SC-signatures” (see below). Since this is a special case of minimal extensions of finite co-Heyting
algebras, we first recall the main results of [DJ18] on this subject, and try to reduce to them as
much as possible.

We need some specific notation and definitions. Given a finite lattice L0, an Llat-extension
L, elements a ∈ L0 and x ∈ L we write:

• a− = ∨∨{b ∈ L0

/
b < a}.

• g(x, L0) = ∧∧{a ∈ L0

/
x ≤ a}.

Clearly a ∈ I(L0) if and only if a− is the unique predecessor of a in L0 (otherwise a− = a).
Assume that L0 and L are co-Heyting algebras (or topologically complemented lattices, or

TC-lattice for short). A TC-signature in L0 is a triple (g,H, r) where g ∈ I(L0), H is a set of
one or two elements h1, h2 ∈ L0 and r ∈ {1, 2} are such that:

8More generally this holds true for dp-minimal expansions as explained in Footnote 3.
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• either r = 1 and h1 = h2 < g;

• or r = 2 and h1 ∨ h2 < g.

A couple (x1, x2) of elements of L is TC-primitive over L0 if there is g ∈ I(L0) such that

P1 g− ∧ x1 and g− ∧ x2 belong to L0.

P2 One of the following happens:

1. x1 = x2 and g− ∧ x1 � x1 � g.

2. x1 6= x2, x1 ∧ x2 ∈ L0 and g − x1 = x2, g − x2 = x1.

This implies that each xi 6∈ L0, that g = g(x1, L0) = g(x2, L0) and that the triple σTC(x1, x2) =
(g,H, r) defined as follows is a signature in L0, called the signature of (x1, x2) in L0.

g = g(x1, L0) H = {g− ∧ x1, g
− ∧ x2} r = Card{x1, x2}

Finally we say that L is a TC-primitive extension of L0 if it is LTC-generated over L0

by a primitive tuple. For the convenience of the reader we collect here all the properties of
TC-signatures and TC-primitive extensions that we are going to use. All the references are
taken from [DJ18].

Proposition 6.1 Let L0 be a finite co-Heyting algebra and L an LTC-extension.

1. [Theorem 3.3] If L is LTC-generated over L0 by a TC-primitive tuple (x1, x2), then L is
exactly the upper semi-lattice generated over L0 by x1 and x2. It is a finite co-Heyting
algebra and one of the following happens:

(a) x1 = x2 and I(L) = I(L0) ∪ {x1}.
(b) x1 6= x2 and I(L) = (I(L0) \ {g}) ∪ {x1, x2}.

In particular (x1, x2) is (up to permutation) the only TC-primitive tuple over L0 in L. We
call σTC(x1, x2) the TC-signature of L in L0 and denote it σTC(L).

2. [Remark 3.6] TC-signatures in L0 and TC-primitive extensions of L0 are in one-to-one
correspondence: every TC-signature in L0 is the TC-signature of a TC-primitive extension,
and two TC-primitive extensions of L0 are LTC-isomorphic over L0 if and only if they have
the same TC-signature in L0.

3. [Corollary 3.4] If L is finite, the following are equivalent.

(a) L is a minimal proper extension of L0.

(b) L is a TC-primitive extension of L0.

(c) Card(I(L)) = Card(I(L0)) + 1.

As a consequence every finite LTC-extension L′ of L0 is the union of a tower of
TC-primitive extensions L0 ⊂ L1 ⊂ · · · ⊂ Ln = L′ with n = Card(I(L′))− Card(I(L0)).

We will refer to the k-th item of the above proposition as to Proposition 6.1.k.

Now let L0 be a finite subscaled lattice and L and LSC-extension. An SC-signature in L0 is
a triple σ = (g,H, q) where g ∈ I(L0), H is a set of one or two elements h1, h2 ∈ L0 and q ∈ N
are such that:

14



• either sc-dimh1 < q < sc-dim g and h1 = h2 < g;

• or q = sc-dim g and h1 ∨ h2 = g−.

Let rσ = 1 if q < sc-dim g, rσ = 2 if q = sc-dim g, and σTC = (g,H, rσ). By construction this
is a TC-signature in L0. Given an LSC-extension L of L0, a tuple (x1, x2) of elements of L is
SC-primitive over L0 if it is TC-primitive over LTC

0 and if in addition

P3 x1, x2 are sc-pure of the same sc-dimension.

Such an SC-primitive tuple determines the so-called SC-signature of (x1, x2) in L0, denoted
σSC(x1, x2) = (g,H, q) and defined as follows.

g = g(x1, L0) H = {g− ∧ x1, g
− ∧ x2} q = sc-dimx1

Note that, by condition P2 of the definition of TC-signatures, x1 = x2 if and only if x1 � g, and
otherwise sc-dimx1 = sc-dimx2 = sc-dim g. This ensures that σTC(x1, x2) = (σSC(x1, x2))TC.

Let LTC
0 and LTC denote the respective LTC-reducts of L0 and L. For every subset X0 of L

we let:

• L0〈X0〉 = the LSC-structure generated by L0 ∪X0 in L;

• LTC
0 〈X0〉 = the LTC-structure generated by LTC

0 ∪X0 in LTC.

We say that L is an SC-primitive extension of L0, if there exists a tuple (x1, x2) SC-primitive
over L0 such that L = L0〈x1, x2〉 (then clearly L = L0〈x1〉 = L0〈x2〉). By Lemma 6.2 below and
Proposition 6.1.1 such a tuple is necessarily unique.

Lemma 6.2 Let L0 be finite subscaled lattice, and L an LSC-extension generated over L0 by
an SC-primitive tuple (x1, x2). Then LTC = L0〈x1, x2〉, (x1, x2) is TC-primitive over LTC

0 and
σTC(x1, x2) = (σSC(x1, x2))TC.

Proof: That (x1, x2) is TC-primitive over LTC
0 and σTC(x1, x2) = (σSC(x1, x2))TC is only a

reminder: it follows directly from the definitions. Let L1 = L0〈x1, x2〉, in order to conclude that
L1 = L it only remains to prove that L1 is an LSC-substructure of L. By Corollary 3.5 it suffices
to check that for every b′ < b ∈ I(L1), b is sc-pure in L and sc-dim b′ < sc-dim b in L.

If b ∈ I(L0), then b is sc-pure in L0 by SC13, hence also in L because L0 is an LSC-sub-
structure of L. Otherwise b = xi for some i ∈ {1, 2}. Then b is sc-pure in L by definition of
SC-primitive tuples over L0.

In both cases b′ � b in L1 by TC1, that is b− b′ = b in L1, hence also in L because L1 is an
LTC-substructure of L. So b′ � b in L hence sc-dim(b′) < sc-dim(b) in L by SC6.

Lemma 6.3 Let L0 be finite subscaled lattice, L1 an LTC-extension generated over LTC
0 by a

TC-primitive tuple (x1, x2), and τ = (g, {h1, h2}, q) an SC-signature in L0 such that τTC =
σTC(x1, x2). Then there exists a unique structure of subscaled lattice expanding L1 which makes
it an LSC-extension of L0 such that (x1, x2) is SC-primitive over L0 and σSC(x1, x2) = τ .

Proof: By Proposition 6.1.1, I(L1) ⊆ I(L0)∪{x1, x2}. For every x ∈ I(L0) let D(x) = sc-dimx,
and let D(x1) = D(x2) = q. This defines by restriction a function from I(L1) to N. Assume that
D is strictly increasing. Then it determines as in Example 2.7 an LSC-structure on L1 expanding
its LTC-structure. Let us denote it L, so that LTC = L1. Every ∨-irreducible element of L0

remains sc-pure in L with the same sc-dimension, hence by Proposition 3.3 the inclusion of L0
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into L is an LSC-embedding. This is clearly the only possible LSC-structure on L1 which makes
it an LSC-extension of L such that sc-dimx1 = sc-dimx2 = q. So it only remains to prove that
D is strictly increasing.

Let b < a in I(L), if a, b ∈ I(L0) then D(b) < D(a) by 6. So we can assume that a or b
does not belong to I(L0). By Proposition 6.1.1 one of them must belong to {x1, x2} and the
other one to I(L0). Note that our assumption σTC(x1, x2) = σTC implies that (for i = 1, 2)
g = g(xi, L0), and hi = xi ∧ g− (up to re-numbering) and: either x1 = x2, h1 = h2 < g and
sc-dimh1 < q < sc-dim g; or x1 6= x2, h1 ∨ h2 = g− and q = sc-dim g.

Case 1: b = x1 or b = x2, hence D(b) = q. Then a ∈ I(L0), in particular a ∈ L0, hence
g ≤ a and so sc-dim g ≤ sc-dim a. If x1 = x2 then q < sc-dim g ≤ sc-dim a hence D(b) < D(a).
If x1 6= x2 then q = sc-dim g, and g is not ∨-irreducible in L hence g 6= a. So g � a (because
g < a and a is ∨-irreducible) hence sc-dim g < sc-dim a by 6, that is D(b) < D(a).

Case 2: a = x1 or a = x2, hence D(a) = q. Then again b ∈ L0, and b < a ≤ g hence
b ≤ g−. If x1 = x2, since b ≤ a ∧ g− = h1 we get sc-dim b ≤ sc-dimh1 < q, hence D(b) < D(a).
If x1 6= x2 then sc-dim g = q. Since b < g we have b � g (because g is ∨-irreducible) hence
sc-dim b < sc-dim g by 6. So sc-dim b < q, that is D(b) < D(a).

We can now pack all this together.

Proposition 6.4 Let L0 be a finite subscaled lattice and L an LSC-extension.

1. If L is LSC-generated over L0 by an SC-primitive tuple (x1, x2), then L is exactly the upper
semi-lattice generated over L0 by x1 and x2. It is a finite subscaled latice and one of the
following happens :

(a) x1 = x2 and I(L) = I(L0) ∪ {x1}.
(b) x1 6= x2 and I(L) = (I(L0) \ {g}) ∪ {x1, x2}.

In particular (x1, x2) is (up to permutation) the only SC-primitive tuple over L0 in L. We
call σSC(x1, x2) the SC-signature of L in L0 and denote it σSC(L).

2. SC-signatures in L0 and SC-primitive extensions of L0 are in one-to-one correspondence:
every SC-signature in L0 is the SC-signature of an SC-primitive extension, and two
SC-primitive extensions of L0 are LSC-isomorphic over L0 if and only if they have the
same SC-signature in L0.

3. If L is finite, the following are equivalent.

(a) L is a minimal proper LSC-extension of L0.

(b) L is an SC-primitive extension of L0.

(c) Card(I(L)) = Card(I(L0)) + 1.

As a consequence every finite LSC-extension L′ of L0 is the union of a tower of SC-primitive
extensions L0 ⊂ L1 ⊂ · · · ⊂ Ln = L′ with n = Card(I(L′))− Card(I(L0)).

We will refer to the k-th item of the above proposition as to Proposition 6.4.k.

Proof: If L is LSC-generated over L0 by an SC-primitive tuple (x1, x2), then by Lemma 6.2 LTC

is also LTC-generated over LTC
0 by (x1, x2), which is TC-primitive. The first item the follows

from Proposition 6.1.1.
Let σ be an SC-signature in L0. Then σTC is a TC-signature in L0. Proposition 6.1.2 gives

a TC-primitive LTC-extension L1 of LTC
0 with TC-signature σTC in L0. Lemma 6.3 then gives
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a unique structure of subscaled lattice expanding L1 which makes it an SC-primitive extension
of L0 with signature σ in L0. Let us denote it L, so that LTC = L1. Now if L′ is another
SC-primitive extension with signature σ in L0, by Proposition 6.1.2 L′TC is LTC-isomorphic to
LTC over L0. The image of L′ via this endomorphism defines an LSC-structure expanding LTC,
which makes it an SC-primitive extension of L0 with the same signature as L. By the uniqueness
of such a structure, given by Lemma 6.3, it follows that this LTC-isomorphism from L′TC to LTC

is actually an LSC-isomorphism, which proves the result.
We finely prove item (3 by cyclic implication. Note that (3b)⇒(3c) follows from item 1)

above.
(3c)⇒(3a). Let L′ be a proper LSC-extension of L0 contained in L. Then L′TC is a proper

LTC-extension of LTC
0 contained in LTC. By Proposition 6.1.3, (3c) implies that LTC is a minimal

proper LTC-extension of LTC
0 . So L′TC = LTC, thus necessarily L′ = L, which proves that L is

minimal.
(3a)⇒(3b). Let x1 be a minimal element in I(L) \ I(L0). Let g = g(x1, L0),; if x1 � g let

x2 = x1, otherwise let x2 = g − x1. The proof of Corollary 3.4 in [DJ18] shows that (x1, x2)
is TC-primitive over LTC

0 . In particular x1, x2 ∈ I(L) so they are sc-pure by SC13. The same
holds true for g, hence if x1 6= x2 then x1 = g−x2 and x2 = g−x1 have the same dimension (the
dimension of g, by definition of the sc-purity of g). So (x1, x2) is actually SC-primitive. Since
LTC

0 〈x1, x2〉 = LTC, a fortiori L0〈x1, x2〉 = L hence L is SC-primitive over L0.

7 Model-completion of scaled lattices

We call super scaled lattice every subscaled lattice L which satisfy the following additional
properties, both of which are clearly axiomatizable by ∀∃-formulas in LSC. If sc-dimL ≤ d we
call it a super d-scaled lattice.

Catenarity For every non-negative integers r ≤ q ≤ p and every elements c ≤ a 6= 0, if c
is r-sc-pure and a is p-sc-pure then there exists a non-zero q-sc-pure element b such that
c ≤ b ≤ a.

If SpecL is noetherian this property is equivalent to the usual notion of catenarity, namely
that any two maximal chains in SpecL having the same first and last elements have the same
length. In particular every d-scaled lattice L of type LZar(X) or Llin(X) satisfies this property.
At the contrary none of them satisfy the next property, as it implies that L is atomless.

Splitting For every elements b1, b2, a, if b1 ∨ b2 � a 6= 0 then there exists non-zero elements
a1 ≥ b1 and a2 ≥ b2 such that:  a1 = a− a2

a2 = a− a1

a1 ∧ a2 = b1 ∧ b2
We will then say a1, a2 split a along b1, b2.

Remark 7.1 If r < p ≤ q in the Catenarity axiom, the conclusion can be strengthen to c� b ≤ a.
Indeed b has pure sc-dimension q and c∧ b = c has sc-dimension < q hence b− c = b by SC8. In
particular every subscaled lattice satisfying the Catenarity axiom is a scaled lattice. Indeed, given
any element a of sc-dimension d ≥ 1, repeated applications of the Catenarity axiom to Cd(a),
c = 0 and each integer p from 0 to d, gives a chain of sc-pure elements a0, . . . , ad such that

0 6= a0 � a1 � · · · � ad ≤ a.
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By Fact 2.2 it follows that dim a ≥ d, and by SC11 that dim a = d.

Lemma 7.2 Let a, b1, b2 be elements of a finite subscaled lattice L. If b1 ∨ b2 � a 6= 0 then L
embeds in a finite subscaled lattice L′ containing non-zero elements a1, a2 which split a along b1,
b2. Moreover, if C0(a) 6= 0 we can require9 that all the atoms of L′ belong to L0.

Proof: We are going to prove by induction on d = sc-dim a a slightly more precise result, namely
that in addition x ≤ a for every x ∈ I(L′)\I(L). Let g1, . . . , gn be the ∨-irreducible components
of a in L. (n ≥ 1 because a 6= 0). If d = 0 our assumption that b1 ∨ b2 � a implies by SC6
that b1 = b2 = 0. If n = 1, that is a = g1 is ∨-irreducible, then σ = (g, {0}, 0) is a signature in
L. Proposition 6.4.2 gives an SC-primitive tuple (a1, a2) generating an LSC-extension L1 over L
with signature σ. This signature ensures that (a1, a2) splits a along (0,0). If n ≥ 2, a1 = g1 and
a2 = a− a1 will do the job. So the result is proved for d = 0.

Now assume that d ≥ 1 and the result is valid until d − 1. Note that g−1 ∨ · · · ∨ g−n is the
greatest element c ∈ L such that c� a, in particular

b1 ∨ b2 ≤ g−1 ∨ · · · ∨ g−n . (10)

Let u = (∨∨i≤n g−i )− (b1 ∨ b2) and u∗ = u− C0(u). Since u� a we have sc-dimu < d by SC6.
We are claiming that L embeds in a finite subscaled lattice L without new atoms, in which all the
gi’s are still ∨-irreducible with the same predecessor as in L0, and in which there are elements
u∗1, u∗2 which satisfy all the conditions to split u∗ along b1 ∧u∗, b2 ∧u∗, except that u∗1, u∗2 might
be zero elements.

By TC3, (b1 ∨ b2) ∧ u∗ � u∗ so if sc-dimu ≤ 0 we can simply take u∗1 = u∗2 = 0 and L0 = L.
On the other hand, if sc-dimu > 0 the induction hypothesis applies to u∗, b1∧u∗, b2∧u∗. It gives
a finite subscaled lattice L0 containing L and elements u∗1, u

∗
2 ∈ L0 which split u∗ along b1 ∧ u∗,

b2 ∧ u∗. Moreover we can require that L0 do not contain any new atom because C0(u∗) = 0,
and that x ≤ u∗ for every x ∈ I(L) \ I(L0). For every x ∈ I(L) such that x < gi for some
i ≤ n, if x ∈ L0 then x ≤ g−i (where g−i still denotes the predecessor of gi in L0). If x /∈ L0 then
x ≤ u∗ by construction hence x ≤ gi ∧ u∗. The latter belongs to L0 and is strictly lower than gi,
hence lower than g−i , so x < gi. It follows that gi has a unique predecessor in L which is g−i , in
particular gi remains ∨-irreducible in L. This proves our claim in both cases.

Now let u1 = C0(u) ∨ u∗1 and u2 = u∗2. We have in particular

u1 ∨ u2 = ∨∨
i≤n

g−i − (b1 ∨ b2). (11)

Since u − b2 = u by TC3 necessarily b2 ∧ c � c for every ∨-irreducible component c of u,
hence b2 ∧ C0(u) � C0(u). By SC6 it follows that b2 ∧ C0(u) = 0 hence b2 ∧ u1 = b2 ∧ u∗1.
Similarly u∗ ∧C0(u) = 0 because u∗ −C0(u) = u∗ by SC12 and TC3. A fortiori u∗2 ∧C0(u) = 0
hence u∗2 ∧ u1 = u∗2 ∧ u∗1. Note also that b1 ∧ u∗2 = b1 ∧ u∗ ∧ u∗2 ≤ u∗1 ∧ u∗2, and symmetrically
b2 ∧ u∗1 ≤ u∗1 ∧ u∗2. Altogether, since u2 = u∗2 and u∗1 ∧ u∗2 ≤ b1 ∧ b2 by construction, this gives

(b1 ∧ u2) ∨ (b2 ∧ u1) ∨ (u1 ∧ u2) ≤ (b1 ∧ b2)

hence

(b1 ∨ u1) ∧ (b2 ∨ u2) = (b1 ∧ b2) ∨ (b1 ∧ u2) ∨ (b2 ∧ u1) ∨ (u1 ∧ u2) = (b1 ∧ b2). (12)

After this preparation, for each i let

hi,1 = g−i ∧ (b1 ∨ u1), hi,2 = g−i ∧ (b2 ∨ u2), σi =
(
gi, {hi,1, hi,2}, sc-dim gi

)
9This additional condition if C0(a) 6= 0 will be used only later, in Section 9.

18



Using (11) we get

hi,1 ∨ hi,2 = g−i ∧ (b1 ∨ u1 ∨ b2 ∨ u2)

= g−i ∧
[
b1 ∨ b2 ∨

(
∨∨
j≤n

g−i − (b1 ∨ b2)

)]
= g−i ∧ ∨∨

j≤n
g−j = g−i .

So each σi is an SC-signature in L0. In particular Proposition 6.4.2 gives an SC-primitive
extension L1 = L0〈a1,1, a1,2〉 with SC-signature σ1 in L0. By Proposition 6.4.1, I(L1) = (I(L0)\
{a1}) ∪ {a1,1, a1,2}. In particular g2 ∈ I(L1), hence σ2 is still an SC-signature in L1. Repeating
the construction n times (note that a 6= 0 ensures that n ≥ 1) gives a chain of LSC-extensions
(Li)i≤n and for each i > 0, an SC-primitive tuple (ai,1, ai,2) generating Li over Li−1 with
signature σi in Li−1. Each ai = ai,1 ∨ ai,2 and by Proposition 6.4.1

I(Ln) =
(
I(L0) \ {a1, . . . , an}

)
∪ {a1,1, a1,2, . . . , an,1, an,2} (13)

so a1,1, a1,2, . . . , an,1, an,2 are the ∨-irreducible components of a in Ln. Moreover every c ∈ I(L)
such that c < ai,k for some i, k must belong to L0, hence the predecessor of ai,k is the same in
every Lj and belongs to L0. We can then denote it a−i,k without ambiguity, and by construction
we have

a−i,k = ai,k ∧ g(ai, Li−1) = ai,k ∧ gi = hi,k. (14)

Let a1 = ∨∨i≤n ai,1, a2 = ∨∨i≤n ai,2, h1 = ∨∨i≤n hi,1 and h2 = ∨∨i≤n hi,2. We are going to
check that a1, a2 split a along b1, b2. Both of them are non-zero and since the ai,k’s are the
∨-irreducible components of a we have a−a1 = a2, a−a2 = a1. Each ai,1 ≥ hi,1 by construction,
hence a1 ≥ h1 and symmetrically a2 ≥ h2. Moreover for k ∈ {1, 2}

hk = ∨∨
i≤n

hi,k ≥ ∨∨
i≤n

g−i ∧ bk = bk

where the last equality comes from (10), so ak ≥ bk. It remains to check that a1 ∧ a2 = b1 ∧ b2.
For i 6= j, ai,1 and aj,2 are mutually incomparable hence by (14)

ai,1 ∧ aj,2 = a−i,1 ∧ a
−
i,2 = hi,1 ∧ hj,2.

On the other hand ai,1 ∧ ai,2 = hi,1 ∧ hi,2 by construction. The conclusion follows, using (12).

a1 ∧ a2 = ∨∨
i,j
ai,1 ∧ aj,2 = ∨∨

i,j
hi,1 ∧ hj,2

= ∨∨
i,j

[
g−i ∧ (b1 ∨ u1)

]
∧
[
g−j ∧ (b2 ∨ u2)

]
= ∨∨

i,j
(g−i ∧ g

−
j ) ∧

[
(b1 ∨ u1) ∧ (b2 ∨ u2)

]
=
(
∨∨
i
g−i

)
∧
(
∨∨
j
g−j

)
∧
[
(b1 ∨ u1) ∧ (b2 ∨ u2)

]
= (b1 ∨ u1) ∧ (b2 ∨ u2) = b1 ∧ b2.

Theorem 7.3 The theory of super d-scaled lattices is the model-completion of the theory of
d-subscaled lattices
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Proof: By standard model-theoretic arguments it suffices to prove that every existentially closed
d-subscaled lattice is super d-scaled, and that for every super d-scaled lattice L̂, every finitely
generated d-subscaled lattice L and every common LSC-substructure L0, there is an embedding
of L into L̂ over L0.

Let L be an existentially closed d-subscaled lattice, and L0 a finitely generated substructure.
By Theorem 4.1, L0 is finite. By Proposition 5.3, L0 LSC-embeds the d-scaled lattice Ldef(X)
of some special linear set X, which is in particular a Catenary lattice. By the model-theoretic
compactness Theorem it it follows that L is catenary. Similarly Theorem 4.1, Lemma 7.2 and
the model-theoretic compactness Theorem prove that L has the Splitting property, hence L is
super d-scaled.

Conversely assume that L is a super d-scaled lattice, L is a finitely generated d-subscaled lat-
tice L and L0 common LSC-substructure. By Theorem 4.1 and Proposition 6.4.3a, we are reduced
to the case where L is a primitive extension of L0. Let σ = (g, {h1, h2}, q) be its SC-signature.
By Proposition 6.4.2 it suffices to find a x1, x2 ∈ L̂ such that (x1, x2) is SC-primitive over L0

and σSC(x1, x2) = σ. We distinguish two cases, and let g− denotes the predecessor of g in L0.
Case 1: sc-dimh1 < q < sc-dim g and h1 = h2 < g. Let p = sc-dim g and r = sc-dimh1.

Let y1, y2 ∈ L̂ which split g along h1, g
−. For 0 ≤ i ≤ d, either i < q or Ci(h1) = 0 (because

sc-dimh1 = r < q), hence sc-dim Ci(h1) < q < sc-dim g. The Catenarity property then applies
to Ci(h1) ≤ y1 and gives xi ∈ L̂ such that Ci(h1) ≤ xi ≤ y1 and xi has pure dimension q. Let
x = ∨∨0≤i≤d xi, by construction h1 = ∨∨i≤d Ci(h1) ≤ x ≤ y1 and x has pure dimension q. In
particular

h1 ≤ x ∧ g− ≤ y1 ∧ y2 = h1 ∧ g− = h1

hence x ∧ g− = h1 ∈ L0. Moreover x ∧ g− = h1 � x because dimh1 < q and x has pure
dimension q. Finally x� g because dimxi = q < p and g has pure dimension p. Altogether this
proves that (x, x) is an SC-primitive tuple over L0 with SC-signature σ.

Case 2: q = sc-dim g and h1 ∨ h2 = g−. Let y1, y2 ∈ L̂ which split g along h1, h2. By
construction y1 ∨ y2 = g, and since g has pure SC-dimension q so does each yi. In addition
y1 ∧ y2 = h1 ∧ h2 ∈ L0. Moreover

y1 ∧ h2 ≤ y1 ∧ y2 = h1 ∧ h2

hence y1∧(h1∨h2) = h1∨(y1∧h2) = h1. Since h1∨h2 = g− it follows that y1∧g− = h1 ∈ L0, and
symmetrically y2 ∧ g− = h2 ∈ L0. So (y1, y2) is an SC-primitive tuple over L0 with SC-signature
σ.

Remark 7.4 The proof of Theorem 7.3 shows that if L0 be a finite LSC-substructure of a super
scaled lattice L̂, then every signature σ in L0 is the signature of an SC-primitive extension of L0

in L̂.

The completions of the theory of super d-scaled lattices are easy to classify. Let us say that a
d-subscaled lattice is prime if it does not contain any proper d-subscaled lattice, or equivalently
if it is generated by the empty set. Every prime d-subscaled lattice is finite. By Corollary 4.2
there exists finitely many prime d-subscaled lattices up to isomorphism.

Corollary 7.5 The theory of super d-scaled lattices containing (a copy of) a given prime
d-subscaled lattice is ℵ0-categorical, hence complete. It is also recursively axiomatizable, hence
decidable. Since every completion of the theory of super d-scaled lattices is of that kind, the theory
of super d-scaled lattices is decidable.
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Proof: Let L, L′ be any two countable super d-scaled lattices containing isomorphic prime
d-subscaled lattices L0 and L′0. By Remark 7.4 any partial isomorphism between L and L′,
extending the given isomorphism between L0 and L′0, can be extended by va-et-vient. This
proves the first statement. The other ones are immediate consequences.

8 Atomic scaled lattices

Every super scaled lattice is atomless because of the Splitting Property, hence none of the
geometric scaled lattice in SCdef(K, d), SCZar(K, d), SClin(K, d) can be super scaled. In order
to apply our study to some of them we introduce now a variant of subscaled lattices intended
to protect atoms against splitting.

Let LASC = LSC ∪ {Atk}k∈N∗ with each Atk a new unary predicate symbol. For any
LASC-structure L we denote by Atk(L) the set of elements a in L such that L |= Atk(a), and we
let At0(L) = L \

⋃
k>0 Atk(L). We call L an ASC-lattice if its LSC-reduct is a scaled lattice

and if satisfies the following condition.

ASC0 : (∀k > 0), a ∈ Atk(L) if and only if a is the join of exactly k atoms in L.

Remark 8.1 This condition can be expressed by ∀∃ formulas in LASC by saying first that At1(L)
is the set of atoms of L, and then that Atk(L) is the set of elements of L which are the join of
exactly k elements of At1(L).

Every ASC-lattice obviously satisfies also the following schemes (for k, l > 0) of universal
axioms, whose intuitive meaning is explained afterwards.

ASC1 : (∀k 6= l), ∀a, Atk(a)→ ¬Atl(a)

ASC2 : (∀k), ∀a, a0, . . . , a2k , Atk(a) −→ ∧∧
0≤i≤2k

(
ai ≤ a

)
−→

∨∨
0≤i<j≤2k

(
ai = aj

)∧ sc-dim a = 0

ASC3 : (∀k), ∀a, a1, a2,[(
a = a1 ∨ a2

)∧(
a1 ∧ a2 = 0

)∧(
a1 6= 0

)∧(
a2 6= 0

)]
−→

[
Atk(a)←→

∨∨
0<l<k

(
Atl(a1)

∧
Atk−l(a2)

)]
We call sub-ASC-lattices the LASC-structures L whose LSC-reduct is a subscaled lattice and
which satisfy ASC1 to ASC3 (but not necessarily ASC0).

ASC1 obviously means that (Atk(L))k∈N is a partition of L. For any a ∈ L we then define
asc(a) as the unique k ∈ N such that a ∈ Atk(L).

ASC2 says that if asc(a) = k > 0 then L(a) has at most 2k element and sc-dim(a) = 0. Then
dim(a) = 0 by SC11 hence L(a) is a co-Heyting algebra with dimension 0, that is a Boolean
algebra. So ASC2 actually says that sc-dim a = 0 and L(a) is a Boolean algebra with n atoms
for some non zero n ≤ k. In particular every a ∈ At1(L) is an atom of L.

ASC3 says that if a is the join of two non-zero disjoint elements a1, a2 then asc(a) is non-
zero if and only if asc(a1) and asc(a2) are non-zero, in which case asc(a) = asc(a1) + asc(a2).
By a straightforward induction this extends to any decomposition of a as the join of finitely
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many pairwise disjoint elements. In view of ASC2 it then says that asc(a) > 0 if and only if
a is the join of finitely many atoms a1, . . . , an of L such that each asc(ai) > 0, in which case
asc(a) =

∑
1≤i≤n asc(ai).

Remark 8.2 It follows immediately that an LSC-embedding of sub-ASC-lattices ϕ : L → L′ is
an LASC-embedding if and only if asc(a) = asc(ϕ(a)) for every atom a ∈ L.

Remark 8.3 Obviously every finitely generated substructure of a sub-ASC-lattices is finite by
the Local Finiteness Theorem 4.1 because LASC expands LSC only by relational symbols.

Every scaled lattice L admits a unique structure of ASC-lattice which is an expansion by
definition of its lattice structure. We denote by LAt this expansion of L.

Proposition 8.4 (Linear representation) Let K be an infinite field and L0 be a finite sub-
ASC-lattice. For every integer N ≥ 0 there exists a special linear set XN over K and an
L∗ASC-embedding ϕN : L0 → LAt

lin(Km) such that for every atom a of L0:

• If asc(a) > 0 then asc(ϕN (a)) = asc(a).

• If asc(a) = 0 then asc(ϕN (a)) ≥ N .

Proof: By induction on lexicographically ordered tuples of integers (r, s) we prove that the
result is true for every finite sub-ASC-lattice L0 having r ∨-irreducible elements, s of which have
the same sc-dimension as L0.

If r = 0 then s = 0 and the unique embedding of L0 = {0} into LAt
lin(P ), for an arbitrary point

P of K, has the required property. So let us assume that r ≥ 1 and that the result is proved
for every (r′, s′) < (r, s). Let d = sc-dimL and a1, . . . , ar be the elements of I(L0) ordered by
increasing sc-dimension, so that sc-dim ar = d ≥ 0.

Case 1: d = 0. Then L is a boolean algebra and a1, . . . , ar are its atoms. Let A1, . . . , Ar be
pairwise disjoint subsets of K such that:

• If asc(ai) > 0 then Ai has asc(ai) elements, so asc(Ai) = asc(ai).

• If asc(ai) = 0 then Ai has N elements, so asc(Ai) = N .

Let X be the union of all these Ai’s. Clearly the map ϕ which maps each ai to Ai extends
uniquely to an LSC-embedding of L0 into LAt

lin(X) which has the required properties.

Case 2: d > 0. The upper semi-lattice L−0 generated by a1, . . . , ar−1 is an L∗ASC-substructure
of L0 to which the induction hypothesis applies. This gives for some integer m a special linear
set B ⊆ Km over K and an LSC-embedding ψ : L−0 → LAt

lin(B) having the required properties.
Let C = ϕ(1L−0

∧ ar) and n = sc-dim ar. Proposition 5.2 gives a special linear set A ⊆ Km+n

such that A ∩B = C. One can extend ψ to an LSC-embedding ϕ of L0 into LAt
lin(A ∪B) exactly

like in the proof of Proposition 5.3. Then ϕ inherits from ψ the required properties because all
the atoms of L already belong to L−0 .

Let ASCZar(K, d), ASClin(K, d), ASCdef(K, d) denote the class of all ASC-lattices LAt for L
ranging over SCZar(K, d), SClin(K, d), SCdef(K, d) respectively.

Corollary 8.5 For every integer d ≥ 0, the universal theories of ASCdef(K, d) (resp. of
ASCZar(K, d) or ASClin(K, d)) is the same for every o-minimal or P -minimal expansion of a
field K (resp. every infinite field K). This is the theory of sub-ASC-lattices.
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Proof: Since ASClin(K, d) is contained in the other classes, all of which are contained in the
class of ASC-lattices, it suffices to prove that conversely every sub-ASC-lattice LASC-embeds
into an ultraproduct of elements of ASClin(K, d). By the model-theoretic compactness theorem,
it suffices to prove it for any finitely generated sub-ASC-lattice L0.

By Theorem 4.1, L0 is finite. For any integer N ≥ 0 let ϕN : L0 → LAt
lin(XN ) be

an LSC-embedding given by Proposition 8.4. Let U be a non principal ultrafilter in the
Boolean algebra of subsets of N, and consider the ultraproduct L =

∏
N∈N LAt

lin(XN )/U . Then
ϕ =

∏
N∈N ϕN/U is an LSC-embedding of L0 into the L. In order to prove that it is an

LASC-embedding, by Remark 8.2 it remains check that for every atom a of L0, asc(ϕ(a)) = asc(a).
So let a be an atom of L0 and k = asc(a).

If k > 0 then for every N ≥ k, LAt
lin(XN ) |= Atk(ϕN (a)) by construction. So L |= Atk(ϕ(a)),

that is asc(ϕ(a)) = k.
If k = 0, let l be any strictly positive integer. For every N ≥ l, LAt

lin(XN ) |= AtN (ϕN (a)) by
construction, hence LAt

lin(XN ) 6|= Atl(ϕN (a)). So L 6|= Atl(ϕ(a)), and this being true for every
l > 0 it follows that asc(ϕ(a)) = 0.

9 Model-completion of atomic scaled lattices

Let us call super ASC-lattices those ASC-lattices which satisfy the following axioms, all of
which are axiomatizable by ∀∃-formulas in LASC. We are going to show that its theory is the
model-completion of the theory of sub-ASC-lattices of dimension at most d (resp. exactly d).

Atomicity: Every element x is the least upper bound of the set of atoms smaller than x.

Catenarity: For every non-negative integers r ≤ q ≤ p and every elements c ≤ a 6= 0, if c
is r-sc-pure and a is p-sc-pure then there exists a non-zero q-sc-pure element b such that
c ≤ b ≤ a.

ASC-Splitting: For every b1, b2, a, if b1 ∨ b2 � a 6= 0 and C0(a) = 0 there exists non-zero
elements a1 ≥ b1 and a2 ≥ b2 such that: a1 = a− a2

a2 = a− a1

a1 ∧ a2 = b1 ∧ b2

Remark 9.1 An immediate consequence of the atomicity axiom is that for every elements x, y
in a super ASC-lattice L such that y < x and sc-dim(x− y) ≥ 1, there are infinitely many atoms
a ∈ L such that a ≤ x and a∧y = 0. Indeed let A be the set of atoms a ∈ L such that a ≤ x−y,
and B the subset of those a such that a∧ y 6= 0. Assume for a contradiction that B is finite and
let b = ∨∨a∈B a. Note that b ≤ y and sc-dim b = dim b = 0. Then by the Atomicity axiom

x− y = ∨∨
a∈A

a ≤ y ∨ b, hence x− y ≤ (y ∨ b)− y = b− y ≤ b.

This implies that sc-dim(x− y) ≤ sc-dim b = 0, a contradiction.

Primitive tuples and sc-primitive extensions are defined for sub-ASC-lattices exactly like for
subscaled lattices.

We define ASC-signatures in a finite sub-ASC-lattice L0 as triples (g,H, q) with H a
set of non-necessarily distinct pairs (h1, k1), (h2, k2) in L0 ×N such that (g, {h1, h2}), q is an
SC-signature in the LSC-reduct of L0 and (see Example 9.2):
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1. If q < sc-dim g then k1 = k2.
Note that h1 = h2 in this case because (g, {h1, h2}, q) is a signature.

2. If q 6= 0 then k1 = k2 = 0.

3. If k1 = 0 or k2 = 0 then asc(g) = 0.

4. If k1 6= 0, k2 6= 0 and sc-dim g = 0 then asc(g) = k1 + k2.

Example 9.2 Let L0 be a finite sub-ASC-lattice, and L an LSC-extension of L0 generated by a
(neccessarily unique) SC-primitive tuple (x1, x2). Let (g, {h1, h2}, q) be the SC-signature of L in
L0 and ki = asc(xi). Then

(
g, {(h1, k1), (h2, k2), q}

)
is easily an ASC-signature in L0. We call it

the ASC-signature of L and of (x1, x2) in L0.

The same argument as in Proposition 6.4.2 shows (using Remark 8.2) that two SC-primitive
extensions of a finite sub-ASC-lattice L0 are LASC-isomorphic over L0 if and only if they have
the same ASC-signature in L0.

Lemma 9.3 Let L0 be a finite LASC-substructure of a super ASC-lattice L̂. Let σAt =
(g, q, {(h1, k1), (h2, k2)}) be an ASC-signature in L0. Assume that q 6= 0 or k1k2 6= 0. Oth-
erwise assume that L̂ is ℵ0-saturated. Then there exists a primitive tuple (x1, x2) ∈ L̂ over L0

whose signature is σAt.

Proof: Let σ = (g, {h1, h2}, q). This is an SC-signature in L0 (more precisely in its LSC-reduct).

Case 1: sc-dim g ≥ 1 and q ≥ 1. Then C0(g) = 0 and by definition of ASC-signatures
k1 = k2 = 0. By Remark 7.4 there is an SC-primitive tuple (x1, x2) in L̂ with signature σ in L0.
Moreover each ascxi = 0 (because sc-dimxi = p ≥ 1) and each ki = 0, so the ASC-signature of
(x1, x2) is σAt.

Case 2: sc-dim g ≥ 1 and q = 0. Then C0(g) = 0 again and since sc-dim(h1 ∨ h2) < q = 0
by definition of SC-signatures we get that h1 = h2 = 0. Finally k1 = k2 by definition of ASC-
signatures since q = 0 < sc-dim g. By Remark 9.1 there are infinitely many atoms z in L̂ such
that z ≤ g and z ∧ g− = 0. If k1 > 0 let x be the join of k1 such atoms of L̂. Otherwise
L̂ is ℵ0-saturated by assumption hence it contains an element x ≤ g of dimension 0 such that
x ∧ g− = 0 and L̂(x) has infinitely many atoms. By the Atomicity Property asc(x) = 0. So in
both cases (x, x) is an SC-primitive tuple over L0 with ASC-signature σAt.

Case 3: sc-dim g = 0. Then q = 0, g is an atom of L0 and h1 = h2 = 0. In each of the two
remaining sub-cases, we build a tuple (x1, x2) and leave as an exercise to check that (x1, x2) is
SC-primitive over L0 with ASC-signature σAt.

If k1 and k2 are non-zero then asc(g) = k1 + k2 hence L̂(g) contains k1 + k2 atoms. Let x1

be the join of k1 of them and x2 be the join of the others.
Otherwise, by symmetry we can assume that k1 = 0. Then asc(g) = 0 by definition of

ASC-signatures so L̂(g) contains infinitely many atoms. By ℵ0-saturation it follows that L̂
contains an element x lower than g such that both L(x) and L(g − x) contain infinitely many
atoms, hence asc(x) = asc(g−x) = 0. If k2 = 0 let (x1, x2) = (x, g−x). Otherwise let x2 be the
join of k2 atoms in L̂(g) and let x1 = g − x2.

Theorem 9.4 The theory of super ASC-lattices of sc-dimension at most d (resp. exactly d) is
the model-completion of the theory of ASC-lattices of dimension at most d (resp. exactly d). It
admits ℵ0 completions, each of which is decidable, and it is decidable.
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Proof: We only sketch the proof of the first statement as it essentially the same as for Theo-
rem 7.3.

On one hand, given a finite sub-ASC-lattice L0, we can embed it in an extension satisfying the
Atomicity and Catenary Property by Proposision 8.4, and the ASC-Splitting Property by means
of Lemma 7.2 applied to any a, b1, b2 ∈ L0 such that b1∨b2 � a 6= 0 and C0(a) = 0 (note that this
last assumption ensures that the extension built in Lemma 7.2 is an LASC-extension). That every
existentially closed sub-ASC-lattice is a super ASC-lattice then follows, by the model-theoretic
compactness theorem.

On the other hand, given an ℵ0-saturated super ASC-lattice L̂, a finite LASC-substructure
L0 and a finite extension L of L0, we reduce to the case where L is SC-primitive and let σ be its
ASC-signature in L0. Lemma 9.3 gives an SC-primitive extension L1 of L0 in L̂ with the same
signature in L0, hence an embedding of L1 into L̂ over L0 (which maps L to L1).

This proves the first statement. The last one follows because there are finitely many subscaled
lattices of dimension at most d (resp. exactly d) and on each of them ℵ0 different structures of
sub-ASC-lattices. So the completions of the theory of super ASC-lattices, which are determined
by their prime model, can be recursively enumerated.

We say that a sub-ASC-lattice L is standard if every element of sc-dimension 0 belongs
to some Atk(L) for some k > 0. The existence of standard super ASC-lattices (see Section 10)
and non-standard super ASC-lattices (by the model theoretic compactness theorem) implies that
the theory of super ASC-lattices containing a given prime sub-ASC-lattice is not ℵ0-categoric,
contrary to what happens for super scaled lattice. However we can recover ℵ0-categoricity by
restricting to standard models.

Proposition 9.5 Let L1, L2 be two standard countable super ASC-lattices. Then every
LASC-isomorphism from a finite sub-ASC-lattice L1,0 ⊂ L1 to a sub-ASC-lattice L2,0 ⊂ L2

extends to an LASC-isomorphism from L1 to L2. In particular L1 and L2 are isomorphic if and
only if their prime LASC-substructures (those generated by the empty set) are isomorphic.

Proof: Let ϕ be an LASC-isomorphism from L1,0 to L2,0. Pick any element x ∈ L1 \ L1,0.
The subscaled lattice generated in L1 by L1,0 ∪ {x} (more precisely their LSC-reducts) is finite
hence by Proposition 6.4.3 there is a chain L1,0 ⊂ L1,1 ⊂ · · · ⊂ L1,r of SC-primitive extensions
of subscaled lattices such that L1,0 ∪ {x} ⊆ L1,r. Endow each L1,i with the LASC-structure
induced by L1. It suffices to prove that ϕ extends to an LASC-embedding ϕ1 : L1,1 → L2.
Indeed, repeating the argument will give an LASC-embedding ϕr : L1,r → L2 extending ϕ, and
by symmetry the conclusion will then follow by Fraissé’s va-et-vient.

Identifying L1,0 with its image by ϕ we can replace L1,0 and L2,0 by a common LASC-structure
L0 of L1 and L2. Now L1,1 is generated over L0 by an SC-primitive tuple (x1, x2) with signature
σAt = (g, {(h1, k1), (h2, k2)}, q). In particular q = sc-dimxi and ki = asc(xi) for i = 1, 2. If
q = 0 then for each i, sc-dimxi = 0 hence ki > 0 because L1 is standard. With other words
q 6= 0 or k1k2 6= 0 hence Lemma 9.3 gives an sc-primitive tuple (y1, y2) in L2 with signature
σAt. Let L2,1 be the asc-substructure of L2 generated by L1,1 ∪ {y1, y2}. By Proposition 6.4.2 ϕ
extends to an LSC-isomorphism ϕ1 from L1,1 to L2,1 which maps each xi to yi. By construction
asc(xi) = asc(yi), and by Proposition 6.4.1 ϕ1 is the identity map on L0, so asc(ϕ1(z)) = asc(z)
for every z ∈ I(L1,1). Hence ϕ1 is an LASC-isomorphism by Remark 8.2, which proves the result.
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10 Applications to lattices of p-adic semi-algebraic sets

In all this section K denotes a fixed p-adically closed field. For every semi-algebraic set X
contained in Km we let L(X) denote the lattice of semi-algebraic subsets of X closed in X,
endowed with its natural structure of ASC-lattice. Note that every A ∈ L(X) of dimension 0 is
finite, hence L(X) is standard.

As already mentioned in the introduction, the results of the previous section lead us to
conjecture in [Dar06] and finally to prove in [Dar17] the following result.

Theorem 10.1 (Theorem 3.4 in [Dar17]) Let X be a non-empty semi-algebraic subset of
Km without isolated points. Assume that X is open in its topological closure X and let Y1, . . . , Ys
be a collection of closed semi-algebraic subsets of ∂X = X \ X such that Y1 ∪ · · · ∪ Ys = ∂X.
Then there is a partition of X in non-empty semi-algebraic sets X1, . . . , Xs such that ∂Xi = Yi
for 1 ≤ i ≤ s.

We can now combine this theorem with the results of Section 10 in order to get the following
applications.

Theorem 10.2 Let X be any semi-algebraic subset of Km. Then L(X) is a super ASC-lattice.
In particular its complete theory is decidable and eliminates the quantifiers in LASC.

Proof: By construction L(X) is an ASC-lattice satisfying the Atomicity property. The Cate-
narity Property is well known (it follows for example from Denef’s Cell Decomposition) hence
we only have to check the Splitting Property. So let A,B1, B2 ∈ L(X) such that B1 ∪ B2 � A
and A has no isolated point.

The same holds true for their closures in Km, denoted A, B1, B2. Apply Theorem 10.1 to
X = A \ (B1 ∪B2), Y1 = B1 and Y2 = B2. It gives a partition of X in non-empty semi-algebraic
sets X1, X2 whose frontiers are respectively B1, B2. Then X1 ∪X2 = A, X1 ∩X2 = B1 ∩ B2

and each Xi = Xi ∪Bi. Let A1 = X1 ∩A = (X1 ∩A) ∪B1 and define A2 accordingly. We have
to check that A1, A2 split A along B1, B2.

A is dense in A = X and X1 = X \ (X2 ∪ B1 ∪ B2) = X \ (X2 ∪ B1) is open in X, hence
A ∩ X1 is dense in X1. In particular A ∩ X1 6= ∅, and symmetrically A ∩ X2 6= ∅. Clearly
A1 ∪A2 = A, A1 ∩A2 = B1 ∩B2 and each Ai ⊇ Bi by construction. So it only remains to check
that A−A1 = A2 in L(X), that is that the closure of A \A1 in X (hence in A) is A2. Note that
A \A1 = A \X1 and

A \X1 =
(
X1 ∪X2 ∪B1 ∪B2

)
\ (X1 ∪B1

)
= X2 ∪

(
B2 \B1

)
.

In particular A\A1 = A\X1 = (A\X1)∩A contains X2∩A and is contained in (X2∪B2)∩A =
X2 ∩ A = A2. The conclusion will follow, if we can prove that X2 ∩ A is dense in A2. Since
A2 = (X2 ∩A)∪B2 it suffices to check that B2 ⊆ X2 ∩A. But this is clear since X2 ∩A is dense
in X2, hence in X2 = X2 ∪B2.

Corollary 10.3 Let F be a q-adically closed field (for some prime q not necessarily equal to p).
Let X ⊆ Km and Y ⊆ Fn be two semi-algebraic sets.

1. If m = n, K 4 F and X = Y ∩Kn then L(X) 4 L(Y ).

2. L(X) ≡ L(Y ) ⇐⇒ their prime LASC-substructures are isomorphic.
In particular L(Km) ≡ L(Fn) if and only if m = n.
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3. If K and F are countable then L(X) ≡ L(Y ) ⇐⇒ L(X) ' L(Y ).

Proof: The two first points follow immediately from Theorem 10.2. Note that L(Km) ≡ L(Fm)
is a special case because their prime sublattice is just the two-element lattice with the same
LASC-structure, because Km and Fm both have pure dimension m. The last point follows from
Proposition 9.5 since both L(X) and L(Y ) are standard and countable.

Given a pair of semi-algebraic sets X ⊆ Km and Y ⊆ Fn, we say that a homeomorphism ψ :
X → Y is pre-algebraic if for every semi-algebraic sets A ⊆ X and B ⊆ Y defined over K and F
respectively, ϕ(A) and ϕ−1(B) are still semi-algebraic sets defined over K and F . It is obviously
sufficient to check this for semi-algebraic sets A, B closed in X, Y respectively. With other
words, a bijection ψ : X → Y is a pre-algebraic if and only if taking direct images by ψ defines
an LASC-isomorphism from L(X) to L(Y ) (which also ensures that ψ is a homeomorphism).
When K = F , semi-algebraic homeomorphisms are obviously pre-algebraic. The converse is
false, as the following example shows.

Example 10.4 Assume that the p-valuation of K has value group Z, and let R be its valuation
ring. Applying Theorem 10.5 below to X = K and Y = R gives a pre-algebraic homeomorphism
ϕ : K → R. Since its value group is Z, the p-valuation defines a metric on K and its completion
K ′ is known to be an elementary extension of K. If ϕ would be semi-algebraic, it would then
uniquely extend to a semi-algebraic homeomorphism from K ′ to its p-valuation ring R′. But this
is not possible because R′ is compact and K ′ is not. Thus ϕ is not semi-algebraic.

Theorem 10.5 Let K, F be countable p-adically closed fields, and X ⊆ Km, Y ⊆ Fn be two
semi-algebraic sets. Let L0(X) and L0(Y ) be the prime LASC-substructures of L(X) and L(Y )
respectively. Then X and Y are pre-algebraically homeomorphic if and only if L0(X) and L0(Y )
are LASC-isomorphic. In particular, any two semi-algebraic sets over K and F with the same
pure dimension d ≥ 1 are pre-algebraically homeomorphic.

Proof: One direction is obvious: every pre-algebraic homeomorphism ψ : X → Y induces an
LASC-isomorphism from L(X) to L(Y ), which maps their respective prime LASC-substructures
one to each other. Conversely, assume that an LASC-isomorphism is given from L0(X) to L0(Y ).
By Proposition 9.5 it extends to an LASC-isomorphism ϕ : L(X) → L(Y ). For every t ∈ X,
ϕ maps {t} to an atom {t′} of L(Y ). Let ψ(t) = t′, this defines a bijection ψ : X → Y such
that ψ(A) = ϕ(A) for every A ∈ L(X), hence ψ is a pre-algebraic homeomorphism. The last
statement follows.
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