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Scaled lattices of closed p-adic semi-algebraic sets*

Luck Darniere!

March 31, 2018

Abstract

Let p be prime number, K be a p-adically closed field, X C K™ a semi-algebraic set
defined over K and L(X) the lattice of semi-algebraic subsets of X which are closed in X.
We prove that the complete theory of L(X) eliminates the quantifiers in a certain language
Lasc, the Lasc-structure on L(X) being an extension by definition of the lattice structure.
Moreover it is decidable, contrary to what happens over a real closed field. We classify
these Lasc-structures up to elementary equivalence, and get in particular that the complete
theory of L(K™) only depends on m, not on K nor even on p. As an application we obtain
a classification of semi-algebraic sets over countable p-adically closed fields up to so-called
“pre-algebraic” homeomorphisms.

1 Introduction

Our knowledge of the geometry of semi-algebraic sets over p-adic fields, that is the field Q,
of p-adic numbers and its finite extensions, has grown intensively in the past decades. After
Macintyre’s quantifier elimination theorem [Mac76], Denef’s cell decomposition theorem [Deng4]
lead to develop a good dimension theory for p-adic semi-algebraic sets [SvdD88], and to classify
them up to semi-algebraic bijection [Clu01]. There has been recently a new step forward with
the triangulation of p-adic semi-algebraic sets [Darl7]. All this has been generalised to p-adically
closed fields, that is fields which are elementarily equivalent to a p-adic one. In the present paper
we use a consequence of the p-adic triangulation to prove the next result (Theorem 10.2).

Theorem A Let K be a p-adically closed field, X C K™ a semi-algebraic set and L(X) the
lattice of all semi-algebraic subsets of X which are closed in X. Then the complete theory of
L(X) is decidable, and eliminates the quantifier in Lasc (a certain expansion by definition of
the lattice language, see below).

Remark 1.1 In particular L(Q}") is decidable for every positive integer m. This contrasts with
the known results on archimedian local fields: L(R™) and L(C™) are undecidable for every
m > 2 by [Grz51] (see [Trel7] for more on this topic). Note that the decomposition of semi-
algebraic sets over R in finitely many semi-algebraic connected components is crucial in the proof
of Grzegorczyk’s undecidability result, a property which disappears in the p-adic case.

The above result follows from a fine-grain study of the model-theory of various classes of
geometric lattices such as the following ones.

*This paper is a major revision of [Dar06], with extended results.
Keywords: model-theory, p-adic, scaled lattice, Heyting algebra, quantifier elimination, decidability.
MSC classes: 03C10, 06D20, 06D99.
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Example 1.2 Let K be an o-minimal or P-minimal expansion' of a field K. For every definable
sets A,BC X C K™ let A— B = A\ BN A where the overline stands for the topological closure
w.r.t. the topology induced on K™ by the order or the p-valuation of K. For every a € A, the
local dimension of A at a is the maximum of the dimensions of the definable neighborhoods
of a in A, and A is called pure dimensional if it has the same local dimension at every point.
For every non-negative integer ¢ let

C'(A) ={a€ A/ dim(A,a) =i} N A.

This is a definable subset of A called the i-pure component of A. We call Lges(X) the lattice
of all the definable subsets of X which are closed in X, enriched with the above functions “—”
and C for every i.

Let Lo = {0,1,V, A} be the language of lattices, and Lsc = Liar U {—, (C%);>0} be its
expansion the above function symbols. Finally let SCqct (K, d) be the class of these Lgc-structures
Laes(X) for all the sets X of dimension at most d definable over K. A similar construction can
be done over a pure field K, with the Zariski topology on K™. We let SCz., (K, d) denote the
corresponding class of Lgc-structures.

Theorem B Given any non-negative integer d, the universal theories of SCqer(KC,d) (Tesp.
SCyzar(K,d)) in the language Lsc are the same for every o-minimal or P-minimal expansion
K of a field K (resp. for every infinite field K ).

In order to prove this we give in Section 2 an explicit list of universal axioms for a theory Ty in
Lsc, the models of which we call d-subscaled lattices. All the examples given above are d-scaled
lattices, a natural subclass of d-subscaled lattices (the class of d-scaled lattices is elementary but
not universal). After some technical preliminaries in Section 3 we prove in Section 4 that every
finitely generated d-subscaled lattice is finite. Combining this with a linear representation for
finite d-subscaled lattices (Proposition 5.3) and with the model-theoretic compactness theorem,
we then prove in Section 5 the theory of d-subscaled lattices is exactly the universal theory of
SCyet(K,d) and of SCyz. (K, d) (Theorem 5.3).

A detailed study of the minimal finitely generated extensions of finite d-subscaled lattices,
achieved in Section 6, leads us in Section 7 to our third main result (Theorem 7.3 and Corol-
lary 7.5).

Theorem C For every non-negative integer d, the theory of d-subscaled lattices admits a model-
completion Ty which is finitely axiomatizable and Ng-categorical. Moreover T, has finitely many
prime models, hence it is decidable as well as all its completions.

Remark 1.3 Since 0O-subscaled lattices are exactly non-trivial boolean algebras (in which
the Lgc-structure and the boolean structure are quantifier-free bi-definable) the above model-
completion result for subscaled lattices is a generalisation to arbitrary finite dimension d of the
well known theorem on the model-completion of boolean algebras.

Remark 1.4 Our d-subscaled lattices form (after language reduction) an elementary class of
co-Heyting algebras, closely related to the “slices” studied in [Hos67], [Ono71] and others (see
[DJ11] for a more precise account of this relation). So this paper might also be considered as a
contribution to the model-theory of co-Heyting algebras with at most d slices.

IThe reader unfamiliar with o-minimality, and P-minimality may consult [vdD98], [HM97], or restrict to the
special case where K = R or K is a finite extension of Qp, and consider that “definable” is a synonym for
“semi-algebraic”.



The axiomatization of T; given in Section 7 consists in a pair of axioms expressing a “Cate-
narity” and a “Splitting” property which both have a natural topological and geometric meaning.
In particular the Splitting Property expresses a very strong form of disconnectedness, which im-
plies that the models of T, are atomless. So we develop in Sections 8 and 9 a variant of this
quantifier elimination result in a language Lasc = Lgc U {Atg}r>1, where each Aty is a unary
predicate symbol, to be interpreted as the set of elements which are the join of exactly k£ atoms.
The model-completion TdAt that we obtain is axiomatized by the Catenarity property and a little
restriction of the Splitting Property which preserves the atoms. This theory T;‘t has Ny prime
models which can easily be classified in terms of the prime models of T, from which it follows
that it is decidable as well as all its completions (Theorem 9.4).

In the initial version of this paper [Dar04] we conjectured that Ldef(Qg) might be a natural
model of Tj‘t. This intuition proved to be crucial in the proof of the triangulation of semi-
algebraic sets over a p-adically closed field [Darl7]. Conversely it follows from this triangulation
that Lger(X) is indeed a model of TdAt, for every semi-algebraic? set X C K™ of dimension < d,
from which Theorem A follows in the last Section 10.

The prime Lagc-substructure of Les(X) (which is generated by the empty set) is finite. We
expect it to be an essential invariant for the classification of semi-algebraic sets over p-adically
closed fields up to semi-algebraic homeomorphisms. Such a classification is far from being
achieved, but the next result exemplifies the role that this invariant can play in a weaker classi-
fication, up to “pre-algebraic” homeomorphisms (this is defined in Section 10).

Theorem D Let K, F be countable p-adically closed fields, and X C K™, Y C F™ be two
semi-algebraic sets. Let LY(X) and L°(Y) be the prime Lasc-substructures of L(X) and L(Y)
respectively. Then X and Y are pre-algebraically homeomorphic if and only if L°(X) and L°(Y)
are Lasc-isomorphic. In particular, any two semi-algebraic sets over K and F with the same
pure dimension d > 1 are pre-algebraically homeomorphic.

2 Notation and definitions

N denotes the set of non-negative integers, and N* = N\ {0}. If A/ is an unbounded non-empty
subset of N (resp. the empty subset) we set max N = +oo (resp. maxN = —oc0). The symbols
C and C denote respectively the inclusion and the strict inclusion. The logical connectives ‘or’,
‘and’ and their iterated forms will be denoted by \/, A, \W/ and A\ respectively.

2.1 Lattices and dimension

In this paper a lattice is a partially ordered set in which every finite subset has a greatest lower
element and a least greater element. This applies in particular to the empty subset, hence our
lattices must have a least and a greatest element. L1, = {0,1,V, A} is the language of lattices,
each symbol having its obvious meaning. As usually b < a is an abbreviation for ¢ V b = a and
similarly for b < a, b > a and b > a. Iterated V and A operations are denoted by W<y a; and
Mier a; respectively. If the index set I is empty then W;cra; = 0 and M;cya; = 1. Given a
subset S of a lattice L, the upper semi-lattice generated in L by S is the set of finite joins of
elements of L. We will make intensive use of the following definable relation:

b<a < Ve(c<a=bVe<a)

This is a strict order on L\ {0} (but not on L because 0 < a for every a including a = 0).

2A generalization to definable sets over more general P-minimal fields, if possible, has still to be done.



The spectrum of a lattice L is the set Spec(L) of all prime filters of L, endowed with the
so-called Zariski topology, defined by taking as a basis of closed sets all the sets

P(a) = {p € Spec(L) / a € p}

for a ranging over L. Stone-Priestley’s duality asserts that if L is distributive (which is always
the case in this paper) the map a — P(a) is an isomorphism between L and the lattice of closed
subsets S of Spec(L) such that the complement of .S in Spec(L) is compact.

We call a lattice noetherian if it is isomorphic to the lattice of closed sets of a noetherian
topological space. By Stone-Priestley’s duality a lattice L is noetherian if and only if its
spectrum is a noetherian topological space. In such a lattice every filter is principal and every
element a writes uniquely as the join of its (finitely many) V-irreducible components, which
are the maximal elements in the set of V-irreducible? elements of L smaller than a. We denote
by Z(L) the set of all V-irreducible elements of L.

We define the dimension of an element a in a lattice L, denoted dimy, a, as the least
upper bound (in N U {—o0, +00}) of the set of non-negative integers n such that

dpo C -+ C pn € P(a).

This is nothing but the ordinary topological or Krull dimension (defined by chains of irreducible
closed subsets) of the spectral space P(a). By construction dimy, 0 = —oco and dimpa V b =
max(dimp, a,dimy, b). The index L is necessary since dimy, a is not preserved by Lj,s-embeddings,
but we will omit it whenever the ambient lattice is clear from the context. We let the dimension
of L be the dimension of 1, in L.

In all the geometric examples given the introduction, a set A is pure dimensional if and only if
dim U = dim A for every non-empty definable subset U of A which is open in A. This motivates
the next definition: given an integer k we say that an element a of a distributive lattice L is
k-pure in L if and only if

Vbe L (a—b#0=dimpa—b=k).
Then either a = 0 or dimy, a = k. In the latter case we say that a has pure dimension k in L.

Fact 2.2 If L = L(X) is any of the lattices of the introduction, then for any A € L(X),
dimp,x) A is eractly the usual dimension of A as a semi-algebraic set over K, and A is pure
dimensional in L(X) if and only if it so in the geometric sense.

The second assertion in Fact 2.2 follows from the first, which itself follows from Fact 2.4
below.

2.3 Co-Heyting algebras

Welet L1c = L1asU{—} with ‘=’ a binary function symbol. An Lrp¢-structure L is a co-Heyting
algebra if its L1,¢-reduct is a lattice and if every element b has in L a topological complement
relatively to every element, denoted a — b. By definition a — b is the least element ¢ such that
a < bVe. Equivalently P(a—b) is the topological closure of the relative complement P(a)\ P(b),
so the name of a — b. Reversing the order of a co-Heyting Heyting algebra L gives a Heyting
algebra L*, with b — a in L* corresponding to a — b in L, and every co-Heyting algebra is of
this form. From the theory of Heyting algebras (see for example [Joh82]) we know that every

3An element ¢ of a lattice L is V-irreducible if it is non-zero and if a V b = x implies a = z or b = .



co-Heyting algebra is distributive and that the class of all co-Heyting algebras is a variety (in the
sense of universal algebra). Observe that in co-Heyting algebras the < relation is quantifier-free
definable since

b<a < b<a-hb

So it will be preserved by Lrc-embeddings. On the other hand the dimension will not be
preserved in general by Lpc-embeddings.

We will use the following rules, the proof of which are elementary exercises (using either
Stone-Priestley’s duality or corresponding properties of Heyting algebras).

TC1: a=(aAb)V (a—Db).
In particular if a is V-irreducible then b < a — b < a.

TCzi (al\/ag)fb:(al—b)\/(agfb).

TCsz: (a—b)—b=a—0».
In particular (a —b) Ab < a—b < a.

TCy4 : More generally a — (b1 V b)) = (a — b1) — ba.
So if a — by = a then a — (b V ba) = a — bs.

Fact 2.4 (Theorem 3.8 in [DJ11]) For every element a in a co-Heyting algebra L, dimy, a is
the least upper bound of the set of positive integers n such that there exists aq,...,a, € L such
that

07&&0 < aq <<"‘<<anga~

There is a well-established duality between finite (co-)Heyting algebras and finite posets, from
which we will pick up Fact 2.5 below. We first need a notation. Given an element x in a poset
I and a subset X of I let

miz{yel/ygx} Xi:Uwi.
zel

The dual notation #" and X1 is defined accordingly. The family D*¥(I) of decreasing subsets of
I (that is the sets X C I such that X| = X) are the closed sets of a topology on I, hence a
co-Heyting algebra with respect to the following operations.

XVY =XUY XANY=XNY X-Y=(X\Y)

The V-irreducible elements of D¥(I) are precisely the sets z+ for z € I.

Fact 2.5 (Proposition 2.7 in [DJ]) Let L be a finite co-Heyting algebra and T an ordered set.
Assume that there is a surjective increasing map 7 : T — Z(L) such that w(z") C 7(x)1 for every
x € Z(L). Then there exists an Ltc-embedding ¢ of L into D¥(Z) such that* n(p(a)) = a*NZ(L)
for every a € L.

4Note that the compositum 7 o ¢ is not defined. In this proposition p(a) is a decreasing subset of Z and

m(p(a)) = {7(§) / € € p(a)}.



2.6 (Sub)scaled lattices.

Recall that Lsc = Lias U {—, C'hien = L1c U {C}ien where {C'}ien is a family of new unary
function symbols. With the examples of the introduction in mind, define the sc-dimension of
a non-zero element a of an Lgc-structure L as

T . . i

sc-dima = min{k € N / a = Og\i%k C'(a)}.
Of course this is defined only if sc-dima = Wo<;<s Ci(a) for some k. If it is not defined we
let sc-dima = 400, and by convention sc-dim0 = —oo. The sc-dimension of L, denoted
sc-dim(L), is the sc-dimension of 1;. In general the dimension of an element in a co-Heyting
algebra is not preserved by Lrc-embeddings. At the contrary the sc-dimension of an element is
obviously preserved by Lgc-embeddings, and this is the “raison d’étre” of this structure.

A d-subscaled lattice is an Lgc-structure whose Lrc-reduct is a co-Heyting algebra and

which satisfies the following list of axioms:

SC{: W CYa)=a and Vi>d, C'(a)=0.
0<i<d

SC,: VI C{0,...,d}, Vk:

DN 0 kgl
c*(y,c'@) _{ CHa) ifkel

SCs : Vk > max(sc-dim(a), sc-dim(b)), C¥(aV b) = CF(a) v CF(b)
SCy: Vi#j, sc-dim (C'(a) A CY(a)) < min(i,j)

SCs : Vk > sc-dim(b), C¥(a) — b= C*(a) — C*(b).

SCg : If b < a then sc-dimb < sc-dim a.

It is a d-scaled lattice if it satisfies in addition the following property:
SCp : sc-dima = dima

All the geometric Lgc-structures in SCqef (K, d) or SCza, (K, d) (defined after Example 1.2)
are d-scaled lattices (see Fact 2.2). However SC(y does not follow from the other axioms as the
following example shows.

Example 2.7 Let L be an arbitrary noetherian lattice, and D: Z(L) — {0,...,d} be a strictly
increasing map. For every a,b € L, if C(a) denotes the set of all V-irreducible components of a,
let

a—b=wW{ceC(a)/ c £},
(Vk) Ch(a) = w{ceC(a)/ D(c) = k}.

This is a typical example of a d-subscaled lattice in which the sc-dimension does not coincide
with the dimension, except of course if D(a) = dimy, a for every a € Z(L). Conversely, every
noetherian (in particular every finite) d-subscaled lattice is of that kind.

We call (sub)scaled lattices the Lgc-structures whose Lgc-reduct is a d-(sub)scaled for
some d € N. Of course this is not an elementary class. At the contrary, for any fixed d € N, SC{
to SCy, are expressible by equations, SCg by a universal formula and SC(y by a first order formula
in Lgc, hence d-scaled (resp. d-subscaled) lattices form elementary class. As the terminology



suggests, we will see that d-subscaled lattices are precisely the Lgc-substructures of d-scaled
lattices.
By analogy with our guiding geometric examples, we say that an element a in a d-subscaled
lattice is k-sc-pure if
Vbe L (a—b#0=sc-dim(a —b) = k).

We will see that a is k-sc-pure if and only if @ = C*(a) (this is SC13 in Section 3). Then either
a = 0 or sc-dima = k. In the latter case we say that a has pure sc-dimension k. For any a,
the element C*(a) is called the k-sc-pure component of a, or simply its k-pure component
if L is a scaled lattice. By construction these notions coincide with their geometric counterparts

in SCdef(IC, d) and SCZar(K, d)

The following notation will be convenient in induction arguments. If £ is any of our languages
Liat, Lo or Lgo we let £* = £\ {1}. Given an L-structure L whose reduct to Lt is a lattice,
for any a € L we let

La)={beL/b<a}

L(a) is a typical example of L*-substructure of L.

3 Basic properties and embeddings
The next properties follow easily from the axioms of d-subscaled lattices.

SCr sc-dima = max{k / C*(a) # 0}.
In particular Vk, sc-dim C*(a) =k <= (C*(a) #0.

SCs Vk > sc-dim(a), sc-dim(b A a) < k = CF(a) — b= Ck(a).

SCy sc-dima V b = max(sc-dim a, sc-dim b).
In particular b < a = sc-dim b < sc-dim a.

SCio Vk > sc-dim(a), C*(a) is the largest k-sc-pure element lower than a.
SC;i1 dima < sc-dima.
c{o,... - Ya) = “(a).
SCi2 VI C{0,...,d}, a i\é/IC (a) i\é/IC (a)
In particular sc-dim (a — 4\é/k C'(a)) <k.
1=

SCis Vk, CF(a)=a < Vb (a—b# 0= sc-dima—b=k).
That is a is k-sc-pure if and only if a = C*(a).
In particular if a is V-irreducible then a is sc-pure by SCY.

Proof:  (Sketch) SCy follows from SC¢ and SCq; SCg from SCp and SCy; SCq from SCq, SCg
and SCr; SCqg from SCy and SCg; SCqq from SCg by Fact 2.4. Only the two last properties
require a little effort.

SCqpg: For every | € I, C'(a) < Wier C'(a) hence C'(a) — W;er C¥(a) = 0. On the other hand
for every | € I and every i € I, C'(a) — C(a) = C'(a) by SC4 and SC5. So C'(a) — W;e Ci(a) =
C'(a) by TCy. Finally by SC{ and TCs,

a— W Cia) =W (Cl(a) —w ci(a)) = w C'(a).

i€l 1<d iel €1



SCy3: Assume that a = C*(a) and a—b # 0 for some b. Then sc-dim a = k so sc-dim(a—b) <
k and sc-dim(a A b) < k by SCq. Since a = (a — b) V (a A D) it follows by SCq that

CMa) =C"((a=b) vV (aAb)) = CF(a—b) v CF(anb).

By assumption C*(a) = a, and C*(aAb) < aAbby SC{. Soa < Ck(a—b)V(aAb) < C*(a—b) VD
which implies that a — b < C¥(a — b). In particular C*(a — b) # 0. Since sc-dim(a — b) < k it
follows that sc-dim(a — b) = k by SCy.

Conversely assume that a # C*(a) (hence a # 0). For b = C*(a) we then have a — b # 0 on
one hand and sc-dim(a — b) # k by SC7 on the other hand, because C*(a — b) = 0 by SCq19 and
SCo.

[

Proposition 3.1 The Lgc-structure of a d-scaled lattice L is uniformly definable in the
Liag-structure of L. In particular it is uniquely determined by this Lyat-structure.

Proof: Clearly the Lrc-structure is an extension by definition of the lattice structure of L. For
every positive integer k the class of k-pure elements is uniformly definable, using the definability
of <« and Fact 2.4. Then so is the function C* for every k, by decreasing induction on k. Indeed
by SC1( and SCq9, C*(a) is the largest k-pure element ¢ such that ¢ < a — Wy C¥(a).

]

We need a reasonably easy criterion for an L) ;-embedding of subscaled lattices to be an
Lsc-embedding. In the special case of a noetherian® embedded lattice, it is given by Proposi-
tion 3.3 below, whose proof will use the next characterisation of sc-pure components.

Proposition 3.2 Let L be a subscaled lattice and a,ag,...,aq € L be such that a = W;<qa;,
each a; is i-sc-pure and sc-dim(a; A aj) < min(i, j) for everyi # j. Then C'(a) = a; for every i.

Proof: Note first that C*(ax) = ay, for every k < d by SCq3. Hence for every k < i < d we have
by SCg and SCo

' (k\)gz ak) - k\é/z C'(ax) = k\é/z c <Ck(ak)) = C'(a;) = ai. (1)

In particular C%(a) = a4. Now assume that for some i < d we have proved that C7(a) = a; for
i < j<d. By SCq9 and SCo we then have
i( N — v (g J — J = C%a). 2
C'(a= Wa;) =C' (a= W () = C" (W C(a)) = C'(a) 2)
On the other hand a—W j~; a; = Wi<a(ar—W,>; aj) by TCo. For k > i obviously ay—W,s; a; =
0. For k < 4, a, = C*(a) and a; = C/(a;) imply that sc-dim(ax A a;) < k for j > i by SCy.
Hence aj, — a; = a by SCg and finally ap — W;s;a; = ap by TCy, so
a— j\);/i a; = k\)é/z ag. (3)
By (1), (2), (3) we conclude that C%(a) = a;. The result follows for every i by decreasing

induction.
[

5 Although we won’t use it, let us mention that in the general case of an Lj,;-embedding ¢ : L — L’ between
arbitrary subscaled lattices, one may easily derive from Proposition 3.3, by means of the Local Finiteness The-
orem 4.1 and the model-theoretic compactness theorem, that ¢ is an Lgc-embedding if and only if it preserves
sc-dimension and sc-purity, that is for every a € L and every k € N, C*(a) = a = C*(p(a)) = ¢(a).



Proposition 3.3 Let Ly be a noetherian subscaled lattice, L a subscaled lattice, and ¢ : Ly — L
an Lyat-embedding such that for every a € Z(Ly), ¢(a) is sc-pure and has the same sc-dimension
as a. Then ¢ is an Lsc-embedding.

Remark 3.4 Clearly the same statement remains true with £, and Lgc replaced respectively
by £{, and L&-. We will freely use these variants.

Proof: Ly and L are d-subscaled lattices for some d € N. Given a € Ly and k a non-negative
integer, we first check that ¢(C¥(a)) is k-sc-pure. Note that every V-irreducible component ¢ of
C*(a) in Lo has sc-pure dimension k. Indeed C¥(a) is k-sc-pure by SCq3, and ¢ = C*(a) — b #
0 where b is the join of all the other V-irreducible components of C*(a), hence sc-dim(c) =
sc-dim(C*(a) — b) = k. Moreover c is sc-pure because it is V-irreducible, hence c is k-pure. By
our assumption on ¢ it follows that ¢(c) is k-sc-pure. Every finite union of k-sc-pure elements
being k-sc-pure by SCg, it follows that

w(Ck(a)) is k-sc-pure. (4)

Now for every I # k we have sc-dim(C*(a) A C!(a)) < min(k,[) by SCy4. It follows that each
V-irreducible component ¢ of C¥(a) A C!(a) has sc-dimension strictly less than min(k, ), hence
so does ¢(c) by assumption. By SCq we conclude that

se-dim (C*(a) A C'(a)) < min(k,1) (VI # k). (5)

¢(a) = Wr<q p(C*F(a)) by SC{ and because ¢ is an Lj,-embedding. By (4), (5) and Propo-
sition 3.2 it follows that C*(¢(a)) = ¢(C*(a)) for every k < d. Since ¢ is injective, this implies

by SCy that for every a € Lo
sc-dim a = sc-dim p(a). (6)

It only remains to check that p(a—b) = p(a) —¢(b) for every a,b € Ly. By TCo, replacing if
necessary a by its V-irreducible components, we may assume w.l.o.g. that a itself is V-irreducible
in Ly. This implies that a = C*(a) for some &, hence ¢(a) is k-sc-pure by assumption on . It
then remains two possibilities for a — b:

e If b > a then p(b) > (a), hence a —b =0 and p(a) — p(b) =0, s0 p(a —b) = p(0) =0 =
p(a) — o(b).

e Otherwise b A a < a hence b Aa < a by TCq, that is a — b = a. So we have to prove
that ¢(a) — ¢(b) = ¢(a). By SCg sc-dimb A a < sc-dima, hence sc-dim(¢(b) A p(a)) <
sc-dim(p(a)) = k by (6). Since ¢(a) is k-sc-pure it follows that p(a) —¢(b) = ¢(a) by SCs,.

Corollary 3.5 Let Ly be a noetherian lattice embedded in a subscaled lattice L. Assume that
every b’ < b € I(Ly) are sc-pure in L and sc-dimb’ < sc-dimb in L. Then the restrictions to Lo
of the Lsc-operations “—” and “C;” of L turn Lg into an Lgc-substructure which is a subscaled
lattice.

Proof:  The assumptions imply that the map D : a + sc-dima is a strictly increasing map
from Z(Lp) to N. Endow Ly with the structure of subscaled lattice determined by D as in
Example 2.7. By construction the inclusion map from Ly to L is an L) ;-embedding which
preserves the sc-purity and sc-dimension of every b € Z(Lg), hence is an Lgc-embedding by
Proposition 3.3.

]



4 Local finiteness

We prove in this section that every finitely generated subscaled lattice is finite. This result is far
non-obvious, due to the lack of any known normal form for terms in Lgc. It contrasts with the
general situation in co-Heyting algebras, which can be both infinite and generated by a single
element. Our main ingredient, which explains this difference, is the uniform bound given a prior:
for the sc-dimension of any element in a given d-subscaled lattice.

Theorem 4.1 Any d-subscaled lattice L generated by n elements is finite. More precisely, the
cardinality of Z(L) is bounded by the function u(n,d) defined by

p(n,d) = 2" + p(2"t d —1).
ford >0, and pu(n,d) =0 for d < 0.

Proof: The only subscaled lattice of sc-dimension d < 0 is the one-element lattice {0}, so the
result is trivial in this case. Assume that d > 0 and that the result is proved for every d’ < d
and every non-negative integer n.

Let L be a subscaled lattice of sc-dimension d generated by elements z1,...,x,. Let Q, be
the family of all subsets of {1,...,n} (so Qo = {0}). For every I € Q,, let I =, \ I and

yr = (z/%(\jfcz) (%X; wz), zr = C%(y1)-

The family of all Y = (,c; P(x:)N(;cze P(2:)¢ is a partition of Spec(L). Indeed the Y;’s are the
atoms of the boolean algebra generated in the power set P(Spec(L)) by the P(z;)’s. Moreover
each P(yr) is the topological closure Yy of Y; in Spec(L) hence for every x € L

Px)= |J P@nyic | P(x)my,zp(lewﬂnmy,).

IeQ, IeQ,

Sox < I\XS/Z (z A yr) by Stone-Priestley’s duality. The reverse inequality being obvious we have
EQn

proved that

Ve e L, x:Ié)é/Zn(:L'/\yI). (7)
In particular SCg also gives
d _ d _
c'W)=c"(\ W )= W a1 (8)

For every I # J € Q,, if for example I Z J choose any i € I\ J and observe that y; < x; and
y; <1—x;s0yr Ayy; <1 —x; by TC3. By SCq and the d-sc-purity of the z;’s it follows that

sc-dimzy A zy < d hence zy—z5 = zy. (9)

It follows from SCq, SC19 and (9) above, that the element

a:(l—Cd(l))\/< W (y;—z;))v( W (ZMZJ))

e, I1#£JeQ,

has sc-dimension strictly smaller than d. So the induction hypothesis applies to the
Lgc-substructure L, of L(a) generated by the (yr — z1)’s and the (25 A a)’s: Ly is finite, with at
most ©(2|82y|, d—1) V-irreducible elements. Note that L, is an LE-substructure of L (recall that
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Lic = Lsc\{1}). Finally let L; be the upper semi-lattice generated in L by Ly U{zr}rcq, . By
construction Ly is finite and Z(L1) C Z(Lg )U{21}1eq, , s0 |Z(L1)] < 2"+p(2" T d—1) = u(n, d).
It is then sufficient to show that L; = L.

We first prove that L; is a lattice. By (8), C4(1) Va = Wyeq, zr Va € L; hence 1 =
C41)Va € Ly. Forevery I € Q, and every b € Ly, z1r Ab= (21 Aa) Ab € Ly. For every
I#J€Q, z1 ANzy=(2zr ANa) A(zy Na) € Ly. So by the distributivity law, L is a sublattice
of L.

In order to conclude that L; is an Lgc-substructure of L, by Corollary 3.5 it only remains
to check that for every ¥’ < b € Z(Ly), b is sc-pure in L and sc-dim b’ < sc-dimb in L. Since
Z(L1) CI(Ly ) U{zr}1eq, we can distinguish two cases.

Case 1: b € I(Ly). Then b is sc-pure in L, by SCq3 hence also in L since Lj is an

§c-substructure of L. Similarly b < b in Ly by TCq that is b— b = b in L; hence also in L.
Thus ' < b in L which implies that sc-dim b’ < sc-dim b in L by SCg.

Case 2: b= zy for some I € Q,,. Then b = C%(yy) is sc-pure in L and sc-dimb = d. If b’ = z;
for some other J € €, then on one hand sc-dim(d’) = d and on the other hand I # J hence
b =b Ab= 2z A zy has sc-dimension < d by (9), a contradiction. So necessarily ¥’ € Z(Lg ), in
particular b’ < @ hence sc-dim(b’) < sc-dim(a) < d

So L; is indeed an Lgc-substructure of L. Finally every yr = (y;y — 2z1) V 21 € Ly and (7)
gives, for every ¢ < n,

T = \)é/2 T Nyr < I;)gn yr < x;.

" iel

So equality holds, hence each x; € Lq, which finally proves that L, = L.
]

Corollary 4.2 For every n,d there are finitely many non-isomorphic subscaled lattices of
sc-dimension d generated by n elements.

Proof:  Any such subscaled lattice L is finite, with |Z(L)| < u(n,d) by Theorem 4.1. Clearly
there are finitely many non-isomorphic lattices such that |Z(L)| < u(n,d) and each of them
admits finitely many non-isomorphic Lgc-structures of d-subscaled lattices.

[

5 Linear representation

In this section we prove that the theory of d-subscaled lattices is the universal theory of various
natural classes of Lgc-structures, including SCy,, (K, d). The argument is based on an elemen-
tary representation theorem for d-subscaled lattices, combined with the local finiteness result of
Section 4.

Given an arbitrary field K, a non-empty linear variety X C K™ is determined by the data of
an arbitrary point P € X and the vector subspace X of K™, wvia the relation X = P + X} (the
orbit of P under the action of Y by translation). We call X a special linear variety (resp. a

special linear set) if X is a linear variety such that X is generated by a subset of the canonical
basis of K™ (resp. if X is a finite union of special linear varieties). The family Ly, (X) of all
special linear subsets of X is the family of closed sets of a noetherian topology on X, hence a
noetherian lattice. For every A € Ly, (X) we let D(A) be the dimension of A in the sense of
linear algebra. This endows Lj;, (X) with a natural structure of scaled lattice as in Example 2.7.
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Remark 5.1 For every A € Lyjy(X), if K is infinite then sc-dim A = dimy, (x) A = the dimen-
sion of A as defined in linear algebra. It coincides with the Krull dimension as well. If moreover
A is V-irreducible in Ly, (X) then it is pure dimensional, hence it is sc-pure both in Ly, (X) and
Lza:(X). By Proposition 3.3 it follows that Ly, (X) is an Lge-substructure of Ly, (X). Similarly
if K is a real closed field or p-adically closed field then Ly, (X) is an Lgc-substructure of Lges(X).

In what follows K™ is identified to K™ x {0}" C K™*". The very easy result below prepares
the proof of Proposition 5.3.

Proposition 5.2 For every two special linear sets C' C B C K™ and every non-negative integer
n > dim C there exists a special linear set A C K™ of pure dimension n such that ANB = C.

Proof:  The result being rather trivial if C' is empty, we can assume w.l.o.g. that C # 0.
Let (e1,...,€min) be the canonical basis of K™*". If I is a subset of {1,...,m + n} we let
(I) denote the vector space generated in K™ by (e;);c;. Decompose C as a union of special
linear varieties Ci,...,C), and write each C; = P; + E(J;) with |J;| = dimC; < n. Let
I, = J;U{m+1,...,m+n—|J;|} and A; = PZ-—&—B(IZ-) for every ¢ < p. Finally let A = A1U---UA,,.
By construction each A; has pure dimension |I;| = n, hence A has pure dimension n. Clearly
each A; N K™ = C;, hence AN K™ = C and a fortiori AN B = C.
]

Proposition 5.3 (Linear representation) Let K be an infinite field, d > 0 an integer and L
a finite d-subscaled lattice. Then there exists a special linear set X over K of dimension < d and
an Lsc-embedding ¢ : L — Ly (X).

Proof: By induction on the number 7 of V-irreducible elements of an arbitrary d-subscaled lattice
L, we prove that there exists an L{--embedding ¢ of L into Ly, (K™) for some m depending
on L. Taking X = ¢(15) then gives the conclusion. Indeed X is a special linear set over
K, dim X = sc-dim(1;) < d because ¢ preserves the sc-dimension, and ¢ is obviously an
Lsc-embedding of L into Ly, (X).

If r = 0 then L is the one-clement lattice {0}, hence an L§--substructure of Ly, (K). So,
given a fixed » > 1, we can assume by induction that the result is proved for » — 1. Let L be a
d-subscaled lattice with V-irreducible elements a1, ..., a,.

Renumbering if necessary we may assume that a, is maximal among the a;’s. Let a = a,,
b= Wi<icr @i, ¢ = aAband ¢ an L§-embedding of L(b) into some Ly, (K™) given by the
induction hypothesis. Since a is V-irreducible in L it is sc-pure. Moreover ¢ < a by TCq, hence
a has pure sc-dimension n for some n > sc-dim(c) by SCg. Let B, C be the respective images
of b, ¢ by ¢. Proposition 5.2 gives a special linear set A C K™% of pure dimension n such that
AN B = C. Identifying K™ with K™ x {0}" C K™ turns ¢ into an L§;-embedding of L(b)
into L]in(Km+n).

Every x € L writes uniquely z, Vx with z, € {0,a} and x, € L(b) by grouping appropriately
the V-irreducible components of z, using the maximality of a,,. So we can let

oy o(xp) if z, =0,
Plz) = { AUp(xp) if 2, =a.

This is a well-defined L£{ ,-embedding of L into Ly, (K m+n) - Moreover ¢ is an LE-embedding
by Proposition 3.3. This finishes the induction.
[

For any infinite field K and positive integer d let SCy;, (K, d) be the class of d-scaled lattices
Lyjin (X) with X ranging over the special linear sets over K of dimension at most d.
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Theorem 5.4 Given any non-negative integer d, the universal theories of SCaet(K,d) (resp.
SCrar(K,d), SCin(K,d)) in the language Lsc are the same for every o-minimal or P-minimal
expansion I of a field K (resp. for every infinite field K). This is the theory of d-subscaled
lattices.

Proof: 'The universal theory of any of these classes obviously contains the theory of d-subscaled
lattices. For the converse, thanks to Remark 5.1 it suffices to prove that every d-subscaled lattice
L embeds into a model of the theory of SCy,(K,d). If L is finite this is Proposition 5.3. The
general case then follows from the model-theoretic compactness theorem, because L is locally
finite by Theorem 4.1.

]

6 Minimal extensions

Minimal proper extensions of any finite subscaled lattices are entirely determined by so-called
“SC-signatures” (see below). Since this is a special case of minimal extensions of finite co-Heyting
algebras, we first recall what the main results of [DJ] on this subject, and try to reduce to them
as much as possible.

We need some specific notation and definitions. Given a finite lattice Lg, an L,i-extension
L, elements a € Ly and x € L we write:

ea =W{beLy/b<a}
e g(z,Lo) = m{a € Ly / v < a}.

Clearly a € Z(Ly) if and only if a™ is the unique predecessor of a in Lo (otherwise a~ = a).

Assume that Lo and L are co-Heyting algebras (or topologically complemented lattices, or
TC-lattice for short). A TC-signature in Ly is a triple (g, H,r) where g € Z(Lg), H is a set of
one or two elements hy,hy € Lo and r € {1,2} are such that:

e cither r =1 and hy; = hy < g;

eorr=2and h; Vhy <g.
A couple (z1,x2) of elements of L is TC-primitive over Ly if there is g € Z(Lg) such that
P1 ¢~ Axy and g~ A x5 belong to Lg.
P2 One of the following happens:

l.zy=axcand g- Ay K 21 <€ g.

2. x1 F To, 11 N2 € Lgand g — 11 = T2, g — T2 = 1.
This implies that each x; € Lo, that g = g(x1, Lg) = g(x2, Lo) and that the triple orc(z1,22) =
(g, H,r) defined as follows is a signature in Lg, called the signature of (x1,22) in Lg.

g = g(x1, Lo) H={g" Nx1,97 N2} r = Card{zy, 22}

Finally we say that L is a TC-primitive extension of Ly if it is Lpc-generated over Lg
by a primitive tuple. For the convenience of the reader we collect here all the properties of
TC-signatures and TC-primitive extensions that we are going to use. All the references are
taken from [DJ].
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Proposition 6.1 Let Ly be a finite co-Heyting algebra and L an Lrc-extension.

1. [Theorem 3.3] If L is Ltc-generated over Lo by a TC-primitive tuple (x1,22), then L is
exactly the upper semi-lattice generated over Ly by x1 and xo. It is a finite co-Heyting
algebra and one of the following happens :

(a) x1 =9 and Z(L) = Z(Lg) U {z1}.
(b) w1 # w2 and I(L) = (Z(Lo) \ {g}) U{z1, z2}.

In particular (x1,x2) is (up to permutation) the only TC-primitive tuple over Lo in L. We
call orc(x1,x2) the TC-signature of L in Ly and denote it orc(L).

2. [Remark 3.6] TC-signatures in Ly and TC-primitive extensions of Lo are in one-to-one
correspondence: every TC-signature in Lg is the TC-signature of a TC-primitive extension,
and two TC-primitive extensions of Ly are Lrc-isomorphic over Lg if and only if they have
the same TC-signature in Ly.

3. [Corollary 3.4] If L is finite, the following are equivalent.

(a) L is a minimal proper extension of L.
(b) L is a TC-primitive extension of Lyg.
(¢) Card(Z(L)) = Card(Z(Ly)) + 1.

As a consequence every finite Lrc-extension L' of Lo is the union of a tower of
TC-primitive extensions Lo C Ly C -+ C L, = L' with n = Card(Z(L')) — Card(Z(Ly)).

We will refer to the k-th item of the above proposition as to Proposition 6.1.k.

Now let Ly be a finite subscaled lattice and L and Lgc-extension. An SC-signature in L is
a triple o = (g, H, q) where g € Z(Lg), H is a set of one or two elements hy,hs € Ly and ¢ € N
are such that:

e either sc-dimhy < ¢ < sc-dim g and hy = he < g;
e or g =sc-dimg and hy Vhy =g~.

Let 7, = 1 if ¢ < sc-dimg, r, = 2 if ¢ = sc-dim g, and 0*¢ = (g, H,7,). By construction this
is a TC-signature in Lg. Given an Lgc-extension L of Lg, a tuple (x1,x2) of elements of L is
SC-primitive over L if it is TC-primitive over LOTC and if in addition

P3 x1, x5 are sc-pure of the same sc-dimension.

Such an SC-primitive tuple determines the so-called SC-signature of (z1,z3) in L, denoted
osc(z1,z2) = (g9, H, q) and defined as follows.

9= g(x1, Lo) H={g Az1,9” ANx2} q = sc-dimz;
Note that, by condition P2 of the definition of TC-signatures, x1 = x if and only if 1 < g, and
otherwise sc-dim z; = sc-dim x5 = sc-dim g. This ensures that orc(71,72) = (0sc (71, 72))TC.
Let LOTC and LTC denote the respective Lrc-reducts of Ly and L. For every subset X, of L

we let:

o Ly(Xo) = the Lgc-structure generated by Lo U X in L;
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e LI°(X,) = the Lrc-structure generated by LIC U Xg in LTC.

We say that L is an SC-primitive extension of Ly, if there exists a tuple (z1, z2) SC-primitive
over Ly such that L = Lo(z1,z2) (then clearly L = Lo(z1) = Lo{x2)). By Lemma 6.2 below and
Proposition 6.1.1 such a tuple is necessarily unique.

Lemma 6.2 Let Ly be finite subscaled lattice, and L an Lsc-extension generated over Lg by
an SC-primitive tuple (x1,22). Then LTC = Lo(xy,x3), (21, 22) is TC-primitive over LOTC and
orc(z1,x2) = (os0(z1,72)) "¢,

Proof: That (z1,z2) is TC-primitive over LI® and orc(z1,22) = (0sc(z1,22))TC is only a

reminder: it follows directly from the definitions. Let Ly = Lo{x1,z2), in order to conclude that
L, = L it only remains to prove that L is an Lgc-substructure of L. By Corollary 3.5 it suffices
to check that for every o' < b € Z(Lq), b is sc-pure in L and sc-dim b’ < sc-dim b in L.

If b € I(Lo), then b is sc-pure in Ly by SCy3, hence also in L because Lg is an Lgc-sub-
structure of L. Otherwise b = z; for some i € {1,2}. Then b is sc-pure in L by definition of
SC-primitive tuples over Lg.

In both cases V' < bin Ly by TCq, that is b— ' = b in Ly, hence also in L because L, is an
Lrpc-substructure of L. So b’ < b in L hence sc-dim(b") < sc-dim(b) in L by SCg.

]

Lemma 6.3 Let Ly be finite subscaled lattice, Ly an Lrc-extension generated over LOTc by a
TC-primitive tuple (z1,22), and T = (g,{h1,h2},q) an SC-signature in Ly such that 77¢ =
orc(z1,x2). Then there exists a unique structure of subscaled lattice expanding Ly which makes
it an Lsc-extension of Ly such that (x1,x2) is SC-primitive over Ly and osc(x1,x2) = 7.

Proof: By Proposition 6.1.1, Z(L1) C Z(Lo)U{x1,z2}. For every x € Z(Lg) let D(x) = sc-dim z,
and let D(x1) = D(z2) = ¢q. This defines by restriction a function from Z(L;) to N. Assume that
D is strictly increasing. Then it determines as in Example 2.7 an Lgc-structure on Ly expanding
its Lpc-structure. Let us denote it L, so that LT = L;. Every V-irreducible element of Lg
remains sc-pure in L with the same sc-dimension, hence by Proposition 3.3 the inclusion of Lg
into L is an Lgc-embedding. This is clearly the only possible Lgg-structure on L which makes
it an Lgc-extension of L such that sc-dimz; = sc-dim zs = ¢. So it only remains to prove that
D is strictly increasing.

Let b < a in Z(L), if a,b € Z(Ly) then D(b) < D(a) by 6. So we can assume that a or b
does not belong to Z(Lg). By Proposition 6.1.1 one of them must belong to {1,232} and the
other one to Z(Lg). Note that our assumption orc(z1,72) = oTC implies that (for i = 1,2)
g = g(zi, Lo), and h; = x; A g~ (up to re-numbering) and: either 1 = 29, by = ha < g and
sc-dim hy < ¢ < sc-dim g; or &1 # x2, h1 V he = ¢~ and ¢ = sc-dim g.

Case 1: b = x1 or b = xa, hence D(b) = q. Then a € Z(Ly), in particular a € Lo, hence
g < a and so sc-dim g < sc-dima. If 1 = x5 then g < sc-dim g < sc-dim a hence D(b) < D(a).
If ©1 # x9 then ¢ = sc-dim g, and ¢ is not V-irreducible in L hence g # a. So g < a (because
g < a and a is V-irreducible) hence sc-dim g < sc-dim a by 6, that is D(b) < D(a).

Case 2: a = x1 or a = %, hence D(a) = g. Then again b € Ly, and b < a < g hence
b<g . Ifxy =umo, sinceb<aAg = h; weget sc-dimb < sc-dim h; < ¢, hence D(b) < D(a).
If 1 # xo then sc-dimg = ¢. Since b < g we have b < ¢ (because g is V-irreducible) hence
sc-dim b < sc-dim g by 6. So sc-dimb < g, that is D(b) < D(a).

]

We can now pack all this together.

Proposition 6.4 Let Ly be a finite subscaled lattice and L an Lsc-extension.
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1. If L is Lgc-generated over Ly by an SC-primitive tuple (x1,x2), then L is exactly the upper
semi-lattice generated over Ly by x1 and xo. It is a finite subscaled latice and one of the
following happens :

(a) ©1 =9 and Z(L) = Z(Lo) U {z1}.
(b) w1 # w2 and I(L) = (Z(Lo) \ {g}) U {w1, x2}.

In particular (x1,x2) is (up to permutation) the only SC-primitive tuple over Lg in L. We
call ogc (w1, x2) the SC-signature of L in Ly and denote it osc(L).

2. SC-signatures in Ly and SC-primitive extensions of Ly are in one-to-one correspondence:
every SC-signature in Lo is the SC-signature of an SC-primitive extension, and two
SC-primitive extensions of Ly are Lsc-isomorphic over Lg if and only if they have the
same SC-signature in L.

3. If L is finite, the following are equivalent.

(a) L is a minimal proper Lsc-extension of Ly.
(b) L is an SC-primitive extension of Lg.
(c) Card(Z(L)) = Card(Z(Lo)) + 1.

As a consequence every finite Lgc-extension L' of Lg is the union of a tower of SC-primitive
extensions Lo C Ly C -+ C L, = L' with n = Card(Z(L')) — Card(Z(Ly)).

We will refer to the k-th item of the above proposition as to Proposition 6.4.k.

Proof: 1f L is Lgc-generated over Ly by an SC-primitive tuple (1, x2), then by Lemma 6.2 LT¢
is also Lrc-generated over LE)FC by (z1,x2), which is TC-primitive. The first item the follows
from Proposition 6.1.1.

Let o be an SC-signature in Ly. Then ¢ % is a TC-signature in L. Proposition 6.1.2 gives
a TC-primitive Lrc-extension L; of LYC with TC-signature 07¢ in L. Lemma 6.3 then gives
a unique structure of subscaled lattice expanding L; which makes it an SC-primitive extension
of Ly with signature o in L. Let us denote it L, so that LTC = [,. Now if I’ is another
SC-primitive extension with signature o in Lo, by Proposition 6.1.2 L'TC is Lpc-isomorphic to
LTC over Lg. The image of L’ via this endomorphism defines an Lgc-structure expanding LTC,
which makes it an SC-primitive extension of Ly with the same signature as L. By the uniqueness
of such a structure, given by Lemma 6.3, it follows that this £1c-isomorphism from L'TC to LT
is actually an Lgc-isomorphism, which proves the result.

We finely prove item (3 by cyclic implication. Note that (3b)=-(3c) follows from item 1)
above.

(3¢)=(3a). Let L’ be a proper Lgc-extension of Ly contained in L. Then is a proper
Lrc-extension of LEC contained in LTC. By Proposition 6.1.3, (3c) implies that L€ is a minimal
proper Lrc-extension of LTC. So L'TC = LTC thus necessarily L’ = L, which proves that L is
minimal.

(3a)=(3b). Let z; be a minimal element in Z(L) \ Z(Ly). Let g = g(x1, Lo),; if 71 < g let
29 = 1, otherwise let o = g — x1. The proof of Corollary 3.4 in [DJ] shows that (z1,x2) is
TC-primitive over LTC. In particular 1,20 € Z(L) so they are sc-pure by SC13. The same
holds true for g, hence if x; # x5 then z; = g— x5 and x5 = g — 1 have the same dimension (the
dimension of g, by definition of the sc-purity of g). So (z1,x2) is actually SC-primitive. Since
LEC(zy,25) = LTC, a fortiori Lo(x1,z2) = L hence L is SC-primitive over L.

]

TC

L/TC
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7 Model-completion of scaled lattices

We call super scaled lattice every subscaled lattice L which satisfy the following additional
properties, both of which are clearly axiomatizable by V3-formulas in Lgc. If sc-dim L < d we
call it a super d-scaled lattice.

Catenarity For every non-negative integers 7 < ¢ < p and every elements ¢ < a # 0, if ¢
is r-sc-pure and a is p-sc-pure then there exists a non-zero g-sc-pure element b such that
c<b<a.

If SpecL is noetherian this property is equivalent to the usual notion of catenarity, namely
that any two maximal chains in SpecL having the same first and last elements have the same
length. In particular every d-scaled lattice L of type Lya(X) or Ly, (X) satisfies this property.
At the contrary none of them satisfy the next property, as it implies that L is atomless.

Splitting: For every elements by, bs, a, if by V by < a # 0 then there exists non-zero elements
a1 > by and ag > by such that:

a1 = a — ag
a2 = a — ap
al/\agzbl/\bg

We will then say aq, as split a along by, bs.

Remark 7.1 If r < p < ¢ in the Catenarity axiom, the conclusion can be strengthen to ¢ < b < a.
Indeed b has pure sc-dimension ¢ and ¢ A b = ¢ has sc-dimension < ¢ hence b — ¢ = b by SCg. In
particular every subscaled lattice satisfying the Catenarity axiom is a scaled lattice. Indeed, given
any element a of sc-dimension d > 1, repeated applications of the Catenarity axiom to C%(a),
¢ = 0 and each integer p from 0 to d, gives a chain of sc-pure elements ay, ..., aq such that

O0fag<Ka < <Kag <a.

By Fact 2.2 it follows that dima > d, and by SCqq that dima = d.

Lemma 7.2 Let a,by,be be elements of a finite subscaled lattice L. If by V by < a # 0 then L
embeds in a finite subscaled lattice L' containing non-zero elements ay, as which split a along by,
by. Moreover, if C°(a) # 0 we can require® that all the atoms of L' belong to Ly.

Proof: We are going to prove by induction on d = sc-dim a a slightly more precise result, namely
that in addition x < a for every x € Z(L')\Z(L). Let ¢1,. .., gn be the V-irreducible components
of ain L. (n > 1 because a # 0). If d = 0 our assumption that by V by < a implies by SCgq
that by = be = 0. If n = 1, that is a = ¢1 is V-irreducible, then o = (g,{0},0) is a signature in
L. Proposition 6.4.2 gives an SC-primitive tuple (a1, as) generating an Lgc-extension Ly over L
with signature o. This signature ensures that (a1, as) splits a along (0,0). If n > 2, a; = g1 and
as = a — a1 will do the job. So the result is proved for d = 0.

Now assume that d > 1 and the result is valid until d — 1. Note that g; V---V g, is the
greatest element ¢ € L such that ¢ < a, in particular

biVby<g;y V---Vg,. (10)

6This additional condition if C°(a) # 0 will be used only later, in Section 9.
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Let uw = (Wi<ng; ) — (b1 Vb2) and u* = u — C°(u). Since u < a we have sc-dimu < d by SCg.
We are claiming that L embeds in a finite subscaled lattice L without new atoms, in which all the
g;’s are still V-irreducible with the same predecessor as in Ly, and in which there are elements
uy, us which satisfy all the conditions to split u* along by A u*, by A u*, except that uj, us might
be zero elements.

By TCs, (b1 V b2) Au* < u* so if sc-dimu < 0 we can simply take uj = u3 =0 and Lo = L.
On the other hand, if sc-dim v > 0 the induction hypothesis applies to u*, by Au*, bo Au*. It gives
a finite subscaled lattice Lo containing L and elements u},u3 € Lo which split ©* along b1 A u*,
ba A u*. Moreover we can require that Ly do not contain any new atom because CY(u*) = 0,
and that ¢ < u* for every x € Z(L) \ Z(Lg). For every x € Z(L) such that < g; for some
i<n,ifx € Ly then z < g; (where g; still denotes the predecessor of g; in Lg). If x ¢ Lo then
z < u* by construction hence x < g; A u*. The latter belongs to Ly and is strictly lower than g;,
hence lower than g; , so z < g;. It follows that g; has a unique predecessor in L which is g; , in
particular g; remains V-irreducible in L. This proves our claim in both cases.

Now let u; = C%(u) V uf and uy = u}. We have in particular

Since u — by = u by TCg necessarily by A ¢ < ¢ for every V-irreducible component ¢ of u,
hence by A C%(u) < C%(u). By SCgq it follows that by A C°(u) = 0 hence by A uy = by A uj.
Similarly u* A C%(u) = 0 because u* — C°(u) = u* by SCq9 and TC3. A fortiori uj A C°(u) =0

hence u3 A u; = u3 A uj. Note also that by A uj = by Au* Aud < ui Auj, and symmetrically
ba A ui < ui Auj. Altogether, since ug = ud and ui A uj < by A ba by construction, this gives

(b1 Auz) V (b Aup) V (ug Aug) < (by Abg)
hence
(b1 Vur) A (bg Vug) = (by Aba) V (by Aug) V (ba Aup) V (ug Aug) = (b Aba). (12)
After this preparation, for each i let
hiy=g; A(b1Vu), hig =g; A(b2V uz), oi = (i, {hi, hi2}, sc-dim g;)
Using (11) we get

hi71 V hi)g =g, N (bl Vug VbyV UQ)

=g; N {ln V by V (\ﬁ/ 9; —(bl\/bz)>]
jSsn

=9; Aj\gngj‘ =9; -
So each o; is an SC-signature in Lg. In particular Proposition 6.4.2 gives an SC-primitive
extension Ly = Lo{ay 1,a12) with SC-signature o1 in Ly. By Proposition 6.4.1, Z(L1) = (Z(Lo) \
{a1})U{a1,1,a1,2}. In particular go € Z(L1), hence o3 is still an SC-signature in L;. Repeating
the construction n times (note that a # 0 ensures that n > 1) gives a chain of Lgc-extensions
(L;)i<n and for each ¢ > 0, an SC-primitive tuple (a;1,a;2) generating L; over L, ; with
signature o; in L;_;. Each a; = a;1 V a;2 and by Proposition 6.4.1

I(Ln) = (I(Lo) \ {al, ey an}) U {01171,0,1’2, ceeyQn 1, ang} (13)

SO G1,1,01,2,---,0n,1,0n, 2 are the V-irreducible components of @ in L,,. Moreover every ¢ € Z(L)
such that ¢ < a; ;, for some 7,k must belong to Lo, hence the predecessor of a; j is the same in
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every L; and belongs to Lg. We can then denote it a;, without ambiguity, and by construction
we have
a;k = ai,k A g(ai, Li—l) = Cl@k A g; = hi,k- (14)

Let a1 = Wign a; 1, a2 = Wign i 2, hl = Wign hi71 and hg = Wign hiﬁg. We are going to
check that ai, ag split a along b1, be. Both of them are non-zero and since the a;}’s are the
V-irreducible components of a we have a—a; = az, a—az = a;. Each a; ;1 > h;; by construction,
hence a; > h; and symmetrically ag > he. Moreover for k € {1,2}

he= W hir > W g; Nbp =by
i<n i<n

where the last equality comes from (10), so ax > bi. It remains to check that a; A as = by A ba.
For i # j, a;;1 and aj» are mutually incomparable hence by (14)

a; 1 A\ ajo = a;l A\ a;Q = hi,l AN hj’Q.
On the other hand a; 1 A a; 2 = hi1 A h; 2 by construction. The conclusion follows, using (12).
a1 A ag = W(MJ A aj72 = Wh’i,l A h]"g
1,3 1,3
— lmj/ (97 A (b1 Vun)] A [g; A (b2 Vug)]

=Wl Agi) A [(b1 Vur) A (ba V ug)]

— (\);/91_) A (\é/gj_) A [(bl \/u1)/\(b2\/u2)]
= (bl \/ul)/\(bg\/UQ) = by A bs.
]

Theorem 7.3 The theory of super d-scaled lattices is the model-completion of the theory of
d-subscaled lattices

Proof: By standard model-theoretic arguments it suffices to prove that every existentially closed
d-subscaled lattice is super d-scaled, and that for every super d-scaled lattice L, every finitely
generated d-subscaled lattice L and every common Lgc-substructure Ly, there is an embedding
of L into L over L.

Let L be an existentially closed d-subscaled lattice, and L a finitely generated substructure.
By Theorem 4.1, L is finite. By Proposition 5.3, Ly Lsc-embeds the d-scaled lattice Lger(X)
of some special linear set X, which is in particular a Catenary lattice. By the model-theoretic
compactness Theorem it it follows that L is catenary. Similarly Theorem 4.1, Lemma 7.2 and
the model-theoretic compactness Theorem prove that L has the Splitting property, hence L is
super d-scaled.

Conversely assume that L is a super d-scaled lattice, L is a finitely generated d-subscaled lat-
tice L and Lg common Lgc-substructure. By Theorem 4.1 and Proposition 6.4.3a, we are reduced
to the case where L is a primitive extension of Ly. Let o = (g, {h1, ha}, q) be its SC-signature.
By Proposition 6.4.2 it suffices to find a x1,z9 € L such that (z1,x2) is SC-primitive over Lg
and osc(x1,22) = 0. We distinguish two cases, and let g~ denotes the predecessor of g in Lyg.

Case 1: sc-dimh; < g < sc-dimg and hy = he < g. Let p = sc-dimg and r = sc-dim h;.
Let y1,y» € L which split g along hy,g~. For 0 < i < d, either i < q or Ci(h1) = 0 (because
sc-dimh; = r < q), hence sc-dim C?(h;) < ¢ < sc-dim g. The Catenarity property then applies
to C(h1) < y1 and gives x; € L such that Ci(h1) < x; <y and z; has pure dimension ¢q. Let
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T = Wo<i<d Ti, by construction hy = W;<q Ci(hl) < x < y; and x has pure dimension q. In
particular
h<zAg <y1Nya=hiANg =h

hence © A g~ = hy € Lyg. Moreover z A g = h; < = because dimh; < ¢ and z has pure
dimension ¢. Finally z < g because dimxi = ¢ < p and ¢ has pure dimension p. Altogether this
proves that (z,z) is an SC-primitive tuple over Ly with SC-signature o.

Case 2: q = sc-dimg and hy V ho = g—. Let y1,y2 € L which split g along hy,hs. By
construction y; V y2 = g, and since g has pure SC-dimension ¢ so does each y;. In addition
Y1 Ay2 = h1 A hy € Lg. Moreover

y1 ANhe <yi Aya = hi Aho

hence y1 A(h1Vhe) = hy1V(y1 Aha) = hy. Since hyVhy = g~ it follows that y3 Ag™ = hy € Lo, and
symmetrically yo Ag~ = ha € Lg. So (y1,y2) is an SC-primitive tuple over Ly with SC-signature
.
]

Remark 7.4 :l’he proof of Theorem 7.3 shows that if L be a finite Lg¢-substructure of a super
scaled lattice L, then every signature ¢ in L is the signature of an SC-primitive extension of Ly
in L.

The completions of the theory of super d-scaled lattices are easy to classify. Let us say that a
d-subscaled lattice is prime if it does not contain any proper d-subscaled lattice, or equivalently
if it is generated by the empty set. Every prime d-subscaled lattice is finite. By Corollary 4.2
there exists finitely many prime d-subscaled lattices up to isomorphism.

Corollary 7.5 The theory of super d-scaled lattices containing (a copy of) a given prime
d-subscaled lattice is Ng-categorical, hence complete. It is also recursively axiomatizable, hence
decidable. Since every completion of the theory of super d-scaled lattices is of that kind, the theory
of super d-scaled lattices is decidable.

Proof: Let L, L' be any two countable super d-scaled lattices containing isomorphic prime
d-subscaled lattices Ly and Lj. By Remark 7.4 any partial isomorphism between L and L/,
extending the given isomorphism between Ly and Lj, can be extended by va-et-vient. This
proves the first statement. The other ones are immediate consequences.

]

8 Atomic scaled lattices

Every super scaled lattice is atomless because of the Splitting Property, hence none of the
geometric scaled lattice in SCqet (K, d), SCzar (K, d), SCiin(K, d) can be super scaled. In order
to apply our study to some of them we introduce now a variant of subscaled lattices intended
to protect atoms against splitting.

Let Lasc = Lsc U {Atg}ren+ with each Aty a new unary predicate symbol. For any
Lasc-structure L we denote by Aty (L) the set of elements a in L such that L = Atg(a), and we
let Atg(L) = L\ U Atr(L). We call L an ASC-lattice if its Lgc-reduct is a scaled lattice
and if satisfies the following condition.

ASCo: (Vk > 0), a € Atg(L) if and only if a is the join of exactly k atoms in L.
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Remark 8.1 This condition can be expressed by V3 formulas in L£asc by saying first that Aty (L)
is the set of atoms of L, and then that Aty (L) is the set of elements of L which are the join of
exactly k elements of Aty(L).

Every ASC-lattice obviously satisfies also the following schemes (for k,! > 0) of universal
axioms:

ASCy: (Yk#1), Va, Atg(a) — - Ati(a)

ASC,: (Vk), Va,ag,...,ase, Atg(a) —
/\/\ (a; <a) — W (a;i = aj) /\sc—dima =0
0<i<2k 0<i<j<ak

ASCj3: (Vk), Va,ay,as,

[(@=a1va) A (@ Aaz=0) A\ (1 #0) \ (a2 #0)]
Aty (a) +— W (Atl(al)/\Atk—z(CLz))]

o<i<k

—

We call sub-ASC-lattices the Lagc-structures L whose Lgc-reduct is a subscaled lattice and
which satisfy ASCy to ASCg (but not necessarily ASCy).

ASCj obviously means that (Aty(L))ren is a partition of L. For any a € L we then define
asc(a) as the unique k € N such that a € Aty (L).

ASCy says that if asc(a) = k > 0 then L(a) has at most 2* element and sc-dim(a) = 0. Then
dim(a) = 0 by SCy1 hence L(a) is a co-Heyting algebra with dimension 0, that is a Boolean
algebra. So ASCq actually says that sc-dima = 0 and L(a) is a Boolean algebra with n atoms
for some non zero n < k. In particular every a € Aty (L) is an atom of L.

ASCj3 says that if a is the join of two non-zero disjoint elements a1, az then asc(a) is non-
zero if and only if asc(a;) and asc(ag) are non-zero, in which case asc(a) = asc(ay) + asc(az).
By a straightforward induction this extends to any decomposition of a as the join of finitely
many pairwise disjoint elements. In view of ASCq it then says that asc(a) > 0 if and only if
a is the join of finitely many atoms ay,...,a, of L such that each asc(a;) > 0, in which case
asc(a) = 321<;<p asc(a).

Remark 8.2 It follows immediately that an Lgc-embedding of sub-ASC-lattices ¢: L — L’ is
an Lagc-embedding if and only if asc(a) = asc(p(a)) for every atom a € L.
Remark 8.3 Obviously every finitely generated substructure of a sub-ASC-lattices is finite by

the Local Finiteness Theorem 4.1 because Lagc expands Lgc only by relational symbols.

Every scaled lattice L admits a unique structure of ASC-lattice which is an expansion by
definition of its lattice structure. We denote by LAt this expansion of L.

Proposition 8.4 (Linear representation) Let K be an infinite field and Lo be a finite sub-
ASC-lattice. For every integer N > 0 there exists a special linear set Xy over K and an
Ligo-embedding on: Lo — LY (K™) such that for every atom a of Lo:

o If asc(a) > 0 then asc(pn(a)) = asc(a).
e If asc(a) =0 then asc(on(a)) > N.
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Proof: By induction on lexicographically ordered tuples of integers (r,s) we prove that the
result is true for every finite sub-ASC-lattice Lo having r V-irreducible elements, s of which have
the same sc-dimension as Lg.

If r = 0 then s = 0 and the unique embedding of Ly = {0} into L{ (P), for an arbitrary point
P of K, has the required property. So let us assume that » > 1 and that the result is proved
for every (r',s") < (r,s). Let d = sc-dim L and ay, ..., a, be the elements of Z(Lg) ordered by
increasing sc-dimension, so that sc-dima, = d > 0.

Case 1: d = 0. Then L is a boolean algebra and ay,...,a, are its atoms. Let Ay,..., A, be
pairwise disjoint subsets of K such that:

e If asc(a;) > 0 then A; has asc(a;) elements, so asc(4;) = asc(a;).
e If asc(a;) = 0 then A; has N elements, so asc(A;) = N.

Let X be the union of all these A;’s. Clearly the map ¢ which maps each a; to A; extends
uniquely to an Lgc-embedding of Lg into Lf?rﬁ(X ) which has the required properties.

Case 2: d > 0. The upper semi-lattice L, generated by ai,...,a,_1 is an L} go-substructure
of Ly to which the induction hypothesis applies. This gives for some integer m a special linear
set B C K™ over K and an Lgc-embedding ¢: Ly — Li?fl (B) having the required properties.
Let C = gp(lLa A a,) and n = sc-dim a,.. Proposition 5.2 gives a special linear set A C K™*t"
such that AN B = C. One can extend ¥ to an Lgc-embedding ¢ of Ly into Lf?rﬁ(A U B) exactly
like in the proof of Proposition 5.3. Then ¢ inherits from v the required properties because all
the atoms of L already belong to L .

]

Let ASCyz..(K,d), ASCyn (K, d), ASCyet(K, d) denote the class of all ASC-lattices LAt for L
ranging over SCy., (K, d), SCiin (K, d), SCqet (K, d) respectively.

Corollary 8.5 For every integer d > 0, the universal theories of ASCgaer(K,d) (resp. of
ASCgza (K, d) or ASCyn(K,d)) is the same for every o-minimal or P-minimal expansion of a
field K (resp. every infinite field K ). This is the theory of sub-ASC-lattices.

Proof:  Since ASCy;, (K, d) is contained in the other classes, all of which are contained in the
class of ASC-lattices, it suffices to prove that conversely every sub-ASC-lattice L£agc-embeds
into an ultraproduct of elements of ASCy;,, (K, d). By the model-theoretic compactness theorem,
it suffices to prove it for any finitely generated sub-ASC-lattice Ly.

By Theorem 4.1, Lo is finite. For any integer N > 0 let on : Lo — L&Y(Xy) be
an Lgc-embedding given by Proposition 8.4. Let U be a non principal ultrafilter in the
Boolean algebra of subsets of N, and consider the ultraproduct L = []yen Litt(Xn)/U. Then
p = HNeN ©n/U is an Lgc-embedding of Ly into the L. In order to prove that it is an
L asc-embedding, by Remark 8.2 it remains check that for every atom a of Ly, asc(¢(a)) = asc(a).
So let a be an atom of Ly and k = asc(a).

If k > 0 then for every N > k, L&(Xy) = Aty (pn(a)) by construction. So L |= Aty (p(a)),
that is asc(p(a)) = k.

If k =0, let [ be any strictly positive integer. For every N > I, LAY(Xy) = Aty (¢n(a)) by

lin
construction, hence Lt (Xy) & At)(pn(a)). So L £ At(p(a)), and this being true for every
[ > 0 it follows that asc(p(a)) = 0.
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9 Model-completion of atomic scaled lattices

Let us call super ASC-lattices those ASC-lattices which satisfy the following axioms, all of
which are axiomatizable by V3-formulas in Lagc. We are going to show that its theory is the
model-completion of the theory of sub-ASC-lattices of dimension at most d (resp. exactly d).

Atomicity: Every element x is the least upper bound of the set of atoms smaller than x.

Catenarity: For every non-negative integers r < ¢ < p and every elements ¢ < a # 0, if ¢
is r-sc-pure and a is p-sc-pure then there exists a non-zero g-sc-pure element b such that
c<b<a.

ASC-Splitting: For every by, by, a, if by V by < a # 0 and C°(a) = 0 there exists non-zero
elements a; > b; and as > by such that:

a] = a — ag
o = a — ap
al/\azibl/\bg

Remark 9.1 An immediate consequence of the atomicity axiom is that for every elements x,y
in a super ASC-lattice L such that y < z and sc-dim(z —y) > 1, there are infinitely many atoms
a € L such that a < z and a Ay = 0. Indeed let A be the set of atoms a € L such that a < z —y,
and B the subset of those a such that a Ay # 0. Assume for a contradiction that B is finite and
let b = Wuep a. Note that b <y and sc-dimb = dim b = 0. Then by the Atomicity axiom

T—y= \)ﬁ/Aagy\/b7 hence z —y < (yVb)—y=b—y <b.
a€

This implies that sc-dim(z — y) < sc-dimb = 0, a contradiction.

Primitive tuples and sc-primitive extensions are defined for sub-ASC-lattices exactly like for
subscaled lattices.

We define ASC-signatures in a finite sub-ASC-lattice Ly as triples (g, H,q) with H a
set of non-necessarily distinct pairs (hy, k1), (he,k2) in Ly x N such that (g,{h1,h2}),q is an
SC-signature in the Lgco-reduct of Ly and (see Example 9.2):

1. If ¢ < sc-dim g then k1 = ko.
Note that hy = hs in this case because (g, {h1, ha},q) is a signature.

2. If ¢ £ 0 then k1 = ko = 0.
3. If ky = 0 or k2 = 0 then asc(g) = 0.
4. If ky # 0, k2 # 0 and sc-dim g = 0 then asc(g) = ki + ka.

Example 9.2 Let Ly be a finite sub-ASC-lattice, and L an Lsc-extension of Lj generated by a
(neccessarily unique) SC-primitive tuple (z1,x2). Let (g, {h1, ha}, ¢) be the SC-signature of L in
Lo and k; = asc(z;). Then (g,{(h1,k1), (h2,k2),q}) is easily an ASC-signature in Ly. We call it
the ASC-signature of L and of (x1,x2) in Ly.

The same argument as in Proposition 6.4.2 shows (using Remark 8.2) that two SC-primitive
extensions of a finite sub-ASC-lattice Ly are Lasc-isomorphic over Lg if and only if they have
the same ASC-signature in L.
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Lemma 9.3 Let Ly be a finite Lagc-substructure of a super ASC-lattice L. Let oAt =
(9,9, {(h1,k1), (ha,ka)}) be an ASC-signature in Lo. Assume that ¢ # 0 or kike # 0. Oth-
erwise assume that L is Ro-saturated. Then there exists a primitive tuple (x1,22) € L over Ly
whose signature is oay.

Proof: Let o = (g,{h1,h2},q). This is an SC-signature in Ly (more precisely in its Lgc-reduct).

Case 1: sc-dimg > 1 and ¢ > 1. Then C%g) = 0 and by definition of ASC-signatures
k1 = ko = 0. By Remark 7.4 there is an SC--primitive tuple (x1,x2) in L with signature o in L.
Moreover each ascx; = 0 (because sc-dimx; = p > 1) and each k; = 0, so the ASC-signature of
(z1,22) is OAt-

Case 2: sc-dimg > 1 and ¢ = 0. Then C%(g) = 0 again and since sc-dim(hy V ha) < ¢ = 0
by definition of SC-signatures we get that h; = ho = 0. Finally k; = ko by definition of ASC-
signatures since ¢ = 0 < sc-dim g. By Remark 9.1 there are infinitely many atoms z in L such
that z < gand zAg~ = 0. If k; > 0 let x be the join of k; such atoms of L. Otherwise
L is No-saturated by assumption hence it contains an element x < g of dimension 0 such that
£ A g~ =0 and L(z) has infinitely many atoms. By the Atomicity Property asc(z) = 0. So in
both cases (z,x) is an SC-primitive tuple over Lo with ASC-signature oat.

Case 3: sc-dimg = 0. Then ¢ = 0, g is an atom of Ly and h; = hy = 0. In each of the two
remaining sub-cases, we build a tuple (z1,z2) and leave as an exercise to check that (zq,xz2) is
SC-primitive over Ly with ASC-signature oay.

If k1 and ko are non-zero then asc(g) = k1 + ko hence ﬁ(g) contains ki + ko atoms. Let z;
be the join of k1 of them and zs be the join of the others.

Otherwise, by symmetry we can assume that k1 = 0. Then asc(g) = 0 by definition of
ASC-signatures so L(g) contains infinitely many atoms. By Ng-saturation it follows that L
contains an element x lower than g such that both L(z) and L(g — x) contain infinitely many
atoms, hence asc(z) = asc(g —xz) = 0. If ko = 0 let (z1,22) = (x, 9 — ). Otherwise let x5 be the
join of ky atoms in L(g) and let 21 = g — 5.

]

Theorem 9.4 The theory of super ASC-lattices of sc-dimension at most d (resp. exactly d) is
the model-completion of the theory of ASC-lattices of dimension at most d (resp. exactly d). It
admits Ny completions, each of which is decidable, and it is decidable.

Proof: We only sketch the proof of the first statement as it essentially the same as for Theo-
rem 7.3.

On one hand, given a finite sub-ASC-lattice Lo, we can embed it in an extension satisfying the
Atomicity and Catenary Property by Proposision 8.4, and the ASC-Splitting Property by means
of Lemma 7.2 applied to any a, by, by € Lo such that b; Vby < a # 0 and C°(a) = 0 (note that this
last assumption ensures that the extension built in Lemma 7.2 is an Lagc-extension). That every
existentially closed sub-ASC-lattice is a super ASC-lattice then follows, by the model-theoretic
compactness theorem.

On the other hand, given an Ng-saturated super ASC-lattice f/, a finite L£asc-substructure
Ly and a finite extension L of Ly, we reduce to the case where L is SC-primitive and let o be its
ASC-signature in Ly. Lemma 9.3 gives an SC-primitive extension L; of Lg in L with the same
signature in Lg, hence an embedding of Ly into L over Ly (which maps L to Ly).

This proves the first statement. The last one follows because there are finitely many subscaled
lattices of dimension at most d (resp. exactly d) and on each of them ¥y different structures of
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sub-ASC-lattices. So the completions of the theory of super ASC-lattices, which are determined
by their prime model, can be recursively enumerated.
]

We say that a sub-ASC-lattice L is standard if every element of sc-dimension 0 belongs
to some Aty (L) for some k& > 0. The existence of standard super ASC-lattices (see Section 10)
and non-standard super ASC-lattices (by the model theoretic compactness theorem) implies that
the theory of super ASC-lattices containing a given prime sub-ASC-lattice is not Ny-categoric,
contrary to what happens for super scaled lattice. However we can recover Ny-categoricity by
restricting to standard models.

Proposition 9.5 Let Ly, Lo be two standard countable super ASC-lattices. Then every
Lasc-isomorphism from a finite sub-ASC-lattice L1y C L1 to a sub-ASC-lattice Loy C Lo
extends to an Lasc-isomorphism from Ly to Lo. In particular Ly and Lo are isomorphic if and
only if their prime Lasc-substructures (those generated by the empty set) are isomorphic.

Proof: Let ¢ be an Lagc-isomorphism from Ly ¢ to Lag. Pick any element © € Ly \ Ly .
The subscaled lattice generated in Ly by Ly U {z} (more precisely their Lgc-reducts) is finite
hence by Proposition 6.4.3 there is a chain Lo C L1 C --- C Ly, of SC-primitive extensions
of subscaled lattices such that Lio U {z} C Li,. Endow each L;; with the Lagc-structure
induced by L;. It suffices to prove that ¢ extends to an Lagc-embedding ¢; : L1 — Lo.
Indeed, repeating the argument will give an £Lagc-embedding ¢, : Ly, — Lo extending ¢, and
by symmetry the conclusion will then follow by Fraissé’s va-et-vient.

Identifying L; o with its image by ¢ we can replace L; g and Ls ¢ by a common Lgc-structure
Ly of Ly and Ly. Now Ly 1 is generated over Ly by an SC-primitive tuple (z1,z2) with signature
oar = (g,{(h1,k1), (he,k2)},q). In particular ¢ = sc-dimz; and k; = asc(z;) for i = 1,2. If
q = 0 then for each 4, sc-dimz; = 0 hence k; > 0 because L is standard. With other words
g # 0 or k1ks # 0 hence Lemma 9.3 gives an sc-primitive tuple (y1,y2) in Ls with signature
oat- Let Lo 1 be the asc-substructure of Ly generated by Ly 1 U {y1,y2}. By Proposition 6.4.2 ¢
extends to an Lgc-isomorphism ¢ from L to Lo ; which maps each z; to ;. By construction
asc(x;) = asc(y;), and by Proposition 6.4.1 ¢ is the identity map on Ly, so asc(p1(z)) = asc(z)
for every z € Z(Ly 1). Hence ¢y is an Lagc-isomorphism by Remark 8.2, which proves the result.
[

10 Applications to lattices of p-adic semi-algebraic sets

In all this section K denotes a fixed p-adically closed field. For every semi-algebraic set X
contained in K™ we let L(X) denote the lattice of semi-algebraic subsets of X closed in X,
endowed with its natural structure of ASC-lattice. Note that every A € L(X) of dimension 0 is
finite, hence L(X) is standard.

As already mentioned in the introduction, the results of the previous section lead us to
conjecture in [Dar04] and finally to prove in [Darl7] the following result.

Theorem 10.1 (Theorem 3.4 in [Darl7]) Let X be a non-empty semi-algebraic subset of
K™ without isolated points. Assume that X is open in its topological closure X and let Y1,...,Y,
be a collection of closed semi-algebraic subsets of 0X = X \ X such that Yy U---UY, = 0X.
Then there is a partition of X in non-empty semi-algebraic sets X1, ..., Xs such that 0X; =Y;
for1<i<s.

We can now combine this theorem with the results of Section 10 in order to get the following
applications.
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Theorem 10.2 Let X be any semi-algebraic subset of K™. Then L(X) is a super ASC-lattice.
In particular its complete theory is decidable and eliminates the quantifiers in Lasc.

Proof: By construction L(X) is an ASC-lattice satisfying the Atomicity property. The Cate-
narity Property is well known (it follows for example from Denef’s Cell Decomposition) hence
we only have to check the Splitting Property. So let A, By, By € L(X) such that B; U By < A
and A has no isolated point.

The same holds true for their closures in K™, denoted A, B;, By. Apply Theorem 10.1 to
X = A\ (B1UB3), Y1 = By and Y2 = By. It gives a partition of X in non-empty semi-algebraic
sets X1, X, whose frontiers are respectively B1, Bs. Then XU Xy = A, X1 N Xy = B, N By
and each X; = X; UB;. Let A; = X1 N A = (X;NA)UB; and define A, accordingly. We have
to check that Ay, As split A along By, Bs.

Ais dense in A = X and X; = X \ (X2 UB; UBs) = X \ (XU By) is open in X, hence
AN X; is dense in X;. In particular A N X7 # @, and symmetrically A N X5 # . Clearly
AjUA; = A, A1 N Ay = By N By and each A; O B; by construction. So it only remains to check
that A — A; = Az in L(X), that is that the closure of A\ 4; in X (hence in A) is Ay. Note that
A\A1 :A\Yl and

A\X; = (X1UX2UB1UB;) \ (X1 UBy) = X, U (B2 \ By).

In particular A\ A; = A\ X; = (A\ X1)N A contains X5 N A and is contained in (Xo UB3)NA =
X5N A = A,. The conclusion will follow, if we can prove that X, N A is dense in Ay. Since
As = (X3N A) U By it suffices to check that By C Xo N A. But this is clear since X2 N A is dense
in X, hence in X = X9 U Bo.

[

Corollary 10.3 Let F' be a g-adically closed field (for some prime q not necessarily equal to p).
Let X C K™ andY C F™ be two semi-algebraic sets.

1. Ifm=n, KX F and X =Y NK" then L(X) < L(Y).

2. L(X) = L(Y) <= their prime Lasc-substructures are isomorphic.
In particular L(K™) = L(F™) if and only if m = n.

3. If K and F are countable then L(X) = L(Y) < L(X)~ L(Y).

Proof: The two first points follow immediately from Theorem 10.2. Note that L(K™) = L(F™)
is a special case because their prime sublattice is just the two-element lattice with the same
Lasc-structure, because K™ and F™ both have pure dimension m. The last point follows from
Proposition 9.5 since both L(X) and L(Y') are standard and countable.

]

Given a pair of semi-algebraic sets X C K™ and Y C F", we say that a homeomorphism ) :
X — Y is pre-algebraic if for every semi-algebraic sets A C X and B C Y defined over K and F’
respectively, ¢(A) and o~ (B) are still semi-algebraic sets defined over K and F. It is obviously
sufficient to check this for semi-algebraic sets A, B closed in X, Y respectively. With other
words, a bijection v : X — Y is a pre-algebraic if and only if taking direct images by 1 defines
an Lagc-isomorphism from L(X) to L(Y) (which also ensures that v is a homeomorphism).

Remark 10.4 When K = F', semi-algebraic homeomorphisms are obviously pre-algebraic but
the converse is false. Indeed, applying the next proposition to X = K and Y = R, the p-valuation
of K, gives a pre-algebraic homeomorphism ¢ : K — R. If the value group of K is Z, the
p-valuation defines a metric on K and its completion K’ is known to be an elementary extension
of K. Since its valuation ring R’ is compact and K’ is not, they cannot be homeomorphic. Hence
¢ do not extend to a homeomorphism from K’ to R, in particular ¢ is not semi-algebraic.
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Theorem 10.5 Let K, F be countable p-adically closed fields, and X C K™, Y C F" be two
semi-algebraic sets. Let L°(X) and L°(Y) be the prime Lasc-substructures of L(X) and L(Y)
respectively. Then X and Y are pre-algebraically homeomorphic if and only if L°(X) and L°(Y)
are Lasc-tsomorphic. In particular, any two semi-algebraic sets over K and F with the same
pure dimension d > 1 are pre-algebraically homeomorphic.

Proof: One direction is obvious: every pre-algebraic homeomorphism ¢ : X — Y induces an
L asc-isomorphism from L(X) to L(Y'), which maps their respective prime Lagc-substructures
one to each other. Conversely, assume that an £agc-isomorphism is given from L°(X) to LO(Y).
By Proposition 9.5 it extends to an Lagc-isomorphism ¢ : L(X) — L(Y). For every t € X,
© maps {t} to an atom {#'} of L(Y). Let v(t) = ¢/, this defines a bijection ¢ : X — Y such
that ¥ (A) = p(A) for every A € L(X), hence ® is a pre-algebraic homeomorphism. The last
statement follows.

L]
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