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THE LANDSCAPE FUNCTION IN IRRIGATION PROBLEMS WITH AN EXTENDED SOURCE

This article focuses on the landscape function, which is an essential and now standard tool to study variational problems involving branched transport, as it appears as a first variation of the irrigation functional. The goal is to extend its definition and fundamental properties to the case of an extended source. This is achieved in the case of optimal networks having a finite root system, that is when all curves pass through a finite set, which is true for instance when the source and target measures have disjoint supports. We give a satisfying definition of the landscape function in that case, such that the first variation property holds and we prove its Hölder regularity under reasonable assumptions on the measures we want to connect, namely when they have a density bounded from below and are supported on separated open sets which are lower Ahlfors-regular.

Introduction

The landscape function is now a central tool in branched transport to study variationel problems involving irrigation costs. It was first defined by Santambrogio in [START_REF] Santambrogio | Optimal channel networks, landscape function and branched transport[END_REF] as a generalization of the landscape function which was very well known by geophysicists (see [START_REF] Rodriguez-Iturbe | Fractal river basins: chance and self-organization[END_REF]) though it was considered on a discretized grid. It represents the elevation of the landscape on which water flows to irrigate water basins such as lakes. The definition was given in the single-source case, and regularity results of Hölder type were established first in [START_REF] Santambrogio | Optimal channel networks, landscape function and branched transport[END_REF], then by Brancolini and Solimini in [START_REF] Brancolini | On the Hölder regularity of the landscape function[END_REF] under more general hypotheses and with a different approach. An attempt at defining the landscape function for multiple sources was made by Xia in [START_REF] Xia | On landscape functions associated with transport paths[END_REF] in the discrete case. The present paper aims at defining the landscape function in the multiple source case but with non atomic measures, under an hypothesis on the source and target measures µ, ν, namely that they have disjoint support: supp(µ) ∩ supp(ν) = ∅.

From this definition we are able to extend many nice properties already known in the singlesource case: the landscape function is the first variation, in some sense, of the irrigation distance d α , and it exhibits Hölder regularity under some regularity hypotheses on the measures. A direct use of the landscape function can be made to obtain the uniform boundedness of the length of the fibers for optimal irrigation plans. Other applications already known in the single source case hopefully also hold in the multiple source case, but this is left for further investigation: the regularity of the fibers (locally finite curvature) proved in [START_REF] Morel | The regularity of optimal irrigation patterns[END_REF], and the fractal branching behaviour established in [START_REF] Brancolini | Fractal regularity results on optimal irrigation patterns[END_REF].

Framework definition

We make slight modifications to the standard framework of the Lagrangian model, in order to simplify notations and proofs. The main difference will be that curves are no longer defined on R + but on R instead.

The set of curves. We set Γ = Lip 1 (R, R d ), and define for all γ ∈ Γ:

T -(γ) = sup{t : γ is constant on ] -∞, t[}, T + (γ) = inf{t : γ is constant on ]t, +∞[}.
For a curve γ ∈ Γ, we write γ : [T -, T + ] → R d to mean that T -(γ) = T -and T + (γ) = T + , and we denote by γ -= γ(T -(γ)), γ + = γ(T + (γ)) the starting point and stopping point of γ. We will write x γ y if γ is a curve starting at x and stopping at y, and x γ y if either x γ y or x γ y.

Restrictions and inclusions. If γ is simple and x ∈ γ, we denote by t x the unique t ∈ [T -(γ), T + (γ)] such that γ(t) = x. For x, y ∈ γ, γ[x, y] denotes the usual restriction1 γ |[tx,ty] if t x ≤ t y or γ |[ty,tx] if t y ≤ t x , and γ[x, +], γ[x, -] denote respectively γ[x, γ + ] and γ[x, γ -]. We also define the obvious variants γ]a, b [, γ[a, b[ and so on excluding some extremities. We say that γ 1 is included in γ 2 and we write γ 1 ⊆ γ 2 if the trajectory of γ 1 is part of that of γ 2 .

Paths. A path p between x and y is a sequence of curves γ i of the form

p : x = x 1 γ1 x 2 γ2 . . . x n-1 γn-1 x n = y,
and an oriented path p from x to y is a sequence of curves γ i of the form

p : x = x 1 γ1 x 2 γ2 . . . x n-1 γn-1 x n = y.
For such an oriented path p we will denote by γ p : [0, T + ] → R d the curve, parameterized by arc length, obtained by concatenating the γ i 's, so that x γp y.

Curve multiplicity. Let η be an irrigation plan. For γ ∈ Γ we set θ η (γ) = η(γ : γ ⊆ γ), and we say that γ is an η-branch if θ η (γ) > 0. An η-branch path, oriented or not, is a path made of η-branches. When η is fixed and there is no confusion, we will omit the prefix η-and talk about branches and branch paths.

Cycle-free property. We recall that an irrigation plan η satisfies is said cycle-free if there is no loop sequence x 1 , x 2 , . . . , x n , x n+1 = x 1 such that η(Γ[x i , x i+1 ]) > 0 for 1 ≤ i ≤ n, where Γ[x, y] is the set of curves which visit x and y, no matter the order. In particular if η is optimal and η(Γ[x, y]) > 0 then there is a unique2 curve γ η (x, y) joining x and y (either from x to y or the contrary), such that η-almost every curve γ ∈ Γ[x, y] follows γ η (x, y) in its trajectory.

2.1. Good curves and paths. We need a notion of curve which is more general than branches: we would like to consider curves that do not stay entirely in the network but can go to its "boundary", but which nevertheless follow the irrigation plan. This is the role played by what we call η-good curves.

Definition 2.1 (η-good curve). We say that γ

: [T -, T + ] → R d is an η-good curve stemming from σ ∈ γ if ˆγ θ η (γ[σ, x]) α-1 dx < ∞.
Moreover, if γ starts at the stem σ (resp. if it stops at the stem), we say that γ is right-sided (resp. left-sided). We say that it is one-sided if it is left-or right-sided.

The definition of η-good curves induces a notion of η-good path.

Definition 2.2 (η-good path). We say that a path p, oriented or not, is η-good if it is made of one-sided η-good curves.

Now

We would like to prove that optimal irrigation plans η with finite cost are concentrated on the set of η-good curves: in this way this set could be thought as some kind of support for η. For now, we are able to prove it in the case of optimal irrigation plans which have a finite root system (defined in Subsection 2.2), though it should be true in all generality. Let us establish first a general lemma which does not require this extra hypothesis.

Lemma 2.3. Let η be a simple irrigation plan which has finite I α cost and which satisfies the cycle-free property. Fix

x 0 ∈ N η . Then for η-almost every curve γ ∈ Γ(x 0 ), ˆγ θ η (γ[x 0 , x]) α-1 dx < ∞.
Proof. Let us denote by Γ(x 0 , x) the set of curves γ such that x 0 , x ∈ γ and

θ x0 (x) = η(Γ(x 0 , x)).
Recall that η satisfies the cycle-free property. Consequently, for all x such that θ x0 (x) > 0, almost all curves γ in Γ(x 0 , x) follow a common trajectory γ x0,x , i.e γ[x 0 , x] = γ x0,x . This implies that for almost every curve γ ∈ Γ(x 0 , x):

θ x0 (x) = θ η (γ[x 0 , x]).
Taking the power α -1 and integrating of Γ(x 0 , x) yields:

θ x0 (x) α = ˆΓ(x0,x) θ η (γ[x 0 , x]) α-1 dη(γ).
This equality also holds trivially if θ x0 (x) = 0. Then integrating in x:

ˆRd ˆΓ(x0,x) θ η (γ[x 0 , x]) α-1 dη(γ) d H 1 (x) = ˆRd θ x0 (x) α d H 1 (x) ≤ I α (η) < ∞.
Thus by Fubini's theorem one gets

∞ > ˆΓ(x0) ˆRd 1 x∈γ θ η (γ[x 0 , x]) α-1 d H 1 (x) dη(γ) = ˆΓ(x0) ˆγ θ η (γ[x 0 , x]) α-1 dx dη(γ).
Consequently for η-almost every curve γ in Γ(x 0 ),

ˆγ θ η (γ[x 0 , x]) α-1 dx < ∞,
which is what we wanted to prove.

Remark 2.4. This shows in particular that if θ η (x 0 ) > 0, then either x 0 is an atom of both µ and ν, or one can find a branch containing x 0 . Indeed, since Γ(x 0 ) has positive measure, either almost all curves are constant equal to x 0 and x 0 is an atom of µ and ν, or there is a positive quantity of non-trivial curves in Γ(x 0 ). Then for sure there is a non-trivial curve

γ ∈ Γ(x 0 ) such that ˆγ θ η (γ[x 0 , x]) α-1 dx < ∞,
and γ[x 0 , x] for some x in the interior of the curve is a branch containing x 0 .

We end this subsection by giving a definition of irrigation basins using η-good curves.

Definition 2.5 (Irrigation basins). If η ∈ IP(µ, ν) and x ∈ N η we define the irrigation basins of x as:

Bas + η (x) := {y : there is an η-good curve stemming from x s.t. γ + = y}, Bas - η (x) := {y : there is an η-good curve stemming from x s.t. γ -= y}, and Bas η (x) := Bas + η (x) ∪ Bas - η (x). 2.2. Root systems. The role of the origin in the single-source case is replaced by the notion of root system. Definition 2.6 (Root system). We call root system for η any set of points R ⊆ N η such that η-almost every curve γ passes through some point ρ ∈ R. The elements ρ ∈ R are called roots.

Remark 2.7. In the single-source case µ = δ s , there is obviously a root system made of a single point: R = {s}.

The following lemma states that for disjointly supported source and target measures, optimal irrigation plans have a finite root system. It follows from the fact that the irrigation network has a finite graph structure away from the support of the measures, which is proven in [START_REF] Xia | Interior regularity of optimal transport paths[END_REF] where it is termed "interior regularity". Lemma 2.8 (Finite root system). If η ∈ IP(µ, ν) is an optimal irrigation plan with finite I α cost, it admits a finite root system R ⊆ N η . Moreover one can assume that all points ρ ∈ R are at positive distance from the supports of µ and ν.

Proof. We cut the curves of the irrigation plan η between their first exit time from (supp µ) ε and their first entry time into (supp ν) ε for ε small, getting a irrigation plan η ∈ IP(μ, ν). Since by optimality η is known to have a finite graph structure far from the supports of the measures (by [BCM09, Theorem 4.7]), the marginal measures μ and ν are atomic. We take R to be the set of atoms of μ for example. Now we are able to prove that optimal irrigation plans are concentrated on the set of good curves, provided that they have a finite root system. Proposition 2.9. Suppose η is a simple irrigation plan with finite I α cost which satisfies the cycle-free property and admits a finite root system R. Then η is concentrated on the set of η-good curves passing through points of R.

Proof. By Lemma 2.3, if ρ ∈ R is fixed, outside an η-negligible set E ρ , all curves γ ∈ Γ(ρ) satisfy ˆγ θ η (γ[ρ, x]) α-1 dx < ∞.
Since almost all curves pass through an element ρ ∈ R, η is concentrated on ρ∈R (Γ(ρ) \ E ρ ) which proves the result.

However, considering η-good curves reaching a root will be too restrictive to give a definition of a landscape function which satisfies the desired properties (for example semicontinuity). This justifies the following definition.

Definition 2.10 (Root network). We denote by R the set of points x which belong to a simple path connecting two roots, and call it the root network.

Remark 2.11. If η has the cycle-free property and R is finite, then R is a compact set since it is made of a finite union of compact curves. If γ is a curve intersecting R, we denote by ρ -(γ), ρ + (γ) the first and last points of γ belonging to R. Next lemma will relate η-good curves stemming from arbitrary points σ ∈ R d to η-good curves stemming from points ρ of the root network R. Lemma 2.12. Let η be simple irrigation plan with finite I α cost which is cycle-free and has a finite root system R. If γ is a right-sided η-good curve stemming from σ ∈ R d and reaching x, then we are in one of the three situations:

(i) γ intersects R: γ can be cut in two, a branch γ[σ, ρ + (γ)] and a right-sided η-good curve γ[ρ + (γ), x], (ii) γ is after R: γ ∩ R = ∅ and there is a right-sided η-good curve γ starting at ρ = ρ + (γ) and stopping at x such that γ = γ[σ, x],

(iii) γ is before R: γ ∩ R = ∅ and there is a branch γ starting at σ and stopping at ρ = ρ -(γ) such that γ = γ[σ, x]. The analogous statement for left-sided η-good curves holds as well. Proof. If γ intersects R and ρ + (γ) = x, then we are clearly in situation (i). Now we assume that that γ does not intersect R except possibly at x. We proceed in two steps.

Step 1. Let ξ be a branch such that ξ ⊆ R and consider the curves containing ξ. We know almost all of them pass through a root. We want to show that almost all of them may only pass through root after following ξ, or almost all of them may only pass through a root before following ξ. Suppose on the contrary that there are ρ 1 , ρ 2 ∈ R and positive amounts of curves A 1 , A 2 such that all curves in A 1 pass through ρ 1 then ξ along a common trajectory γ 1 , and all curves in A 2 pass through ξ then ρ 2 along a trajectory γ 2 . Since η has no circuit, the branch path

ρ 1 γ1[ρ1,ξ -] ξ -ξ ξ + γ2[ξ + ,ρ2] ρ 2
is a simple branch path joining ρ 1 = ρ 2 ∈ R hence by definition ξ ⊆ R which is a contradiction.

This proves what we claimed.

Step 2. Consider y ∈ γ[σ, x[: it is clear that γ[σ, y] is a branch which does not intersect R, hence by the first step, we know that either almost all curves containing this branch reach a root before, or they all reach a root after it. By taking a sequence y n ∈ γ[σ, x[ such that y n → x, one can state that their are two possibilities. The first possibility is that except for a negligible set U , all curves γ satisfy the following: if γ contains a piece γ[σ, y] for some y ∈ γ[σ, x[ and a root ρ ∈ R, then ρ is reached before γ, following a unique trajectory γ ρ from σ to ρ. We set ρ the first point where these trajectories part when we follow the curves backwards starting at σ, and set γ the common trajectory from ρ to σ. We set γ = γ ∪ γ the concatenation of γ and γ. By definition all the curves following γ[σ, y] contain γ[ρ, y], hence γ is a right-sided η-good curve stemming from ρ. Let us show that ρ ∈ R. If ρ ∈ R, we are done. Otherwise there are two trajectories γ ρ , γ ρ which parted at ρ.

Since they could not meet again by the cycle-free property, ρ γρ[ρ, ρ]

ρ γ ρ [ ρ,ρ ] ρ is a simple branch path, and by construction ρ ∈ R. Then we replace γ with its restriction γ[ρ + (γ), x] and we are in situation (ii).

The second possibility is that except for a negligible set U , all curves γ satisfy the following: if γ contains a piece γ[σ, y] for some y ∈ γ[σ, x[ and a root ρ ∈ R, then ρ is reached after γ[σ, y]. Since the amount of roots is finite and the cycle-free property holds, there is a point y ∈ γ[σ, x[ close enough to x such that for all the trajectories between y and ρ of the curves containing γ[σ, y] cannot part from γ. Hence almost all curves containing γ[σ, y] contain γ and γ is actually a branch. If γ + ∈ R then we are in situation (i) (with γ[ρ + (γ), x] being trivial), while if γ + / ∈ R, we are in situation (iii).

The case of γ left-sided is obtained in a similar manner.

Remark 2.13. Notice that this shows that any η-good curve (not necessarily one-sided) can be decomposed into a path made of curves which are restrictions of η-good curves stemming from points of R.

Next lemma will be essential, in that if a good curve stems from a point ρ ∈ R, there is a point after which (and a point before which) the multiplicity and the "joint multiplicity" coincide.

Lemma 2.14 (Good stem). Let η be a simple irrigation plan satisfying the cycle-free property, and R be a finite root system for η. If γ is an η-good curve stemming from a point of the root network, then

∀y ∈ γ]ρ + (γ), +[, θ η (y) = θ η (γ[ρ + (γ), y]),
and

∀y ∈ γ]-, ρ -(γ)[, θ η (y) = θ η (γ[y, ρ -(γ)]).
Proof. Take such a curve γ.

The curve γ[ρ + (γ), +] is an η-good curve stemming from ρ + (γ) ∈ R which is right-sided. Take y ∈ γ]ρ + (γ), +[. For sure θ η (y) ≥ θ η (γ[ρ + (γ), y]) > 0.
We look at the curves passing through y. We know by hypothesis that almost all curves pass through a root, and the amount of roots is finite. Take A a positive amount of curves passing through y and by a root ρ ∈ R, then all curves in A follow a common trajectory γ = γ y,ρ , and ρ + (γ)

γ[ρ + (γ),y] y γy,ρ ρ is a branch path joining ρ + (γ) and ρ. If one trajectory is included into the other, since ρ / ∈ γ]ρ + (γ), y[ it must be γ[ρ + (γ), y] ⊆ γ y,ρ
. By the cycle-free property, these trajectories cannot part and meet again. Thus if we follow the curves γ[ρ + (γ), y] and γ from the common point y, if those trajectories part at some point y , we know that ρ + (γ)

γ[ρ + (γ),y ] y γ [y ,ρ]
ρ would be a simple branch path joining ρ + (γ) and ρ, thus they would belong to the root network, which is a contradiction to the definition of ρ + (γ). By way of consequence, almost every curve passing through y contains γ[ρ + (γ), y] and

θ η (y) = θ η (γ[ρ + (γ), y]).
The same reasoning shows that

∀y ∈ γ]-, ρ -(γ)[, θ η (y) = θ η (γ[y, ρ -(γ)]).

Definition of the landscape function

We want to define to define the landscape function z as a primitive, in some sense, of the function x → θ η (x) α-1 along the network. That is roughly:

z(y) -z(x) = ± ˆγ θ η (x) α-1 dx
whenever γ is a path "in the network" which goes from x to y, the sign depending on the orientation of γ: + if the curve follows the orientation of the network andotherwise. This exactly mimics the definition of the integral on the real line

´b a f = ± ´[a,b] f depending on whether a ≤ b or b ≤ a.
We assume that µ and ν have compact and disjoint supports:

supp µ ∩ supp ν = ∅.
By Lemma 2.8, the situation is the following: each point ρ ∈ R will give rise to a cost function Z ρ defined on curves with extremity ρ as the integral3 along the curve of θ α-1 η . The goal will be to prove that with a suitable choice of an additive constant to each Z ρ , which amounts to assigning a reference value at ρ, these maps take the same value when needed: namely when a point is reached by different curves, possibly joining different roots. This will allow us to define a global landscape function z : R d → R.

Recall that Z η (γ) = ´γ θ η (x) α-1 dx. We define a signed variant when a reference point σ is fixed.

Definition 3.1. Let σ ∈ R d be fixed. For all simple curve γ such that σ = γ ± we define

Z σ (γ) =        + ˆγ θ η (x) α-1 dx if σ = γ -, -ˆγ θ η (x) α-1 dx if σ = γ + .
3.1. Balance property. The following proposition is the multiple source counterpart to the well definedness property established in [San07, Theorem 4.2], and will be key to defining the landscape function.

Proposition 3.2 (Balance property). We assume that η is an optimal irrigation plan with finite I α cost. Consider a good loop, that is a loop made of one-sided4 η-good curves:

p 1 γ1 p 2 γ2 . . . γn p n+1 = p 1
where p i γi p i+1 is either p i γi p i+1 or p i γi p i+1 . Then one has Proof. We denote by σ i the stem of the i-th η-good curve, and x i its other extremity. Choose an orientation for the loop and a small ε > 0. We want to add a small mass ε to all the curves which are oriented accordingly, and remove ε from all the other ones. We cannot do it directly to the whole curves because they are not necessarily branches: there may be no mass left at the point x i . Therefore for all i, we consider a small ε i ≥ 0 and we cut the curve γ i at a time

pi γ i pi+1 Z η (γ i ) = pi γ i pi+1 Z η (γ i ),
or equivalently i Z pi (γ i ) = 0. γ 1 +ε γ 2 +ε γ 3 -ε p 1 p 3 p 2 x 1 x 2 x 3
t i = T ∓ (γ i ) ± ε i before the extremity x i , setting x i = γ i (t i ).
We are going to remove and add the mass to the restrictions γ i = γ i [σ i , x i ] of the original curves γ i . For example, say the chosen orientation is such that the loop should be read left to right. Then one adds ε to the curves γ i such that p i γi p i+1 and one removes ε to the other curves γ i such that p i γi p i+1 . Of course, ε must be small enough so as to be able to remove ε to those curves, but we should choose ε and ε i even more carefully. We do the following:

• if γ i is a branch we do not restrict the curve, i.e. we set

ε i = 0, • if γ i is not a branch, since θ η (γ i [σ i , x i ]
) continuously decreases to 0 as ε i → 0, we may assume that θ η (γ i [σ i , x i ]) = ε, with ε smaller than all the masses θ η (γ j ) > 0 which correspond to the branches γ j 's.

To preserve the source and target measures µ, ν, we need to reconnect the point x i to x i for all i. There are several possible cases depending if x i is also a stem of the adjacent curve or not, and depending on their orientations. But in any case, this reconnection costs less than

C i ε α |x i -x i |.
For i such that p i γi p i+1 , in which case we add ε, one should pay a cost no larger than

αε ˆγ i θ η (x) α-1 dx = αεZ η (γ i ),
and for i such that p i γi p i+1 , we gain at least -αε

ˆγ i θ η (x) α-1 dx = αεZ η (γ i ).
Since the total cost increment should be nonnegative by optimality of η, one gets

αε pi γ i pi+1 Z η (γ i ) -αε pi γ i pi+1 Z η (γ i )) + Cε α i |x i -x i | ≥ 0, thus (3.1) pi γ i pi+1 Z η (γ i ) ≤ pi γ i pi+1 Z η (γ i ) + Cε α-1 i |x i -x i |. It is clear that for all i, Z η (γ i ) → Z η (γ i ) as ε → 0. Moreover since x → θ η (γ i [σ i , x]) decreases when x tends x i along the curve and θ η (γ i [σ i , x i ]) = ε, one has ε α-1 |x i -x i | ≤ ˆγi[x i ,xi] θ η (γ i [σ i , x]) α-1 dx,
which tends to 0 when x i → x i because γ i is η-good. Passing to the limit ε → 0 in (3.1) yields:

pi γ i pi+1 Z η (γ i ) ≤ pi γ i pi+1 Z η (γ i ).
Since the converse inequality holds, had we chosen the converse orientation for the loop, we obtain

pi γ i pi+1 Z η (γ i ) = pi γ i pi+1 Z η (γ i ). Since Z pi (γ i ) is +Z η (γ i ) in case p i γi p i+1 and -Z η (γ i ) in case p i γi p i+1 , we get the equivalent equation i Z pi (γ i ) = 0.
Notice that if we have a good loop

ρ 1 γ1 x 1 γ 1 ρ 2 γ2 x 2 γ 2 ρ 3 . . . ρ n γn x n γ n ρ n+1 = ρ 1
where ρ 1 , . . . , ρ n ∈ R, one has by the balance property:

(3.2) n j=1 (Z ρj (γ j ) -Z ρj+1 (γ j )) = 0.
Notice that in this expression, each function Z ρ appears an even number of times, half the time with a + sign, and half the time with asign, hence the same balance equation holds if one replaces Z ρ by Zρ = c ρ + Z ρ for any choice of values c ρ ∈ R. Our goal now is to choose these constants c ρ suitably so as to guarantee that all terms in the sum of (3.2) are 0: Zρ (γ) -Zρ (γ ) = 0, for all good path ρ γ x γ ρ where ρ, ρ ∈ R and γ, γ are one-sided η-good curves.

Construction of the landscape function.

For any pair of roots ρ, ρ , we write ρ ρ if ρ γ x γ ρ holds for some one-sided η-good curves γ, γ , and call it a link5 . We say that ρ, ρ are connected if there is a chain

ρ = ρ 1 ρ 2 . . . ρ n = ρ .
The connectedness relation is an equivalence relation on R defining equivalence classes which we call connected components. The following lemma will provide us with a good enumeration of all possible links between roots.

Lemma 3.3 (Links enumeration). For any connected component R of R there is an enumeration of all links between elements of R :

ρ 1 ρ 1 , ρ 2 ρ 2 , . . . , ρ n ρ n , such that ∀j ≤ n, ρ j ∈ i<j {ρ i , ρ i }.
Remark 3.4. Obviously since all links ρ ρ are in this enumeration, all the roots ρ ∈ R appear in it.

Proof. We simply proceed by induction. We start by choosing a link ρ 1 ρ 1 arbitrarily, then having chosen the first k -1 links, we choose the next one ρ k ρ k , distinct from the previous ones, such that ρ k or ρ k is an extremity of one the previous links. We do this until there is none left. By construction the first item is satisfied. Moreover, all links have been enumerated: if there was another one left, since R is a connected component, there would also be one which was not selected but which would share an extremity with one of the previous extremities. This contradicts the fact that we had completed the selection process.

Next proposition will define the numbers c ρ for ρ ∈ R using this enumeration, while Proposition 3.6 will extend this choice to all (c ρ ) ρ∈ R in such a way that Zρ = c ρ + Z ρ satisfies the desired property: for x fixed, the quantity Zρ (γ) does not depend on the choice of ρ nor the curve γ with extremity ρ but only on the other extremity x of γ. Proposition 3.5. Let R be a connected component of R, t ∈ R. We denote by

ρ 1 ρ 1 , ρ 2 ρ 2 , . . . , ρ l ρ l
the links enumeration of R given by Lemma 3.3. For all i, we choose one-sided η-good curves

ξ i , ξ i such that ρ i ξi x i ξ i ρ i .
Then there is a unique choice of values (c ρ ) ρ∈R such that

(i) c ρ1 = t, (ii) Z ρi (ξ i ) + c ρi = Z ρ i (ξ i ) + c ρ i for all 1 ≤ i ≤ l.
Proof. We set c ρ1 = t and proceed by induction. We consider the first link

ρ 1 ξ1 x 1 ξ 1 ρ 1 . We want c ρ1 + Z ρ1 (ξ 1 ) = c ρ 1 + Z ρ 1 (ξ 1 ) ⇐⇒ c ρ 1 = c ρ1 + (Z ρ1 (ξ 1 ) -Z ρ 1 (ξ 1 )).
If 

ρ 1 = ρ 1 , then ρ 1 ξ1 x 1 ξ 1 ρ 1 is
Z ρ1 (ξ 1 ) -Z ρ 1 (ξ 1 ) = 0.
Hence (ii) holds for the first link, as c ρ1 = c ρ 1 . If ρ 1 = ρ 1 , then one may choose c ρ 1 so as to enforce it:

c ρ 1 := c ρ1 + (Z ρ1 (ξ 1 ) -Z ρ 1 (ξ 1 )).
And we go on by induction: let us assume that (ii) holds for i ≤ k -1 < l. We pass on to the next:

ρ k ξ k x k ξ k ρ k .
By hypothesis, either ρ k or ρ k belongs to the roots already covered, say

ρ k . If ρ k /
∈ i<k {ρ i , ρ i } then one may enforce the desired property by setting:

c ρ k := c ρ k + (Z ρ k (ξ k ) -Z ρ k (ξ k )).
Now if both ρ k , ρ k ∈ i<k {ρ i , ρ i }, by hypothesis on the links enumeration, there is a chain made of the previous links with extremities ρ k , ρ k :

ρ k = ρ1 ξ1 x1 ξ 1 ρ 1 . . . ρl ξl xl ξ l ρ l = ρ k ,
where each link ρj ξj xj ξ j ρ j is some link of the enumeration ρ i ξi x i ξ i ρ i for i < k. We complete the chain with ρ k ξ k x k ξ k ρ k to obtain a loop:

ρ k = ρ1 ξ1 x1 ξ 1 ρ 1 . . . ρl ξl x l ξ l ρ l = ρ k ξ k x k ξ k ρ k
and we apply the balance relation (3.2):

0 = j≤l (Z ρj ( ξj ) -Z ρ j ( ξ j )) + Z ρ k (ξ k ) -Z ρ k (ξ k ), = j≤l (c ρj + Z ρj ( ξj )) -(c ρ j + Z ρ j ( ξ j )) + (c ρ k + Z ρ k (ξ k )) -(c ρ k + Z ρ k (ξ k )) ,
Now by the induction hypothesis, since in the big sum we have differences of cost functions

(Z ρ + c ρ ) -(Z ρ + c ρ ) associated to previous links ρ i ξi x i ξ i ρ i for i < k, all these differences are 0. Consequently: 0 = (c ρ k + Z ρ k (ξ k )) -(c ρ k + Z ρ k (ξ k )),
and (ii) holds for i ≤ k. We conclude that we can choose the c ρ 's inductively so that it holds for all i ≤ l, and this choice is unique by construction.

Proposition 3.6. There exists a choice of real numbers (c ρ ) ρ∈ R such that for all link ρ γ x γ ρ with ρ, ρ ∈ R, one has Zρ (γ) = Zρ (γ ),

where Zρ = Z ρ + c ρ .

Remark 3.7. This choice is unique up to choosing a value c ρ k for a selection (ρ k ) k of representatives of the connected components of R.

Proof. Consider a point ρ ∈ R. There is a branch path joining ρ to some root ρ ∈ R:

ρ = x 1 γ1 x 2 γ2 . . . x n+1 = ρ,
where we recall by definition that the γ i are branches. We would like to set

c ρ = c ρ + n i=1 Z xi (γ i ),
but first we need to check that this is independent of the chosen branch path. Take another one

ρ = x 1 γ 1 x 2 γ 2 . . . x n +1 = ρ,
which leads to a loop

ρ = x 1 γ1 x 2 γ2 . . . x n+1 = ρ = x n +1 γ n . . . x 2 γ 1 x 1 = ρ.

By Corollary 3.2 one has

n i=1 Z xi (γ i ) = n i=1 Z x i (γ i ),
which is what we wanted. Now let us show that with this choice of (c ρ ) ρ∈ R, the desired equality holds. Take ρ, ρ ∈ R and two one-sided η-good curves γ, γ with extremities ρ, x and ρ , x respectively. We know that there are roots ρ, ρ ∈ R and branch paths such that:

ρ = x 1 γ1 x 2 γ2 . . . x n+1 = ρ and ρ = x 1 γ 1 x 2 γ 2 . . . x n +1 = ρ .
Thus, the roots ρ, ρ are in a common connected component R , and one may find a chain

ρ = ρ1 ρ2 . . . ρñ = ρ ,
where for all i ≤ ñ, ρi ρi+1 is some link ρ ji ξj i x j ξ j i ρ ji of the enumeration given by Proposition 3.5. Here again, we build a loop by concatenating the curves γ, γ and three last chains together, which we write in short:

ρ γ i ρ γ x γ ρ γi ρ ξj i ξ j i ρ .
By the balance property, one has:

i Z x i (γ i ) + Z ρ (γ ) -Z ρ(γ) + i Z xi+1 (γ i ) + i (Z ρj i (ξ ji ) -Z ρ j i (ξ ji )) = 0 which rewrites c ρ -c ρ + Z ρ (γ ) -Z ρ(γ) -(c ρ -c ρ ) + i (Z ρj i (ξ ji ) -Z ρ j i (ξ ji )) = 0 or equivalently (3.3) Zρ (γ ) -Zρ (γ) = c ρ -c ρ - i (Z ρj i (ξ ji ) -Z ρ j i (ξ ji )).
Now notice that in the sum Z ρj i appears the same amount of time with a + sign than with asign, except for the extreme terms ρji = ρ and ρji = ρ : Z ρ appears once more with a + sign, and Z ρ once more with a -. Hence recalling that Zρ :

= c ρ + Z ρ, (3.3) rewrites Zρ (γ ) -Zρ (γ) = - i ( Zρj i (ξ ji ) -Zρ j i (ξ ji )),
but we know by Proposition 3.5 that Zρj i (ξ ji ) = Zρ j i (ξ ji ) for all i, hence:

Zρ (γ) = Zρ (γ ).
Definition 3.8 (Landscape function). The previous proposition allows us to define for all optimal irrigation plan η with finite cost a landscape function z : Bas η ( R) → R by:

z(x) = Zρ (γ)
if γ is a one-sided η-good curve joining ρ ∈ R and x.

Basic properties

In this section we prove the basic properties of the landscape function which were already known in the single-source case: semicontinuity, expression of the optimal cost and of the variation of d α in terms of z. 

Z η (γ) . = ˆγ θ η (x) α-1 dx = z(γ + ) -z(γ -).
Proof. The result holds by definition for one-sided η-good curves joining a point ρ ∈ R too any other point x. By subtraction it is clear that it therefore holds for any restriction of such curves. Noticing a telescopic sum, this shows that it holds also for curves which can be decomposed as a concatenation of such restrictions, thus by Lemma 2.12, it holds for any one-sided η-good curve, no matter the stem. Since a two-sided η-good curve is the concatenation of two one-sided η-good curves, we get the result for any η-good curve.

As a corollary, we get the same property for η-good paths. Recall that an oriented path p induces a curve γ p obtained by concatenating the curves of p.

Corollary 4.2. If p is an oriented η-good path, then

Z η (γ p ) . = ˆγp θ η (x) α-1 dx = z(γ + p ) -z(γ - p ).
4.2. Semicontinuity. We define

Bas + η ( R) = ρ∈ R Bas + η (ρ) and Bas - η ( R) = ρ∈ R Bas - η (ρ).
We are going to prove that the landscape function z defined in the previous section is Lipschitz continuous on the root network R, lower semicontinuous on the positive basin Bas + η ( R) and upper semicontinuous in the negative basin Bas - η ( R). Lemma 4.3. If η is an irrigation plan with finite I α cost, the map

(t, γ) → θ η (γ |[0,t] ) is upper semicontinuous on R + × Γ.
Proof. Take t n → t and γ n → γ. Fix ε > 0. Since θ η stays unchanged after reparameterization of η, we assume that for almost all curves γ, T -(γ) = 0 and γ is parameterized by arc-length. We know that for n large enough t n ≥ t ε, so that lim sup

n θ η (γ : γ n|[0,t n] ⊆ γ) ≤ lim sup n η(γ : γ n|[0,t-ε] ⊆ γ).
We shall prove that lim sup

n η(γ : γ n|[0,t-ε] ⊆ γ) ≤ η(γ : γ |[0,t-ε] ⊆ γ).

Let us set

F k = {γ : ∃t 0 , ∀s ∈ [0, t -ε], |γ(t 0 + s) -γ(s)| ≤ 1/k}.
It is a decreasing sequence of subsets of Γ. Let γ ∈ Γ 1 belonging to k ↓ F k and being parameterized by arc-length, with length T . There is a sequence

t k ∈ [0, T ] such that ∀s ∈ [0, t -ε], |γ(t k + s) -γ(s)| ≤ 1/k. Up to subsequence t k → t ∈ [0, T ], so that ∀s ∈ [0, t -ε], γ( t + s) = γ(s),
and γ |[0,t-ε] ⊆ γ, which means that (4.1)

k ↓ F k = F := {γ : γ |[0,t-ε] ⊆ γ}. Since γ n → γ, we know that γ n ∈ F k for n large enough. Consequently lim sup n η(γ : γ n|[0,t-ε] ⊆ γ) ≤ η(F k ).
Using the monotone convergence theorem and (4.1), lim sup

n η(γ : γ n|[0,t-ε] ⊆ γ) ≤ lim k→∞ η(F k ) = η(F ) = η(γ : γ |[0,t-ε] ⊆ γ), thus lim sup n η(γ : γ n|[0,t n] ⊆ γ) ≤ η(γ : γ |[0,t-ε] ⊆ γ).
Passing to the limit ε → 0 we get by the monotone convergence theorem :

lim sup n η(γ : γ n|[0,t n] ⊆ γ) ≤ η(γ : γ |[0,t] ⊆ γ) or equivalently lim sup n θ η (γ n|[0,t n ] ) ≤ θ η (γ |[0,t] ),
which is what we wanted to prove.

Lemma 4.4. The map

γ → ´T + (γ) 0 θ η (γ |[0,t] ) α-1 dt defined on curves Γ γ : [0, T + (γ)] → R d is lower semicontinuous. Proof. Set f (γ) := ˆT + (γ) 0 θ η (γ |[0,t] ) α-1 dt.
The map (t, γ) → θ η (γ |[0,t] ) α-1 being lower semicontinuous, as well as γ → T + (γ), this readily implies that f is semicontinuous.

Before proving the semicontinuity of the landscape function, we first need a continuity result on the root network.

Lemma 4.5. The landscape function z is Lipschitz continuous on the root network R.

Proof. We know that R is made of a finite union B of branches (those belonging to a simple path joining two roots). We set M > 0 the minimal multiplicity of those branches. Take two points x, y ∈ R. We know that there is a path

x = p 1 γ1 p 2 γ2 . . . p n+1 = y
where γ i is a restriction of a branch belonging to B for all i. We remove a mass M to all curves such that p i γi p i+1 , which is possible because all branch have a multiplicity larger than M , and add a mass M to those for which p i γi p i+1 , and sends a mass M for x to y along a straight line, with cost no larger than CM α |y -x|. Since the cost increment must be nonnegative, one has

-M i Z pi (γ i ) + CM α |y -x| ≥ 0.
Recalling that z(y) -z(x) = i Z pi (γ i ), we obtain: Proof. We assume that η is parameterized by arc length. Take a sequence x n → x ∈ Bas + η ( R). We want to prove that z(x) ≤ lim inf

z(y) -z(x) ≤ CM α-1 |y -x|.
n z(x n ).
We assume that lim inf n z(x n ) < ∞, otherwise there is nothing to prove. Also, up to subsequence, we may assume that z(

x n ) → = lim inf n z(x n ) and z(x n ) ≤ M < ∞.
We know that for all n, x n is reached by some right-sided η-good curve γ n stemming from a point ρ n ∈ R. By Lemma 2.14 and by restricting the curve we may assume that ρ n = ρ + (γ n ). Since R is compact, up to subsequence we may assume that ρ n → ρ ∈ R. Moreover up to reparameterization we may assume that T -(γ n ) = 0 and that γ n is parameterized by arc length. Consequently by the fundamental property of Proposition 4.1, one has

z(x n ) -z(ρ n ) = Z η (γ n ).
Since z is continuous on R and Z η is lower semicontinuous one has

Z η (γ) ≤ lim inf Z η (γ n ) = lim inf n z(x n ) -z(ρ).
It is clear that γ -= ρ, γ + = x. Now we want to check that γ is an η-good curve. Since θ η (y) = θ η (γ n [ρ n , y]) for y ∈ γ n ]ρ n , y[ by Lemma 2.14, one has

Z η (γ n ) = ˆγn η (y) α-1 dy = ˆT + (γn) 0 θ η (γ n|[0,t] ) α-1 dt. As z(ρ n ) → z(ρ) and z(x n ) ≤ M we have Z η (γ n ) ≤ C for some constant C > 0.
By the previous proposition, the right-hand side is lower semicontinuous with respect to γ n thus

ˆT + (γ) 0 θ η (γ |[0,t] ) α-1 dt ≤ lim inf n Z η (γ n ) ≤ C.
Since η is concentrated on simple curves, γ is injective on [0, T + (γ)[, and if it is not injective on the whole [0, T + (γ)], we restrict γ to the first time it reaches γ + , obtaining a curve γ such that ˆγ

θ η (γ [ρ, y]) α-1 dy ≤ ˆT + (γ) 0 θ η (γ |[0,t] ) α-1 dt ≤ C < ∞
and γ is η-good. Therefore by Proposition 4.1 we obtain:

z(x) -z(ρ) = Z η (γ) ≤ lim inf n z(x n ) -z(ρ)
and z is lower semicontinuous on Bas + η ( R). We can do the same reasoning to get the upper semicontinuity of z on Bas - η ( R), noticing that if γ is a negative η-good curve reaching x from a point ρ one has a minus sign:

z(x) -z(ρ) = -Z η (γ).
4.3. Formula for the optimal cost. Proposition 4.8. If η ∈ IP(µ, ν) is an optimal irrigation plan with finite I α cost and z is an associated landscape function, then z ∈ L 1 (µ) ∩ L 1 (ν) and

I α (η) = ˆRd z d(ν -µ).
Proof. We know by Proposition 2.9 that η-almost every curve γ is an η-good curve, hence by the fundamental property stated in 4.1, one has:

Z η (γ) = z(γ + ) -z(γ -).
Moreover for all ρ ∈ R:

ˆΓ(ρ) (z(γ + ) -z(ρ)) dη(γ) = ˆΓ(ρ) Z η (γ[ρ, +]) dη(γ) ≤ ˆΓ(ρ) Z η (γ) dη(γ) = I α (η) < ∞.
Since R is a finite root system, this implies that z • π ∞ is η-summable thus z ∈ L 1 (ν). The same reasoning gives that z ∈ L 1 (µ). Finally, again by Proposition 2.9, we have:

I α (η) = ˆΓ Z η (γ) dη(γ) = ˆΓ z(γ + ) -z(γ -) dη(γ) = ˆRd z dν - ˆRd z dµ.
4.4. First variation formula. In the single-source case, z is the first variation of the functional X α = d α (δ 0 , •). In the multiple source case, we want to show that it is in a way the first variation of d α , when we do perturbations of µ or ν. However, we must restrict these perturbations to happen only in a given basin Bas η (σ). Indeed, to estimate the cost increment, we need to perturb the underlying irrigation plan η ∈ OIP α (µ, ν), but in the single-source case all curves passed by a same point s = 0, hence to perturb ν one could redirect the curves going to a set A to another set B using the common junction at s, without having to modify µ in consequence. In the multiple source case, this fails in general: changing the measure ν may force us to change the measure µ as well. If we impose that the changes are made inside a basin Bas η (σ), then we can use the common junction σ to do whatever we want with µ and ν independently.

Theorem 4.9 (First variation formula). Let η ∈ IP(µ, ν) be an optimal irrigation plan with finite I α cost and z an associated landscape function. If µ , ν ∈ M 1 + (R d ) are such that µ -μ and ν -ν are concentrated in an irrigation basin Bas η (σ) then:

d α (µ , ν ) ≤ d α (µ, ν) + α ˆRd z d((ν -ν)) -(µ -µ)), provided z ∈ L 1 (ν ) ∩ L 1 (µ ).
Proof. We are going to use the first variation formula of I α stated in [San07, Theorem 3.1]:

(4.2)

I α (η) ≤ I α (η) + α ˆΓ Z η d(η -η).
Since µ -µ , ν -ν are concentrated in a common irrigation basin Bas η (σ), |µ -µ |-almost every points x and |ν -ν |-almost every points y are reached by right-sided η-good curve γ x , γ y respectively, which stem from σ. We can modify the irrigation plan η by removing, adding and redirecting mass which flows through curves visiting σ, using gluings to obtain an irrigation plan η ∈ IP(µ , ν ) which is concentrated on η-good paths. As a consequence, by the fundamental property, one has

Z η (γ) = z(γ + ) -z(γ -) for η -almost every γ. Since z ∈ L 1 (µ ) ∩ L 1 (ν ), it yields: ˆΓ Z η (γ) dη (γ) = ˆΓ(z(γ + ) -z(γ -)) dη (γ) = ˆRd z dν - ˆRd z dµ .
Finally, plugging this in (4.2), knowing that I α (η) = d α (µ, ν) and that d α (µ , ν ) ≤ I α (η ), one gets

d α (µ , ν ) ≤ I α (η ) ≤ I α (η) + α ˆΓ Z η d(η -η) = d α (µ, ν) + α ˆRd z dν - ˆRd z dµ -α ˆRd z dν - ˆRd z dµ .
This theorem will be the essential tool in proving the Hölder regularity of the landscape function with some extra hypotheses, although other ingredients will be needed. Indeed, as we will do general perturbations which do not occur in a single basin, we will need to perform small transfers between basins with controlled cost.

Hölder regularity

In this section, we want to prove the regularity of the landscape function we have defined under some extra hypotheses on the measures µ and ν. Our assumption will be that µ and ν are probability measures of the form:

µ = f L |U and ν = g L |V ,
where f and g are functions bounded from below by a constant c 0 > 0, and U, V are open connected sets which are Ahlfors regular in the sense that for some r 0 > 0 and all r ≤ r 0 : ∀x ∈ U, Θ U (x, r) ≥ c 0 , and ∀y ∈ V, Θ V (y, r) ≥ c 0 .

Moreover, for this whole section we assume that η ∈ OIP α (µ, ν) is an optimal irrigation plan with α ∈]1 -1/d, 1[ which has a finite root system R. We denote by z a landscape function as constructed in Section 3.

Before going further, we will need some new definitions. Recall that the root network R is the union of all simple branch paths joining pairs of roots ρ, ρ ∈ R. For each connected component P of R, we pick once and for all a root ρ P ∈ P ∩ R and we denote by P the finite collection of these connected components. Each connected component P ∈ P is associated with a basin Bas(P ) and its signed counterparts Bas(P ) ± as follows:

Bas + (P ) = These basins, which we call rooted basins, provide a decomposition of the measures µ, ν: (i) Bas + η ( R) = P ∈P Bas + (P ) and Bas - η ( R) = P ∈P Bas -(P ), (ii) for all P ∈ P, µ(Bas -(P )) > 0 and ν(Bas + (P )) > 0, (iii) µ and ν are respectively concentrated on Bas - η ( R) and Bas + η ( R). > 1/2 for r = r 0 , where Q r (x) is the cube centered at x with radius r. Since U is open and connected, there is a curve γ : [0, 1] → U which joins x to y. If the radius r 0 is small enough, the cubes Q r0 (γ(t)) stay inside U as well, and the map

f (t) = Θ A (γ(t), r 0 )
is continuous on [0, 1], with f (0) > 1/2 and f (1) < 1/2. Consequently there is a time t 0 and

x 0 = γ(t 0 ) such that Θ A (x 0 , r 0 ) = Θ B (x 0 , r 0 ) = 1/2.
Now we take r = r 0 /2 and we want to find a cube Q r (x) ⊆ Q r0 (x 0 ) such that the same equality holds: Θ A (x, r) = Θ B (x, r) = 1/2. Cut the cube Q r0 (x 0 ) into 2 d subcubes Q i of radius r and centers x i . If the equality holds for one x i we set x = x i . Otherwise, one could find two cubes Q i , Q j with i = j such that Θ A (x i , r) > 1/2 and Θ A (x j , r) < 1/2. Now we can reproduce the starting argument to find an x lying in the segment [x i , x j ] such that Θ A (x, r) = 1/2. We set

Step 1: z(x) = z A (x) := lim r→0 z r,A (x). Recalling that µ ≥ c 0 1 U , we remove c 0 1 Br(x)∩A from µ and we send a mass c 0 m r to x, then we spread it again to B r (x) ∩ A. To be more precise, we set μ = µ -c 0 1 Br(X)∩A + c 0 m r δ x . Since diam(supp(µμ)) ≤ r and µ -μ ≤ 2c 0 m r , we know that (5.1) |d α (μ, ν) -d α (µ, ν)| ≤ Crm α r , while on the other hand by the first variation formula of Theorem 4.9 one has:

d α (μ, ν) ≤ d α (µ, ν) + α ˆRd -z d(μ -µ) = d α (µ, ν) -αc 0 m r z(x) + αc 0 ˆBr(x)∩A z(y) dy.
(5.2) Putting (5.1) and (5.2) together yields:

αc 0 m r z(x) -αc 0 ˆBr(x)∩A z(y) dy ≤ Crm α r or equivalently z(x) - Br(x)∩A z(y) dy ≤ Crm α-1 r . (5.3) But (5.4) Crm α-1 r = C r β Θ A (x, r) 1-α ≤ Cr β ,
the last inequality holding for r ≤ R A,B (with C depending on c A,B ) because x is a transfer point from A to B. By (5.3) and (5.4), one has z(x) ≤ z r,A (x) + Cr β , then passing to the limit r → 0:

z(x) ≤ lim inf r→0 z r,C (x).
By upper semicontinuity of z on Bas - η ( R) one has the opposite inequality: lim sup

r→0 z r,A (x) ≤ z(x), hence z(x) = z A (x) . = lim r→0 z r,A (x).
Step 2:

ffl Br(x)∩A |z -z(x)| ≤ Cr β . We cut B r (x) ∩ A into two parts of equal measure: B r (x) ∩ A = A 1 A 2 where |A 1 | = |A 2 | = m r /2.
Removing c 0 1 A1 and adding c 0 1 A2 to µ, one gets by the same kind of estimates we used in the first step:

(5.5)

Crm α r + c 0 α ˆA1 z -c 0 α ˆA2 z ≥ 0.
We denote by zr,A (x) the median of z on B r (x) ∩ A. Taking A 1 , A 2 of equal measure such that z ≤ zr,A (x) on A 1 and z ≥ zr,A (x) on A 2 , we obtain ˆA2 z -

ˆA1 z = ˆA2 (z -zr,A (x)) - ˆA1 (z -zr,A (x)) = ˆBr(x)∩A |z -zr,A (x)|,
and putting this into (5.5) implies:

Br(x)∩A |z -zr,A (x)| ≤ Crm α-1 r ≤ Cr β ,
where we have used (5.4) in the last inequality. It is clear that up to changing again C, the median may be replaced by the mean:

(5.6)

Br(x)∩A |z -z r,A (x)| ≤ Cr β .
The rest is just standard Campanato estimates, which we do here for the sake of completeness.

Let us compare the quantities z r,A (x) and z r/2,A (x): Consequently for all k ∈ N,

|z r/2,A (x) -z r,A (x)| = B r/2 (x)∩A (z -z r,A (x)) ≤ B r/2 (x)∩A |z -z r,A (x)| ≤ |B r (x) ∩ A| |B r/2 (x) ∩ A| Br(x)∩A |z -z r,A (x)| ≤ C Br(x)∩A
f (r) ≤ f (r2 -(k+1) ) + Cr β k i=0 2 -iβ
thus by taking the limit k → ∞:

f (r) ≤ lim sup ε→0 f (ε) + Cr β ∞ i=0 2 -iβ ≤ lim sup ε→0 f (ε) + Cr β .
Now we know by (5.1) that f (ε) → 0 when ε → 0, which implies that f (r) ≤ Cr β , that is to say:

|z(x) -z r,A (x)| ≤ Cr β .
By way of consequence

Br(x)∩A |z -z(x)| ≤ Br(x)∩A |z -z r,A (x)| + |z(x) -z r,A (x)| ≤ Cr β .
all P one has P χ P (X P ) + ξ P (X P ) ≤ (K A,B + K B,C )m. Moreover one can control the cost variation:

ˆz d(µ -µ) ≤ 1 2 ˆz d(µ 1 -µ) + 1 2 ˆz d(µ 2 -µ) ≤ 2 -1 (K A,B + K B,C )(2m) 1+β/d ≤ 2 1/d+α-1 (K A,B + K B,C )m 1+β/d .
Moreover by subadditivity of the d α distance

d α (µ, µ ) = d α (µ/2 + µ/2, µ 1 /2 + µ 2 /2) ≤ d α (µ/2, µ 1 /2) + d α (µ/2, µ 2 /2) ≤ 2 -α (K A,B + K B,C )(2m) 1+β/d = 2 1/d (K A,B + K B,C )m 1+β/d Thus setting K A,C = 2 1/d (K A,B + K B,C
) all the required properties to get A C are satisfied.

Proof of (iii). Consider a loop A

1 A 2 A 1 and B such that A := A 1 ∪ A 2 B. Let us establish for example A 1 B.
We consider a basin variation (μ, ( χP ), ( ξP )) of µ which transfers a mass m from A to B with controlled cost. Set m i = ξ(A i ) -χP (A i ) ∈ R for i = 1, 2. We take a basin variation (μ, ( χP ), ( ξP )) which sends a mass 

m 2 from A 2 to A 1 if m 2 > 0, or a mass -m 2 from A 1 to A 2 if m 2 < 0. This is possible if |m 2 | ≤ min(ε A1,A2 , ε A2,A1 ), but |m 2 | ≤ P :X P ⊆A2 ( ξP (X P ) + χP (X P )) ≤ K A,B m, hence this condition is satisfied if (5.7) m ≤ min(ε A1,A2 , ε A2,A1 ) K A,
ε A1,B = min(ε A1,A2 , ε A2,A1 ) 2K A,B and K A1,B = K2 1+β/d .
We have proved that A 1 B, and the same goes for A 2 . The analogous statement for A B 1 ∪ B 2 holds as well.

Proof. Assume that the m P 's are not all 0, otherwise there is nothing to do. Take P 1 ∈ P such that |m P1 | is minimal. If m P1 < 0 choose Q 1 ∈ P such that m Q1 > 0 ; necessarily |m P1 | ≤ m Q1 and we know that there is a basin variation V 1 = (µ 1 , (χ 1 P ), (ξ 1 P )) of µ sending a mass |m P1 | from X P1 to X Q1 and with controlled cost, provided that |m P1 | ≤ ε. If m P1 > 0 we choose Q 1 such that m Q1 < 0 and a basin variation which sends a mass |m P1 | from X Q1 to X P1 . Then we set for all P ∈ P: m 1,P = m P -(ξ 1 P (X P ) -χ 1 P (X P )). We know that m 1 := P |m 1 P | ≤ m + Km P1 ≤ (1 + c)m and m 1,P1 = 0. We consider the family of real numbers (m 1,P ) P ∈P . We continue by induction, building sequences P i , Q i , V i , m i,P until all the (m i,P ) P are 0, and set I the number of steps. We obtain a sequence satisfying for all i ≤ I:

(i) for all P , m i,P = m i-1,P -(ξ i P (X P ) -χ i P (X P )), (ii) m i := P |m i,P | ≤ (1 + K)m i-1 , (iii) m i,Pj = 0 for all j ≤ i. Notice that this is justified provided |m i | is always less that ε, which is guaranteed if m(1 + K) 1+#P ≤ ε. Then we define a basin variation V = (µ , (χ P ), (ξ P )) by Proof. Notice that one may write: ν = ν + ξχ where ξ, χ are nonnegative measures concentrated on Bas + η ( R) which are mutually singular and have same mass, with χ ≤ ν. Setting for all P ∈ P: m P = ξ(Bas + (P )) -χ(Bas + (P )), we know that P m P = 0. By the previous proposition, one can find a basin variation (µ , (ξ P ), (χ P )) such that (i) P (ξ P -χ P )(X P ) = m P , (ii) ´z d(µ -µ) ≤ Km 1+β/d , (iii) d α (µ, µ ) ≤ Km 1+β/d . It is possible to connect µ and ν using η-good paths, since for all P , ξ P -χ P and ( ξχ) Bas + (P ) are concentrated on a common basin Bas η (ρ P ) and have equal (signed) mass. Hence there exists an irrigation plan η ∈ IP(µ , ν ) obtained by adding, removing, and reconnecting η-good curves passing by a same connected component P , so that η is concentrated on η-good paths.

From this result, we are able to prove a first variation formula for general variations of ν, with µ fixed, at the cost of an extra error term, which is of lower order in our case α ≥ 1 -1/d. Theorem 5.12. Let η ∈ IP(µ, ν) be an optimal irrigation plan with finite I α cost and z a landscape function. If ν ∈ Prob(R d ) is such that |ν -ν| is concentrated on Bas + R and has mass m then the following holds:

d α (µ, ν ) ≤ d α (µ, ν) + α ˆz d(ν -ν) + Cm 1+β/d ,
for some constant C independent of ν and m. Remark 5.13. Notice that since z is bounded from below on Bas + R and that z ∈ L 1 (ν), the integral ´z d(ν -ν) is well-defined and valued in R ∪ {+∞}.

Proof. If ´z d(ν -ν) = +∞ there is nothing to prove. Otherwise z ∈ L 1 (ν ) and we take µ and η ∈ IP(µ , ν ) given by the previous proposition. One has d α (µ , ν ) ≤ I α (η ) ≤ I α (η) + α ˆΓ Z η d(η -η). Now since z ∈ L 1 (µ ) ∩ L 1 (ν ) and that Z η (γ) = z(γ + ) -z(γ -) for η -almost every γ, one has But since Z η (γ) = z(γ + ) -z(γ -), since z is bounded from above in X - R and z ∈ L 1 (ν ), one has 

Figure 1 .

 1 Figure1. A root network induced by a system of two roots.

Figure 2 .

 2 Figure 2. A right-sided η-good curve entering and leaving R.

Figure 3 .

 3 Figure 3. A good loop made of three η-good curves. Their stems are signaled by a large white circle.

4. 1 .

 1 Fundamental property. Beforehand, we establish what we call the fundamental property of the landscape function: it is in a sense a primitive of θ α-1 η along η. Proposition 4.1 (Fundamental property). If γ is an η-good curve then

  Interchanging the roles of x and y yields |z(y) -z(x)| ≤ CM α-1 |y -x|, and z is Lipschitz continuous on R. Proposition 4.6 (Semicontinuity). The landscape function is lower semicontinuous on Bas + η ( R) and upper semicontinuous on Bas - η ( R). Remark 4.7. If µ and ν have disjoint compact supports, one may extend z in a neighbourhood of supp µ and supp ν

  ρ∈P Bas + η (ρ), Bas -(P ) = ρ∈P Bas - η (ρ), and Bas(P ) = ρ∈P Bas η (ρ).

5. 1 .

 1 Transfer between basins. Definition 5.1. Let A, B be two Borel sets of positive measure |A|, |B| > 0. We call x a transfer point from A to be B if for some constants c, R > 0 and all r ≤ R: Θ A (x, r) ≥ c and x ∈ B. Lemma 5.2. If |U \ (A ∪ B)| = 0 with |A|, |B| > 0 and |A ∩ B| = 0, then there is a point x such that Θ A (x, r) ≥ c and Θ A (x, r) ≥ c, for r ≤ R and some constants c = c A,B > 0, R = R A,B > 0. In particular x is a transfer point from A to B and from B to A. Proof. Consider two points x, y which are Lebesgue points of A and B respectively, and a small radius r 0 such that Θ A (x, r) := |Qr(x)∩A| (2r) d > 1/2 and Θ B (x, r) := |Qr(x)∩B| (2r) d

  |z -z r,A | ≤ Cr β , the last inequality following from (5.6), and the last but one from |B r/2 (x) ∩ A| ≥ cr d because x is a transfer point from A and B. Then one has |z(x) -z r,A (x)| ≤ |z(x) -z r/2,A (x)| + |z r/2,A (x) -z r,A (x)| ≤ |z(x) -z r/2,A (x)| + Cr β , which means by setting f (r) = |z(x) -z r,A (x)| for r ∈]0, R] that: f (r) ≤ f (r/2) + Cr β .

  χ P = 1/I • i χ i P , ξ P = 1/I • i ξ i P and µ = µ + P (ξ P -χ P ).One has for all P ∈ P:0 = m I,P = m I-1,P -(ξ I P (X P ) -χ I P (X P )) = . . . = m P -i≤I (ξ i P (X P ) -χ i P (X P )) hence (ξ P -χ P )(X P ) = m P . Moreover one has ˆz d(µ -µ) ≤ K(1 + K) I(1+β/d) m 1+β/d and d α (µ, µ ) ≤ K(1 + K) I(1+β/d) m 1+β/d .Setting K = K(1 + K) #P(1+β/d) and ε = ε/(1 + K) #P , one gets the desired result.5.2. A general first variationinequality. Proposition 5.11. Let ν ∈ Prob(R d ) be a probability measure such that |ν -ν| is concentrated on Bas + R and has mass m ≤ ε. Then there is a nonnegative measure µ and an irrigation plan η ∈ IP(µ , ν ) such that (i) η is concentrated on η-good paths, (ii) ´z d(µ -µ) ≤ Cm 1+β/d , (iii) d α (µ, µ ) ≤ Cm 1+β/d .

d

  α (µ , ν ) ≤ I α (η) + α ˆz d(ν -ν) -α ˆz d(µ -µ),hence using the triangle inequality andI α (η) = d α (µ, ν): d α (µ, ν ) ≤ d α (µ, ν) + α ˆz d(ν -ν) + d α (µ, µ ) -α ˆz d(µ -µ).By the previous proposition, the two last terms are bounded by Cm 1+β/d , which implies thatd α (µ, ν ) ≤ d α (µ, ν) + α ˆz d(ν -ν) + Cm 1+β/d .

  B.

	Define for all P	χ P =	1 2	( χP + χP ), ξ P =	1 2	( ξP + ξP )
	and	µ = µ +	P	(ξ P -χ P ) =	1 2	(μ + μ).

It is easy to see that (µ , (χ P ), (ξ P )) is a basin transfer of µ which transfers a mass m/2 from A 1 to B. Moreover one has P ∈P ξ P (X P ) + χ P (X P ) ≤ Km, as well as

ˆz d(µ -µ) ≤ Km 1+β/d and d α (µ, µ ) ≤ Km 1+β/d , where K := (K A,B max(K A1,A2 , c A2,A1 ) + K A,B

) /2. Thus (µ , (χ P ), (ξ P )) is a mass transfer of mass m/2 (and not m) from A 1 to B with controlled cost for constants

For us, if I is an interval γ |I is a map defined only on I, but it induces a unique Lipschitz extension to the whole R which is constant before and after I and we will make the slight abuse of not distinguishing the two.

Parameterized by arc length on an interval [0, ].

Actually, up to a sign depending on the orientation of the curve, just as in the definition of the integral on the real line ´b a f = ± ´[a,b] f depending on whether a ≤ b or b ≤ a.

Since two-sided good curves can be cut in two one-sided good curves, it does not matter.

Of course ρ ρ is a link.

x 1 = x, r 1 = r, and we keep going to produce a sequence of cubes Q n = Q rn (x n ) which all included in the previous one, with r n = r 0 2 -n and such that

The sequence x n is Cauchy and converges to a point x which is the intersection of all these cubes. We claim that there is a constant c > 0 such that Θ A (x, r) ≥ c and Θ B (x, r) ≥ c for all r ≤ R (recall that this density is computed with respect to balls and not cubes). Take n such that r n+1 < r/2 √ d ≤ r n . One knows that x ∈ Q n-1 hence B r (x) ⊇ Q n+1 , thus:

The same holds for B and we are done.

We set X -(resp. X + ) to be the collection of sets A made of a union of negative basins (resp. positive basins) associated to components P ∈ P, that is sets of the form A = P ∈P Bas -(P ) (resp. A = C∈P Bas -(P )) where P ⊆ P . In the rest of this section, all results will be stated and proved for negative basins but their positive counterparts hold as well ; hence for this section we write X = X -, X = Bas - η ( R) and X P = Bas -(P ) for P ∈ P. Definition 5.3 (Basin variation of µ). For each P ∈ P, suppose that we have two nonnegative measures χ P , ξ P which are concentrated on X P and which represent a mass that we want to remove from µ and add to µ respectively. Assume that P χ P ≤ µ and set µ = µ+ P (ξ P -χ P ) which is a nonnegative measure. Then the triple (µ , (χ P ) P , (ξ P ) P ) is called a basin variation of µ.

Definition 5.4 (Transfer relation). We define a binary relation on X as follows: A B if there exists constants K = K A,B > 0, ε = ε A,B > 0 such that for all m ≤ ε one can find a basin variation (µ , (χ P ), (ξ P )) of µ such that:

(i) P χ P (X P ) + ξ P (X P ) ≤ Km, (ii) for all P such that X P ⊆ A ∪ B, χ P (X P ) = ξ P (X P ), (iii) P :X P ⊆A (ξ P -χ P )(X P ) = -m and P :X P ⊆B (ξ P -χ P )(X P ) = +m, (iv) ´z d(µ -µ) ≤ cm 1+β/d , (v) d α (µ, µ ) ≤ cm 1+β/d . In that case we say that the basin variation (µ , (χ P ), (ξ P )) transfers a mass m from A to B with controlled cost. Lemma 5.5. Let x be transfer point from A to B. The following holds:

• there exists R = R A,B > 0 and C = C A,B > 0 such that for all r ≤ R,

Remark 5.6. The basin variation (µ , (χ P ), (ξ P )) satisfying the requirements for A B as in Definition 5.4 that we get from the proof is the following: χ P = c1 X P ∩Br(x) for all P ∈ P with r d ≈ m, ξ P0 = mδ x , and ξ P = 0 if P = P 0 ; P 0 being such that x belongs to

The proof strongly relies on computations made in [START_REF] Santambrogio | Optimal channel networks, landscape function and branched transport[END_REF] to prove the Hölder continuity of the landscape function in the single-source case, and on calculations which are quite classical when working with Campanato spaces (see [Giu03, Section 2.3]). We divide the proof into two steps.

Now set ε

, and set

Choose P 0 such that x ∈ X P0 ⊆ A. Consider a family of disjoint sets XP ⊆ X P such that P XP = P X P . We define χ P = t r c 0 1 XP ∩Br(x)∩A for all P ∈ P, ξ P0 = mδ x and ξ P = 0 if P = P 0 , and finally µ = µ + P ξ P -χ P = µ + mδ x -t r c 0 1 A∩Br(x) . Since t r ≤ 1 and t r c 0 |A ∩ B r (x)| = t r c 0 m r = m, µ is a probability measure, and one may check that (µ , (χ P ), (ξ P )) is a basin variation satisfying (i), (ii) and (iii) of Definition 5.4. Let us check (iv) and (v):

the last inequality coming from the fact that m = c 2 0 r d . Moreover since µ -µ ≤ 2m and diam supp|µ -µ | ≤ 2r, one has

Proposition 5.7. The binary relation on X satisfies the following properties:

(i) transitivity.

(iv) connection.

A = X =⇒ ∃P ∈ P, (X P ⊆ A and A X P ).

Proof. We prove the three items successively.

Proof of (i). We treat for example the first implication, the second one being handled symmetrically. Set

) and take m ≤ ε A,C . We know there exists basin variations (µ 1 , (χ 1 P ), (ξ 1 P )) and (µ 2 , (χ 2 P ), (ξ 2 P )) transferring a mass 2m from A to B and from B to C respectively, with controlled cost. Let us build a new one as follows:

and

By construction P ξ P ≤ µ and µ is a nonnegative measure, so that (µ , (χ P ), (ξ P )) is a basin variation of µ, and it is easy to check that it transfers a mass m from A to C. Obviously, for

Proof of (iv). Take a set A ∈ X such that A = X. If there is a P such that X P ⊆ A and |X P ∩ A| > 0 then clearly A X P . Otherwise set B = P :X P ⊆A X P . We know that |A|, |B| > 0, |A ∩ B| = 0 and |U \ (A ∪ B)| = 0, hence by Lemma 5.2 there is a frontier point x from A to B. Since B is closed, x actually belongs to B, and there is a basin X P contained in B such that x ∈ X P . By definition x is a frontier point from A to X P and by Lemma 5.5 one has A X P .

Remark 5.8. Notice that using (ii) successively, if one has a loop

A i for all i, j, and using (iii) successively, it generalizes to arbitrary loops:

Proposition 5.9. The binary relation is total in the sense that for all A, B ∈ X -, A B.

Proof. Let us define some terminology which will render the proof very easy. We say that two elements A, B ∈ X are equivalent if A B and B A. We call blocks all elements A ∈ X which are unions of equivalent basins, that is sets of the form A = P ⊆P X P where P ⊆ P and all the (X P ) P ∈P are equivalent. We will consider block chains

which are simple in the sense that for i = j, A i and A j have no basin in common. The length (C ) of C is n and its size s(C ) is the total number of basins appearing in the A j 's: s(C ) = card{P : ∃i, X P ⊆ A i }. We consider the simple chains of maximal size (it makes sense because there are only finitely many), and among them those with minimal length. Pick such a chain C . If card{P : X P ⊆ A n } < card P then there exists a P ∈ P such that A n → X P and X P ⊆ A n by (iv) of Proposition 5.7. Now since C has maximal size, X P must belong to a previous basin: X P ⊆ A i for i < n. By (ii) one has A n A i , thus the blocks A i , A i+1 , . . . , A n are equivalent. Consequently all the basins X P belonging to the A j 's for i ≤ j ≤ n are equivalent, using (iii) successively as in Remark 5.8. Hence Ãi := j≥i A j is itself a block and one has a block chain

which is a simple block chain with s( C ) = s(C ) and ( C ) < (C ): a contradiction. Consequently one had card{P : X P ⊆ A n } = card P and the chain was made of a single block A 1 = A n made of all basins. Therefore all basins are equivalent, and all elements A ∈ X as well by (ii). This is what we wanted.

We set K = max A,B∈X K A,B and ε = max A,B∈X ε A,B .

Proposition 5.10 (Basin transfers). There exists constants K, ε > 0 such that for any family of real numbers (m P ) P ∈P satisfying P ∈P m P = 0 and m := P |m P | ≤ ε, one may find a basin variation (µ , (χ P ), (ξ P )) of µ such that (i)

The regularity theorem.

Theorem 5.14. There exists a constant C > 0 such that for any r ≤ r 0 , x ∈ Bas - η ( R) and y ∈ Bas + η ( R), one has:

hence z is β-Hölder continuous on Bas - η ( R) and Bas + η ( R).

Proof. Consider a ball B = B r (x) ∩ Bas + η ( R) centered at some x ∈ Bas + η ( R). We partition it in two parts of equal measure:

and we set ν = ν -c1 B1 + c1 B2 ∈ Prob(R d ). Then we apply Theorem 5.12:

but by the triangle inequality, one has (5.9) The same reasoning gives the corresponding inequality on Bas -( R). By the equivalence between Campanato and Hölder spaces, as U and V are Ahlfors regular, this means that z is β-Hölder continuous on U and V .

As a straightforward consequence, we get the equiboundedness of fiber lengths of optimal irrigation plans.