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We consider the boundary value problem

where Ω ⊂ R N , N ≥ 3 is a bounded domain with smooth boundary. It is assumed that c 0, c, h belong to L p (Ω) for some p > N . Also µ ∈ L ∞ (Ω) and µ ≥ µ 1 > 0 for some µ 1 ∈ R. It is known that when λ ≤ 0, problem (P λ ) has at most one solution. In this paper we study, under various assumptions, the structure of the set of solutions of (P λ ) assuming that λ > 0. Our study unveils the rich structure of this problem. We show, in particular, that what happen for λ = 0 influences the set of solutions in all the half-space ]0, +∞[×(H 1 0 (Ω) ∩ L ∞ (Ω)). Most of our results are valid without assuming that h has a sign. If we require h to have a sign, we observe that the set of solutions differs completely for h 0 and h 0. We also show when h has a sign that solutions not having this sign may exists. Some uniqueness results of signed solutions are also derived. The paper ends with a list of open problems.

Introduction

We consider the boundary value problem

(P λ ) -∆u = λc(x)u + µ(x)|∇u| 2 + h(x), u ∈ H 1 0 (Ω) ∩ L ∞ (Ω)
under the assumption

(A)      Ω ⊂ R N , N ≥ 2 is a bounded domain with ∂Ω of class C 1,1 ,
c and h belong to L p (Ω) for some p > N and satisfy c 0,

µ ∈ L ∞ (Ω) satisfies 0 < µ 1 ≤ µ(x) ≤ µ 2 .
Depending on the parameter λ ∈ R we study the existence and multiplicity of solutions of (P λ ). By solutions we mean functions u ∈ H 1 0 (Ω) ∩ L ∞ (Ω) satisfying

Ω ∇u∇v dx = λ Ω c(x)uv dx + Ω µ(x)|∇u| 2 v dx + Ω h(x)v dx ,
for any v ∈ H 1 0 (Ω) ∩ L ∞ (Ω). First observe that, by the change of variable v = -u, problem (P λ ) reduces to

-∆u = λc(x)u -µ(x)|∇u| 2 -h(x), u ∈ H 1 0 (Ω) ∩ L ∞ (Ω)
. Hence, since we make no assumptions on the sign of h, we actually also consider the case where |∇u| 2 has a negative coefficient.

The study of quasilinear elliptic equations with a gradient dependence up to the critical growth |∇u| 2 was essentially initiated by Boccardo, Murat and Puel in the 80's and it has been an active field of research until now. Under the condition λc(x) ≤ -α 0 < 0 a.e. in Ω for some α 0 > 0, which is usually referred to as the coercive case, the existence of a unique solution of (P λ ) is guaranteed by assumption (A). This is a special case of the results of [START_REF] Boccardo | Existence de solutions faibles pour des équations elliptiques quasi-linéaires à croissance quadratique, Nonlinear partial differential equations and their applications[END_REF][START_REF] Boccardo | L ∞ estimate for some nonlinear elliptic partial differential equations and application to an existence result[END_REF] for the existence and of [START_REF] Barles | Remarks on the maximum principle for nonlinear elliptic PDE with quadratic growth conditions[END_REF][START_REF] Barles | Uniqueness and the maximum principle for quasilinear elliptic equations with quadratic growth conditions[END_REF] for the uniqueness.

The limit case where one just require that λc(x) ≤ 0 a.e. in Ω is more complex. There had been a lot of contributions [START_REF] Abdellaoui | Some remarks on elliptic problems with critical growth in the gradient[END_REF][START_REF] Ferone | Quasilinear problems having quadratic growth in the gradient: an existence result when the source term is small, Équations aux dérivées partielles et applications[END_REF][START_REF] Maderna | Quasilinear elliptic equations with quadratic growth in the gradient[END_REF][START_REF] Porretta | The ergodic limit for a viscous Hamilton Jacobi equation with Dirichlet conditions[END_REF] when λ = 0 (or equivalently when c ≡ 0) but the general case where λc ≤ 0 may vanish only on some parts of Ω was left open until the paper [START_REF] Arcoya | Continuum of solutions for an elliptic problem with critical growth in the gradient[END_REF]. It appears in [START_REF] Arcoya | Continuum of solutions for an elliptic problem with critical growth in the gradient[END_REF] that under assumption (A) the existence of solutions is not guaranteed, additional conditions are necessary. When λ = 0 this was already observed in [START_REF] Ferone | Quasilinear problems having quadratic growth in the gradient: an existence result when the source term is small, Équations aux dérivées partielles et applications[END_REF]. By [START_REF] Arcoya | Continuum of solutions for an elliptic problem with critical growth in the gradient[END_REF], the uniqueness itself holds as soon as λc(x) ≤ 0 a.e. in Ω. See also [START_REF] Arcoya | Remarks on the uniqueness for quasilinear elliptic equations with quadratic growth conditions[END_REF] for a related uniqueness result in a more general frame.

The case λc 0 remained unexplored until very recently. Following the paper [START_REF] Sirakov | Solvability of uniformly elliptic fully nonlinear PDE[END_REF] which consider a particular case, Jeanjean and Sirakov [START_REF] Jeanjean | Existence and multiplicity for elliptic problems with quadratic growth in the gradient[END_REF] study a problem directly connected to (P λ ). In [START_REF] Jeanjean | Existence and multiplicity for elliptic problems with quadratic growth in the gradient[END_REF]Theorem 2] assuming that µ is a positive constant and h is small (in an appropriate sense) but without sign condition, a λ 0 > 0 is given under which (P λ ) has two solutions whenever λ ∈ ]0, λ 0 [. This result have been complemented in [START_REF] Jeanjean | Multiple solutions for an indefinite elliptic problem with critical growth in the gradient[END_REF] where two solutions are obtained, allowing the function c to change sign but assuming that h ≥ 0 and that max{0, λc} 0. The restriction that µ is a constant was subsequently removed in [START_REF] Arcoya | Continuum of solutions for an elliptic problem with critical growth in the gradient[END_REF] under the price of the assumption h ≥ 0.

If multiplicity results can be observed in case λc 0, the existence of solution itself may fail. In [START_REF] Arcoya | Continuum of solutions for an elliptic problem with critical growth in the gradient[END_REF]Lemma 6.1], letting γ 1 > 0 be the first eigenvalue of (1.1)

-∆ϕ 1 = γc(x)ϕ 1 , ϕ 1 ∈ H 1 0 (Ω), it is proved when h ≥ 0 that problem (P λ ) has no solution when λ = γ 1 and no non-negative solutions when λ > γ 1 . This contrasts to what was observed in [START_REF] Abdellaoui | Elliptic problems with a Hardy potential and critical growth in the gradient: Non-resonance and blow-up results[END_REF]Theorem 3.3], namely that if µ > 0 is a constant and h 0, then there exists a negative solution of (P λ ) as soon as λ > 0. In addition this negative solution is unique [START_REF] Abdellaoui | Elliptic problems with a Hardy potential and critical growth in the gradient: Non-resonance and blow-up results[END_REF]Theorem 3.12]. Considered together, the results of [START_REF] Abdellaoui | Elliptic problems with a Hardy potential and critical growth in the gradient: Non-resonance and blow-up results[END_REF][START_REF] Arcoya | Continuum of solutions for an elliptic problem with critical growth in the gradient[END_REF] show that the sign of h has definitely an influence on the set of solutions of (P λ ) when λ > 0.

Despite the works [START_REF] Abdellaoui | Elliptic problems with a Hardy potential and critical growth in the gradient: Non-resonance and blow-up results[END_REF][START_REF] Arcoya | Continuum of solutions for an elliptic problem with critical growth in the gradient[END_REF][START_REF] Jeanjean | Multiple solutions for an indefinite elliptic problem with critical growth in the gradient[END_REF][START_REF] Jeanjean | Existence and multiplicity for elliptic problems with quadratic growth in the gradient[END_REF], having a clear picture of the set of solutions of (P λ ) in the half-space ]0, +∞[×(H 1 0 (Ω)∩L ∞ (Ω)) is still widely open. The present paper aims to be a contribution in that direction. Note that both in [START_REF] Abdellaoui | Elliptic problems with a Hardy potential and critical growth in the gradient: Non-resonance and blow-up results[END_REF] and [START_REF] Arcoya | Continuum of solutions for an elliptic problem with critical growth in the gradient[END_REF] the main results (under this assumption) are obtained assuming that h has a sign, positive in [START_REF] Arcoya | Continuum of solutions for an elliptic problem with critical growth in the gradient[END_REF], negative in [START_REF] Abdellaoui | Elliptic problems with a Hardy potential and critical growth in the gradient: Non-resonance and blow-up results[END_REF] and then these papers look for solutions having the same sign as h. In our paper we remove in particular the assumption that h has a sign. Also we show that even when h has a sign, solutions not having this sign may exist.

We point out that with respect to [START_REF] Abdellaoui | Elliptic problems with a Hardy potential and critical growth in the gradient: Non-resonance and blow-up results[END_REF][START_REF] Arcoya | Continuum of solutions for an elliptic problem with critical growth in the gradient[END_REF] we have strengthened our regularity assumptions by requiring c and h in L p (Ω) for some p > N while in [START_REF] Arcoya | Continuum of solutions for an elliptic problem with critical growth in the gradient[END_REF], c and h are in L p (Ω) for some p > N 2 and in [START_REF] Abdellaoui | Elliptic problems with a Hardy potential and critical growth in the gradient: Non-resonance and blow-up results[END_REF], the regularity assumptions are even weaker. Under our assumptions all solutions of (P λ ) lies in W 2,p 0 (Ω) ⊂ C 1 0 (Ω) (see Theorem 2.2). This permits to use lower and upper solutions arguments together with degree theory. Now for future reference we recall, Definition 1.1. Let u, v ∈ C(Ω). We say that • u ≤ v if, for all x ∈ Ω, u(x) ≤ v(x); • u v if, for all x ∈ Ω, u(x) ≤ v(x) and u ≡ v; • u < v if, for all x ∈ Ω, u(x) < v(x).

Let ϕ 1 be the first eigenfunction of (1.1). We know that, for all x ∈ Ω, ϕ 1 (x) > 0 and, for x ∈ ∂Ω, ∂ϕ 1 ∂ν (x) < 0 where ν denotes the exterior unit normal. Definition 1.2. Let u, v ∈ C(Ω). We say that • u v in case there exists ε > 0 such that, for all x ∈ Ω, v(x) -u(x) ≥ εϕ 1 (x).

Remark 1.1. Observe that, in case u, v ∈ C 1 (Ω), the definition of u v is equivalent to: for all x ∈ Ω, u(x) < v(x) and, for x ∈ ∂Ω, either u(x) < v(x) or u(x) = v(x) and ∂u ∂ν (x) > ∂v ∂ν (x). Recall that by [3, Theorems 1.2 and 1.3], we have the following result relying on [START_REF] Rabinowitz | A global theorem for nonlinear eigenvalue problems and applications, Contributions to nonlinear functional analysis[END_REF]Theorem 3.2].

Theorem 1.1. Under assumption (A), for λ ≤ 0 the problem (P λ ) has at most one solution u λ . Moreover, in case (P 0 ) has a solution u 0 , then

Σ = {(λ, u) ∈ R × C(Ω) | (λ, u) solves (P λ )}, possesses one unbounded component C + in [0, +∞[×C(Ω) such that C + ∩ ({0} × C(Ω)) = {u 0 }.
In case h 0, this continuum C + consists of non-negative functions and its projection Proj R C + on the λ-axis is an interval ] -∞, λ] ⊂ ] -∞, γ 1 [ containing λ = 0 and C + ⊂ Σ bifurcates from infinity to the right of the axis λ = 0. Remark 1.2. From [3, Corollary 3.2], we know that (P 0 ) has a solution if (1.2) inf

{u∈H 1 0 (Ω)| u H 1 0 (Ω) =1} Ω |∇u| 2 -µ 2 h + (x)u 2 dx > 0,
where h + = max{0, h}.

Our first main result gives informations on the behaviour of this continuum without assuming that h 0. Theorem 1.2. Under assumption (A), in case (P 0 ) has a solution, the continuum C + of Theorem 1.1 satisfies one of the two cases :

(i) it bifurcates from infinity to the right of the axis λ = 0 with the corresponding solutions having a positive part blowing up to infinity as λ → 0 + ; (ii) it is such that its projection Proj R C + on the λ-axis is [0, +∞[. In Corollary 4.1 below, we show that we are in situation (i) of Theorem 1.2 if (P 0 ) has a solution and

Ω h ϕ 1 ≥ 0.
In [START_REF] Jeanjean | Existence and multiplicity for elliptic problems with quadratic growth in the gradient[END_REF]Theorem 2] under conditions insuring that (P 0 ) has a solution it was proved, assuming that µ is a constant, that (P λ ) has two solutions for λ > 0 small. Here we remove this restriction on µ.

Theorem 1.3. Under assumption (A) and assuming that (P 0 ) has a solution u 0 , there exists a λ ∈ ]0, +∞] such that (i) for every λ ∈ ]0, λ[, the problem (P λ ) has at least two solutions with

• u λ,1 u λ,2 ; • max Ω u λ,2 → +∞ and u λ,1 → u 0 in C 1 0 (Ω) as λ → 0; (ii) if λ < +∞, the problem (P λ ) has exactly one solution u.
Next we show that having a sign information on the solution u 0 of (P 0 ) allows us to give more precise informations on the set of solutions of (P λ ) when λ > 0.

Theorem 1.4. Under assumption (A) and assuming that (P 0 ) has a solution u 0 ≥ 0 with cu 0 0, every non-negative solution of (P λ ) with λ > 0 satisfies u u 0 . Moreover, there exists λ ∈ ]0, +∞[ such that (i) for every λ ∈ ]0, λ[, the problem (P λ ) has at least two solutions with

• 0 ≤ u 0 u λ,1 u λ,2 ; • if λ 1 < λ 2 , we have u λ 1 ,1 u λ 2 ,1 ; • max Ω u λ,2 → +∞ and u λ,1 → u 0 in C 1 0
(Ω) as λ → 0; (ii) the problem (P λ ) has exactly one non-negative solution u; (iii) for every λ > λ, the problem (P λ ) has no non-negative solution. Remark 1.3. Since -∆u 0 = µ(x)|∇u 0 | 2 +h(x), we deduce by the strong maximum principle that, in case h 0, we have u 0 0 thus cu 0 0.

In comparison to Theorem 1.4 we have Theorem 1.5. Under assumption (A) and assuming that (P 0 ) has a solution u 0 ≤ 0 with cu 0 0, for every λ > 0, problem (P λ ) has two solutions with

u λ,1 u λ,2 , u λ,1 u 0 , and max Ω u λ,2 > 0.
Moreover we have

• if λ 1 < λ 2 , then u λ 1 ,1 u λ 2 ,1 ; • max Ω u λ,2 → +∞ and u λ,1 → u 0 in C 1 0 (Ω) as λ → 0;
Remark 1.4. Observe that in case (P 0 ) has a solution u 0 with cu 0 ≡ 0, then u 0 is solution for all λ ∈ R.

Remark 1.5. In Proposition 4.3, we prove also that, if (P 0 ) has a solution u 0 ≤ 0 with cu 0 0, then (P λ ) has at most one solution u ≤ 0. Corollary 1.6. Under assumption (A) and assuming that h 0, for every λ > 0, problem (P λ ) has two solutions u λ,1 , u λ,2 satisfying the conclusions of Theorem 1.5.

Corollary 1.6 should be compared with [START_REF] Abdellaoui | Elliptic problems with a Hardy potential and critical growth in the gradient: Non-resonance and blow-up results[END_REF]Theorem 3.3] where the authors prove the existence only of u λ,1 under however weaker regularity assumptions.

Our Theorems 1.3 -1.5 require (P 0 ) to have a solution and thus we are in a situation where a branch of solutions starts from (0, u 0 ). In our next results we consider the situation for λ > 0 "large". Theorem 1.7. Under assumption (A) and assuming that (a) (P 0 ) does not have a solution u 0 ≤ 0; (b) there exists λ 0 > 0 and β 0 an upper solution of (P λ 0 ) with β 0 ≤ 0. Then there exists 0 < λ ≤ λ 0 such that (i) for every λ ∈ ]λ, +∞[, the problem (P λ ) has at least two solutions with u λ,1 0 and u λ,1 u λ,2 . Moreover, if λ 1 < λ 2 , we have u λ 1 ,1 u λ 2 ,1 ; (ii) the problem (P λ ) has a unique solution u λ ≤ 0; (iii) for λ < λ, the problem (P λ ) has no solution u ≤ 0.

In our last results we change our point of view and consider no more the dependence in λ but in h + . In proving Theorem 1.8, we shall also obtain, in case h + is small enough, the existence of a negative upper solution of (P λ 0 ) for some λ 0 ≥ 0 as needed in the assumptions of Theorem 1.7.

Theorem 1.8. Under assumption (A), let h ∈ L p (Ω) and consider h+ and hrespectively its positive and its negative part. Assume that h+ ≡ 0. Let ν 1 > 0 be the first eigenvalue of

(1.3) -∆u + µ 2 h-(x)u = ν 1 c(x)u, u ∈ H 1 0 (Ω). Then, for all λ > ν 1 , there exists k = k(λ) ∈ ]0, +∞[ such that, λ λ 1 γ 1 λ 2 Figure 4. Illustration of Corollary 1.9 (i) for all k ∈ ]0, k[, the problem -∆u = λc(x)u + µ(x)|∇u| 2 + k h+ (x) -h-(x), u ∈ H 1 0 (Ω) ∩ L ∞ (Ω) (Q λ,k ) has at least two solutions u λ,1 u λ,2 ; (ii) for all k > k, the problem (Q λ,k ) has no solution; (iii) for k = k, the problem (Q λ,k ) has exactly one solution.
We deduce from Theorems 1.4 and 1.8 the following Corollary that concerns the case h 0. Corollary 1.9. Under assumption (A) and assuming that h 0, for all λ > γ 1 where γ 1 > 0 is the first eigenvalue (1.1), there exists k > 0 such that, for all k ∈ ]0, k],

(i) there exists

λ 1 ∈ ]0, γ 1 [ such that • for all λ ∈ ]0, λ 1 [, the problem (1.4) -∆u = λc(x)u + µ(x)|∇u| 2 + kh(x), u ∈ H 1 0 (Ω) ∩ L ∞ (Ω)
has at least two positive solutions;

• for λ = λ 1 , the problem (1.4) has exactly one positive solution;

• for λ > λ 1 , the problem (1.4) has no non-negative solution;

(ii) for λ = γ 1 the problem (1.4) has no solution; (iii) there exists λ 2 ∈ ]γ 1 , λ] such that

• for λ > λ 2 , the problem (1.4) has at least two solutions with u λ,1 0 and min u λ,2 < 0;

• for λ = λ 2 , the problem (1.4) has a unique non-positive solution;

• for λ < λ 2 , the problem (1.4) has no non-positive solution.

Remark 1.6. Observe that, as h ≥ 0, we have γ 1 = ν 1 , where ν 1 is the first eigenvalue of (1.3) and γ 1 is the first eigenvalue of (1.1). We conclude this paper considering the case h ≡ 0 which can be seen as intermediate between the case h 0 considered in Corollary 1.9 and the case h 0 considered in Corollary 1.6. Observe also that if we consider the problem (1.4) with k ∈ ] -∞, k], then, it is easy to see that the lower of the two solutions tends to 0 and that λ 1 → γ 1 , λ 2 → γ 1 as k → 0.

Theorem 1.10. Under assumption (A) with h ≡ 0 and recalling that γ 1 > 0 denotes the first eigenvalue (1.1), we have (i) for all λ ∈ ]0, γ 1 [, the problem

(1.5) -∆u = λc(x)u + µ(x)|∇u| 2 , u ∈ H 1 0 (Ω) ∩ L ∞
(Ω) has at least two solutions u λ,1 ≡ 0 and u λ,2 0 with max Ω u λ,2 → +∞ as λ → 0; (ii) for λ = γ 1 the problem (1.5) has only the trivial solution;

(iii) for λ > γ 1 , the problem (1.5) has at least two solutions u λ,1 ≡ 0 and u λ,2 0.

Remark 1.7. Considering the solutions of (P λ ) as stationary solutions for the corresponding parabolic problem, assuming (A) together with ∂Ω is of class C 2 and c, h ∈ L p (Ω) with p > N + 2, then, applying [11, Corollary 2.34 and Proposition 2.41], we can prove that, in the above results, the first solution u λ,1 is L-asymptotically stable from below and u λ,2 is L-unstable from below. In the particular case of Theorem 1.5, as (P λ ) has a unique negative solution u λ,1 u 0 , we have also u λ,1 is L-asymptotically stable. Fore more informations, see [START_REF] Coster | A qualitative analysis, via lower and upper solutions, of first order periodic evolutionary equations with lack of uniqueness[END_REF].

Our existence results relies on the obtention of a priori bounds on the solutions, see Lemma 3.1 and Theorem 3.3. These results which are valid for arbitrary solutions use in a central way the assumption that µ(x) ≥ µ 1 > 0 for some µ 1 > 0. Removing this condition seems delicate and in that direction some results are obtained in [START_REF] Souplet | A priori estimates for elliptic equations involving indefinite gradient terms with critical growth[END_REF] for non-negative solutions. In [START_REF] Souplet | A priori estimates for elliptic equations involving indefinite gradient terms with critical growth[END_REF] it is also shown that some conditions are necessary to obtain a priori bounds for non-negative solutions.

In the case µ > 0 constant it is possible to precise the blow-up rate, as λ → 0 + , of our solutions u λ,2 obtained in Theorems 1.3, 1.4, 1.5 and 1.10. As a by-product, we also obtain that the a priori estimates obtained in Theorem 3.3 are sharp.

The paper is organized as follows. In Section 2 we present some preliminary results. Section 3 is devoted to our a priori bounds results. In Section 4 we prove our main results. Section 5 is devoted to the special case µ constant and in Section 6 the reader can find a list of open problems.
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Preliminary results

In our proofs we shall need some results on lower and upper solutions that we present here adapted to our setting. We consider the problem (2.1)

-∆u = f (x, u, ∇u), in Ω u = 0, on ∂Ω,
where f is an L p -Carathéodory function with p > N and solutions are sought in W 2,p 0 (Ω). We recall that a regular lower solution (respectively a regular upper solution) of (2.1) is a function α (resp. β) in W 2,p (Ω) such that -∆α(x) ≤ f (x, α(x), ∇α(x)), for a.e. x ∈ Ω, α(x) ≤ 0, for all x ∈ ∂Ω, (respectively

-∆β(x) ≥ f (x, β(x), ∇β(x)), for a.e. x ∈ Ω, β(x) ≥ 0, for all x ∈ ∂Ω).
We define a lower solution α of (2.1) as α : 

= max{α i | 1 ≤ i ≤ k}
u = Mu.
To be able to associate a degree to a pair of lower and upper solutions we also need to reinforce the definition. Definition 2.1. A lower solution α of (2.1) is said to be strict if every solution u of (2.1) such that α ≤ u on Ω satisfies α u. In the same way a strict upper solution β of (2.1) is an upper solution such that every solution u with u ≤ β is such that u β.

Our main tool regarding the existence and characterizations of solutions of problem (2.1) by a lower and upper solutions approach is the following theorem. This result which can be obtained adapting some ideas from [START_REF] Coster | Two-Point Boundary Value Problems: Lower and Upper Solutions[END_REF][START_REF] Coster | A qualitative analysis, via lower and upper solutions, of first order periodic evolutionary equations with lack of uniqueness[END_REF] will be proved in the Appendix.

Theorem 2.1. Let Ω is a bounded domain in R N with boundary ∂Ω of class C 1,1 and f be an L p -Carathéodory function with p > N . Assume that there exists a lower solution α and an upper solution β of (2.1) such that α ≤ β. Denote α := max{α i | 1 ≤ i ≤ k} where α 1 , . . . , α k are regular lower solutions of (2.1) and β = min{β j | 1 ≤ j ≤ l} where β 1 , . . . , β l are regular upper solutions of (2.1). If there exists K > 0 and h ∈ L p (Ω) such that for a.e.

x ∈ Ω, all u ∈ [min{α i | 1 ≤ i ≤ k}, max{β j | 1 ≤ j ≤ l}] and all ξ ∈ R N , (2.4) |f (x, u, ξ)| ≤ h(x) + K|ξ| 2 ,
then the problem (2.1) has at least one solution u satisfying

α ≤ u ≤ β.
Moreover, problem (2.1) has a minimal solution u min and a maximal solution u max in the sense that, u min and u max are solutions of (2.1) with α ≤ u min ≤ u max ≤ β and every solution u of (2.1)

with α ≤ u ≤ β satisfies u min ≤ u ≤ u max .
If moreover α and β are strict and satisfy α β, then, there exists R > 0 such that

deg(I -M, S) = 1, where S = {u ∈ C 1 0 (Ω) | α u β, u C 1 < R}.
Remark 2.2. If α and β are respectively strict lower and upper solutions of (2.1) with α ≤ β then α β. Indeed from the first part of Theorem 2.1 we deduce, the existence of a solution u with α ≤ u ≤ β. By definition of strict lower and upper solutions, we obtain α u β and hence α β.

Remark 2.3. We shall apply Theorem 2.1 with

N (u) = λc(x)u+µ(x)|∇u| 2 +h(x).
Hence, as we are concerned with the λ-dependance, we will denote the fixed point operator M λ instead of M.

Our assumption (A) implies that the following regularity result applies to problem (P λ ).

Theorem 2.2. Let Ω is a bounded domain in R N with boundary ∂Ω of class C 1,1 , c ∈ L p (Ω), h ∈ L p (Ω) with p > N and µ ∈ L ∞ (Ω). Let u be a solution of (2.5) -∆u = c(x)u + µ(x)|∇u| 2 + h(x), u ∈ H 1 0 (Ω) ∩ L ∞ (Ω). Then u ∈ W 2,p 0 (Ω) ⊂ C 1 0 (Ω). Remark 2.
4. This result is not a simple consequence of classical bootstrap arguments as, for u ∈ H 1 0 (Ω) ∩ L ∞ (Ω), µ|∇u| 2 ∈ L 1 (Ω) which does not allow to start a bootstrap process.

Remark 2.5. Observe that any solution u ∈ C 1 0 (Ω) of (2.5) belongs to W 2,p 0 (Ω).

Proof. Let u ∈ H 1 0 (Ω) ∩ L ∞ (Ω) and define the function g = c u + u + h. Observe that g ∈ L p (Ω) with p > N and u is solution of (2.6) -∆v = -v + µ(x)|∇v| 2 + g(x), v ∈ H 1 0 (Ω) ∩ L ∞ (Ω). Let us prove that this problem has a solution v ∈ W 2,p 0 (Ω). By uniqueness of the solution of (2.6) in H 1 0 (Ω) ∩ L ∞ (Ω) (see [4, Theorem 1.1]
), we obtain that v = u and hence u ∈ W 2,p 0 (Ω). To prove that this problem has a solution v ∈ W 2,p 0 (Ω), we shall apply Theorem 2.1. Thus we need to prove that (2.6) has a lower α and an upper solution β with α ≤ β.

We set µ = ||µ|| ∞ . Clearly any solution of (2.7)

-∆u = -u + µ|∇u| 2 + g + (x), in Ω, u = 0, on ∂Ω,
is an upper solution of (2.6) and any solution of

(2.8) -∆u = -u -µ|∇u| 2 -g -(x), in Ω, u = 0, on ∂Ω, is a lower solution of (2.6). Now if w ∈ W 2,p 0 (Ω) is a solution of (2.9) -∆w = -w + µ|∇w| 2 + g -(x), in Ω, w = 0, on ∂Ω, then u = -w satisfies (2.8
). Thus if we find a non-negative solution u 1 ∈ W 2,p 0 (Ω) of (2.7) and a non-negative solution u 2 ∈ W 2,p 0 (Ω) of (2.9) then, setting β = u 1 and α = -u 2 , we have the required couple of lower and upper solutions required to apply Theorem 2.1.

Let us construct u 1 , the construction of u 2 being similar. Let w 1 ∈ H 1 0 (Ω) be the non-negative solution of [START_REF] Arcoya | Continuum of solutions for an elliptic problem with critical growth in the gradient[END_REF]Lemma 3.3]. By [START_REF] Troianiello | Elliptic differential equations and obstacle problems[END_REF]Lemma 3.22] and a bootstrap argument, it is easy to prove that w 1 ∈ W 2,p (Ω). Hence

-∆w 1 = µg + (x)w 1 -m(w 1 ) + g + , in Ω, w 1 = 0, on ∂Ω where (2.10) m(s) = 1 µ (1 + µs) ln(1 + µs), if s ≥ 0, -1 µ (1 -µs) ln(1 -µs), if s < 0 given by
u 1 = ln(µw 1 + 1) µ ∈ W 2,p (Ω)
and one readily shows that u 1 ≥ 0 is a solution of (2.7).

Proposition 2.3. Under assumption (A) if α is a lower solution of (P 0 ) and β an upper solution of (P 0 ) then α ≤ β.

Proof. Since α = max{α i | 1 ≤ i ≤ k}, β = min{β j | 1 ≤ j ≤ l}
with α i and β j regular lower and upper solutions in W 2,p (Ω), the functions α i and β j belong to

H 1 (Ω) ∩ W 1,N loc (Ω) ∩ C(Ω) and we conclude by [4, Lemma 2.2].
The following estimates will also be useful.

Lemma 2.4 (Nagumo Lemma). Let p > N , h ∈ L p (Ω, R + ), K > 0, R > 0. Then there exists C > 0 such that, for all u ∈ W 2,p (Ω) satisfying |∆u| ≤ h(x) + K|∇u| 2 , a.e. in Ω, u = 0, on ∂Ω, and u ∞ ≤ R, we have u W 2,p ≤ C. Proof. see [23, Lemma 5.10]. Lemma 2.5. Assume that c, h ∈ L q (Ω) for some q > N 2 . Then if u ∈ H 1 0 (Ω) is solution of -∆u ≤ c(x)u + h(x), (resp. -∆u ≥ c(x)u + h(x))
in a weak sense, then u is bounded above (resp. below) and

sup Ω u + ≤ C( u + 2 + h q ), (resp. sup Ω u -≤ C( u - 2 + h q )),
where C > 0 depends on N, q, |Ω| and c q .

Proof. see [START_REF] Jeanjean | Existence and multiplicity for elliptic problems with quadratic growth in the gradient[END_REF]Lemma 5].

We also need the following formulation of the anti-maximum principle. Under slightly more smooth data this result was established in [START_REF] Hess | An anti-maximum principle for linear elliptic equations with an indefinite weight function[END_REF] but the proof given in [START_REF] Hess | An anti-maximum principle for linear elliptic equations with an indefinite weight function[END_REF] directly extend under our regularity assumptions.

Proposition 2.6. Let c, h, d ∈ L p (Ω) with p > N and assume that h 0. We denote by ν1 > 0 the first eigenvalue of

(2.11) -∆u + d(x)u = ν1 c(x)u, u ∈ H 1 0 (Ω).
Then there exists ε 0 > 0 such that, for all λ ∈ ]ν 1 , ν1 + ε 0 ], the solution w of (2.12)

-∆w + d(x)w = λc(x)w + h, u ∈ H 1 0 (Ω). satisfies w 0.

A priori bound

This section is devoted to the derivation of some a priori bounds results for the solutions of (P λ ). Most of our results hold under more general assumptions than (A).

First, using ideas of [START_REF] Abdellaoui | Elliptic problems with a Hardy potential and critical growth in the gradient: Non-resonance and blow-up results[END_REF], we obtain the following lower bound on the upper solutions of (P λ ). Lemma 3.1. Under conditions (A), for any Λ 2 > 0, there exists a constant

M := M (Λ 2 , µ 1 , c N/2 , h - N/2 ) > 0 such that, for any λ ∈ [0, Λ 2 ], any function u ∈ H 1 0 (Ω) ∩ L ∞ (Ω) verifying u ≥ 0 on ∂Ω and such that, for all v ∈ H 1 0 (Ω) ∩ L ∞ (Ω) with v ≥ 0 a.e. in Ω, (3.1) Ω ∇u∇v dx ≥ Ω [λc(x)u + µ(x)|∇u| 2 + h(x)]v dx satisfies min Ω u > -M.
Remark 3.1. This result is valid under less regularity conditions than (A) and without sign conditions on c and h. More precisely, it holds under the conditions:

Ω ⊂ R N , N ≥ 2 is a bounded domain with ∂Ω of class C 1,1 , c and h belong to L p (Ω) for some p > N/2, µ ∈ L ∞ (Ω) satisfies 0 < µ 1 ≤ µ(x) ≤ µ 2 .
Moreover, the lower bound does not depend on h + and depends only on an upper bound on λ ≥ 0.

Proof. Let us take v = u -as test function in (3.1). We obtain

- Ω |∇u -| 2 dx ≥ -λ Ω c + (u -) 2 dx + µ 1 Ω |∇u -| 2 u -dx - Ω h -u -dx ≥ -Λ 2 Ω c + (u -) 2 dx + µ 1 4 9 Ω |∇(u -) 3/2 | 2 dx - Ω h -u -dx
and hence

µ 1 4 9 Ω |∇(u -) 3/2 | 2 dx + Ω |∇u -| 2 dx ≤ Ω h -u -dx + Λ 2 Ω c + (u -) 2 dx.
For every ε > 0 we have

Λ 2 Ω c + (u -) 2 dx = Ω (Λ 2 c + ) 1/2 (u -) 1/2 (Λ 2 c + ) 1/2 (u -) 3/2 dx ≤ 1 2ε Λ 2 Ω c + u -dx + ε 2 Λ 2 Ω c + (u -) 3/2 2 dx.
Also, for some constant C N , by Sobolev's embedding, we get

Ω c + (u -) 3/2 2 dx ≤ c + N/2 (u -) 3/2 2 2 * ≤ 1 C N c + N/2 ∇(u -) 3/2 2 2 .
We then obtain

µ 1 4 9 Ω |∇(u -) 3/2 | 2 dx + Ω |∇u -| 2 dx ≤ Ω h -u -dx + 1 2ε Λ 2 Ω c + u -dx + ε 2 Λ 2 C N c + N/2 ∇(u -) 3/2 2 2 .
Hence, by choosing

ε = C N Λ 2 c + N/2 µ 1 4 9 , it comes µ 1 2 9 Ω |∇(u -) 3/2 | 2 dx + Ω |∇u -| 2 dx ≤ Ω h -u -dx + 9Λ 2 2 c + N/2 8µ 1 C N Ω c + u -dx ≤ C h - N/2 ∇u - 2 + Λ 2 2 µ 1 c + 2 N/2 ∇u - from which we deduce that u - H 1 0 ≤ C( h - N/2 + Λ 2 2 µ 1 c + 2 N/2 ).
By Lemma 2.5 we obtain that

u ≥ -M := -M (Λ 2 , µ 1 , c N/2 , h - N/2
) which allows to conclude.

As a simple corollary we have the following result.

Corollary 3.2. Under conditions (A), for any Λ 2 > 0, there exists a constant

M := M (Λ 2 , µ 1 , c N/2 , h - N/2 ) > 0 such that, for any λ ∈ [0, Λ 2 ],
any upper solution β of (P λ ) satisfies min

Ω β > -M.
Proof. As β = min{β j | 1 ≤ j ≤ l} where β j are regular upper solutions, they belong to H 1 (Ω) ∩ L ∞ (Ω) and satisfy (3.1). We conclude by Lemma 3.1.

Let ν1 > 0 denotes the first eigenvalue of

(3.2) -∆u + µ 1 h -(x)u = νc(x)u, u ∈ H 1 0 (Ω), with corresponding eigenfunction ψ 1 > 0.
Theorem 3.3. Under condition (A), for any Λ 2 > Λ 1 > 0, any A > 0, there exists a constant M > 0 such that, for any λ

∈ [Λ 1 , Λ 2 ], a ∈ [0, A], any solution u of (3.3) -∆u = λc(x)u + µ(x)|∇u| 2 + h(x) + ac(x), u ∈ H 1 0 (Ω) ∩ L ∞ (Ω), satisfies u ∞ < M. Moreover, viewed as a function of Λ 1 , M = O 0 + (1/Λ 1 ).
In the above theorem, the notation

M = O 0 + (g(Λ 1 )) means the existence of C > 0 such that M (Λ 1 ) g(Λ 1 ) ≤ C, as Λ 1 → 0 + .
Remark 3.2. The above theorem is valid under less restrictive conditions. In fact it is valid if we replace the regularity c and h ∈ L p (Ω) with p > N by c and h ∈ L p (Ω) with p > N/2 and h -∈ L q (Ω) for some q > N . This last condition is used to prove that the first eigenfunction ψ 1 > 0 of (3.2) satisfies ψ 1 ≥ dδ(x) for some constant d > 0 where δ(x) denotes the distance from x to ∂Ω. This is needed to insure that the conclusion of Lemma 3.5 holds. Following the proof of [3, Lemma 6.3] it is possible to prove that this condition on ψ 1 holds under this stronger regularity.

In the proof of the Theorem 3.3 the following technical lemmas will be used.

Lemma 3.4. Let p > N 2 and θ ∈ ]0, 1[. There exist r ∈ ]0, 1[ and α ∈]0, p-1 2p-1 [ such that if we define (3.4) q = 1 + r + 1 + θα 1 -α , τ = 1 q α 1 -α then it holds (3.5) 1 p ≤ q ≤ 2N (p -1) p(N -2 + 2τ ) and (3.6) 1 -α < 2 q . Proof. See [3, Lemma 6.2]. Lemma 3.5. Let b ∈ L p (Ω) with p > N 2 . For any p, q ≥ 1 and τ ∈ [0, 1] satisfying (3.5), there exists C > 0 such that, for all w ∈ H 1 0 (Ω), b 1/q w ψ τ 1 q ≤ C b p ∇w 2 ,
where ψ 1 > 0 denotes the first eigenfunction (3.2).

Proof. See [3, Lemma 6.3] or [START_REF] Brezis | On a class of superlinear elliptic problems[END_REF].

Proof of Theorem 3.3. Let λ ∈ [Λ 1 , Λ 2 ],
a ∈ [0, A] and u be a solution of (3.3). Assume without loss of generality that Λ 1 ≤ 1 ≤ Λ 2 . We define

w i (x) = 1 µ i (e µ i u(x) -1) and g i (s) = 1 µ i ln(1 + µ i s) i = 1, 2.
Then we have

u = g 1 (w 1 ) = g 2 (w 2 ), (3.7) e µ i u = 1 + µ i w i , i = 1, 2. (3.8)

Direct calculations give us

-∆w i = e µ i u (λc(x)u + h(x) + ac(x)) + e µ i u (µ(x) -µ i )|∇u| 2 = (1 + µ i w i )(λc(x)g i (w i ) + h(x) + ac(x)) + (1 + µ i w i )(µ(x) -µ i )|∇u| 2 .
Since µ 1 ≤ µ(x) ≤ µ 2 , we have

-∆w 1 ≥ (1 + µ 1 w 1 )[λc(x)g 1 (w 1 ) + h(x) + ac(x)], (3.9) -∆w 2 ≤ (1 + µ 2 w 2 )[λc(x)g 2 (w 2 ) + h(x) + ac(x)], (3.10)
in a weak sense.

From the inequalities (3.9) and (3.10), we shall deduce that w 2 is uniformly bounded in H 1 0 (Ω). This will lead to the proof of the theorem by Lemma 2.5. We shall denote by C a generic constant independent of Λ 1 and by C(Λ 1 ), a generic constant depending on Λ 1 . We then precise its dependence on Λ 1 .

We divide the proof into three steps.

Step

1. Let θ = (µ 2 -µ 1 )/µ 2 ∈ ]0, 1[. Then there exists D = D(Λ 1 ) > 0 independent of λ ∈ [Λ 1 , Λ 2 ] and of a ∈ [0, A] such that Ω (1 + µ 1 w + 1 )[cg 1 (w + 1 ) + h + + ac]ψ 1 dx ≤ D(Λ 1 ), (3.11) Ω (1 + µ 2 w + 2 ) 1-θ [cg 2 (w + 2 ) + h + + ac]ψ 1 dx ≤ D(Λ 1 ). (3.12) Moreover D(Λ 1 ) = O 0 + (e 1/Λ 1 ).
Indeed, using ψ 1 > 0 (defined in (3.2)) as a test function in (3.9) and integrating we have

Ω [ν 1 c -µ 1 h -]w 1 ψ 1 dx ≥ Ω (1 + µ 1 w 1 )[λcg 1 (w 1 ) + h + ac]ψ 1 dx.
Recording that λ ≤ Λ 2 and then, by Lemma 3.1, that g 1 (w - 1 ) = u -is uniformly bounded we then obtain ν1

Ω cw 1 ψ 1 dx ≥ Ω (1 + µ 1 w 1 )[λcg 1 (w 1 ) + h + ac]ψ 1 dx + µ 1 Ω h -w 1 ψ 1 dx = Ω (1 + µ 1 w 1 )[λcg 1 (w 1 ) + h + + ac]ψ 1 dx - Ω h -ψ 1 dx +µ 1 Ω h -w 1 ψ 1 dx ≥ Ω (1 + µ 1 w + 1 )[λcg 1 (w + 1 ) + h + + ac]ψ 1 dx -C.
Since λ ≥ Λ 1 we then deduce that (3.13) ν1

Ω cw 1 ψ 1 dx ≥ Λ 1 Ω (1 + µ 1 w + 1 )[cg 1 (w + 1 ) + h + + ac]ψ 1 dx -C.
Note that for any ε > 0 there exists C ε > 0 such that, for all t > 0,

(3.14) t ≤ ε(1 + µ 1 t)g 1 (t) + C ε .
A direct calculation shows that we can assume that

C ε = O 0 + (εe 1/ε ). Using (3.14) with ε = Λ 1 2ν 1 , we get that ν1 Ω cw 1 ψ 1 dx ≤ ν1 Ω cw + 1 ψ 1 dx ≤ Λ 1 2 Ω (1 + µ 1 w + 1 )[cg 1 (w + 1 ) + h + + ac]ψ 1 dx + C Λ 1 . (3.15)
We then obtain (3.11) from (3.13) and (3.15). Now observe that by (3.8),

1 + µ 1 w 1 = e µ 1 u = (e µ 2 u ) 1-θ = (1 + µ 2 w 2 ) 1-θ .
Thus from (3.7) we see that (3.12) is nothing but (3.11).

Step 2. There exists a constant

D = D(Λ 1 ) > 0 independent of a ∈ [0, A] and λ ∈ [Λ 1 , Λ 2 ] such that (3.16) ∇w + 2 2 ≤ D(Λ 1 ). Moreover D(Λ 1 ) = O 0 + (e β/Λ 1 ) with β = α 2-q(1-α) .
First we use Lemma 3.4 to choose r ∈ ]0, 1[ and α ∈ ]0, p-1 2p-1 [ such that q and τ defined by (3.4) satisfy (3.5) and (3.6).

Using w + 2 as a test function in (3.10) it follows that

∇w + 2 2 2 ≤ Ω (1 + µ 2 w + 2 )[λcg 2 (w + 2 ) + h + + ac]w + 2 dx.
Setting H = h + + Ac, we have

∇w + 2 2 2 ≤ Λ 2 Ω (1 + µ 2 w + 2 )[cg 2 (w + 2 ) + H]w + 2 dx.
Now using Hölder's inequality, and since w + 2 ≤ (1 + µ 2 w + 2 )/µ -1 2 we obtain using (3.12) of Step 1 and for a D(Λ 1 ) = O 0 + (e 1/Λ 1 ),

∇w + 2 2 2 ≤ Λ 2 µ 2 Ω (1 + µ 2 w + 2 )[cg 2 (w + 2 ) + H)] ψ α 1 (1 + µ 2 w + 2 ) θα (1 + µ 2 w + 2 ) 1+θα ψ α 1 dx ≤ Λ 2 µ 2 Ω (1 + µ 2 w + 2 )[cg 2 (w + 2 ) + H] ψ 1 (1 + µ 2 w + 2 ) θ dx α × Ω (1 + µ 2 w + 2 )[cg 2 (w + 2 ) + H] (1 + µ 2 w + 2 ) 1+θα 1-α ψ α 1-α 1 dx 1-α ≤ Λ 2 µ 2 D(Λ 1 ) α Ω (1 + µ 2 w + 2 )[cg 2 (w + 2 ) + H] (1 + µ 2 w + 2 ) 1+θα 1-α ψ α 1-α 1 dx 1-α .
We note that for r > 0 given by Lemma 3.4, there exists C > 0

g 2 (t) ≤ t r + C for all t ≥ 0.
Thus, direct calculations shows that

(1 + µ 2 w + 2 )[cg 2 (w + 2 ) + H](1 + µ 2 w + 2 ) 1+θα 1-α ≤ (c + H)(w + 2 q + C),
where q is given in (3.4). Therefore for some D(Λ 1 ) = O 0 + (e 1/Λ 1 ),

∇w + 2 2 2 ≤ D(Λ 1 ) α Ω (c + H) 1/q w + 2 ψ τ 1 q dx 1-α + 1 ,
with q and τ given in (3.4). Applying Lemma 3.5, we then obtain

∇w + 2 2 2 ≤ D(Λ 1 ) α c + H q(1-α) p ∇w + 2 q(1-α) 2 + 1 .
By (3.6), we have q(1 -α) < 2 and this concludes the proof of Step 2.

Step 3. Conclusion.

By Lemma 3.1 we already know that u > -M for some M > 0. Hence we just have to show that the estimate (3.16) derived in Step 2 gives an estimate in the L ∞ (Ω) norm of w + 2 . Since w 2 satisfies (3.10) we can use Lemma 2.5 with

d = (1 + µ 2 w 2 )λc ln(1 + µ 2 w 2 ) µ 2 w 2 + µ 2 (h + A c) and f = h + A c.
Observe that, for any r ∈ ]0, 1[, there exists C > 0 such that, for all x ∈ Ω and all λ ≤ Λ 2 ,

λc (1 + µ 2 w 2 ) ln(1 + µ 2 w 2 ) µ 2 w 2 ≤ Cc(|w 2 | r + 1),
where C depends on Λ 2 , r, µ 2 .

Thus, since c(x) ∈ L p (Ω) with p > N 2 and w 2 is bounded in L 2N N -2 (Ω), taking r > 0 sufficiently small we see, using Hölder's inequality, that c(x)|w 2 (x)| r ∈ L p 1 (Ω) for some p 1 > N 2 . Now as h ∈ L p (Ω) for some p > N 2 , clearly all the assumptions of Lemma 2.5 are satisfied. From (3.16) we then deduce that there exists a constant D(Λ 1 ) > 0 with D(Λ 1 ) = O 0 + (e β/Λ 1 ) and β given by Step 2, such that

w + 2 ∞ ≤ D(Λ 1 ). Now since u + = g 2 (w + 2 ) we deduce that u + ∞ ≤ M (Λ 1 ) for some M (Λ 1 ) = O 0 + (1/Λ 1 ). Lemma 3.6. For every Λ 2 > 0, there exists A 1 > 0, independent of λ ∈ [0, Λ 2 ], such that the problem (3.3) has no solution for a ≥ A 1 . Proof. Let φ ∈ C ∞ 0 (Ω) such that Ω c(x)φ 2 dx > 0 and use φ 2 as test function in (3.3). Then we obtain Ω 1 |µ(x)| |∇φ| 2 dx ≥ 2 Ω φ∇u∇φ dx - Ω |µ(x)||∇u| 2 φ 2 dx = λ Ω c u φ 2 dx + Ω h φ 2 dx + a Ω c φ 2 dx ≥ λ min u Ω c φ 2 dx + Ω h φ 2 dx + a Ω c φ 2 dx.
Since, by Lemma 3.1, there exists M > 0 such that, for all a ≥ 0, any solution u satisfies u > -M , this gives a contradiction for a > 0 large enough.

Results

This section is devoted to the proof of our main results.

Proof of Theorem 1.2. Let C + ⊂ Σ be the continuum obtained in Theorem 1.1.

Either its projection Proj R C + on the λ-axis is R or its projection on the λ-axis is ] -∞, λ] with 0 < λ < +∞. In the first case, the result is proved. In the second case, as by Theorem 1.1 we know that C + is unbounded, its projection on C(Ω) has to be unbounded.

By Theorem 3.3 we know that for every 0 < Λ 1 < Λ 2 , there is an a priori bound on the solutions for λ ∈ [Λ 1 , Λ 2 ]. This means that the projection of Proof. Let u be a solution of (P λ ). Multiplying by ϕ 1 > 0 and integrating we have

C + ∩ ([Λ 1 , Λ 2 ] × C(Ω)) on C(Ω)
(γ 1 -λ) Ω cuϕ 1 dx = Ω µ|∇u| 2 ϕ 1 dx + Ω hϕ 1 dx > 0
which is a contradiction for λ = γ 1 . Hence (P λ ) has no solution for λ = γ 1 which proves that we are in the first situation in Theorem 1.2.

In order to consider the situation where (P 0 ) has a solution with min u < 0, we need the following lemmas. Lemma 4.2. Under assumption (A), for every λ ≥ 0, there exists a strict lower solution v λ of (P λ ) such that, every upper solution β of (P λ ) satisfies v λ ≤ β.

Proof. Let M > 0 be given by Corollary 3.2 such that, for every upper solution β of (4.1)

-∆u = λc(x)u + µ(x)|∇u| 2 -h -(x) -1, in Ω, u = 0, on ∂Ω, we have β ≥ -M .
Let k > M and consider α k the solution of

-∆v = -λkc(x) -h -(x) -1, in Ω, v = 0, on ∂Ω.
As -λkc(x) -h -(x) -1 < 0, we have α k 0 by the strong maximum principle.

Claim 1: Every upper solution β of (P λ ) satisfies β ≥ α k . In fact β = min{β j | 1 ≤ j ≤ l} where β 1 , . . . , β l are regular upper solutions of (P λ ). Setting w = β j -α k for some 1 ≤ j ≤ l we have

-∆w ≥ λc(x)(β j + k) ≥ 0, in Ω, w = 0, on ∂Ω.
By the maximum principle w ≥ 0 i.e. β j ≥ α k . This proves the Claim.

Consider then the problem

(4.2) -∆v = λc(x)T k (v) + µ(x)|∇v| 2 --(x) -1, in Ω, v = 0, on ∂Ω, where T k (v) = -k, if v ≤ -k, = v, if v > -k.
It is easy to prove that α k and β are lower and upper solutions of (4.2) and hence, by Theorem 2.1, this problem has a minimal solution v k with α k ≤ v k ≤ β.

Claim 2: Every upper solution β of (P λ ) satisfies β ≥ v k . Observe that, by construction of (4.2), every upper solution β of (P λ ) is also an upper solution of (4.2). As, by Claim 1, we have β ≥ α k , the minimality of v k implies that v k ≤ β.

Claim 3: v k is a lower solution of (P λ ). Observe that v k is an upper solution of (4.1). Hence v k ≥ -M > -k and v k satisfies

-∆v = λc(x)v + µ(x)|∇v| 2 -h -(x) -1, in Ω, v = 0, on ∂Ω.
This implies that v k is a lower solution of (P λ ).

Claim 4: v k is a strict lower solution of (P λ ). Let u be a solution of (P λ ) with

u ≥ v k . Then w = u -v k satisfies -∆w -µ(x) ∇u + ∇v k | ∇w ≥ λc(x)w + h + (x) + 1 ≥ 1, in Ω, w = 0, on ∂Ω.
By the strong maximum principle (see [START_REF] Troianiello | Elliptic differential equations and obstacle problems[END_REF]Theorem 3.27]), we deduce that w 0 i.e. u v k .

Remark 4.1. Lemma 4.2 shows that, for (P 0 ), to have an upper solution is equivalent to have a solution.

Proof of Theorem 1.3. We proceed in several steps.

Step 1: For all ε > 0, there exists R > 0 such that deg(I -M 0 , S) = 1 with

S = {u ∈ C 1 0 (Ω) | u 0 -ε u u 0 + ε, u C 1 < R}.
It is easy to prove that u 0 -ε and u 0 + ε are lower and upper solutions of (P 0 ). Moreover, as u 0 is the unique solution of (P 0 ), we deduce that u 0 -ε and u 0 + ε are strict lower and upper solutions of (P 0 ). The result then follows by Theorem 2.1.

Step 2: There exists a λ 0 > 0 such that deg(

I -M λ , S) = 1 for λ ∈ ]0, λ 0 [ with S defined in Step 1.
Let us prove first the existence of λ 0 > 0 such that, for λ ∈ ]0, λ 0 [, (P λ ) has no solution on ∂S. Otherwise, there exist a sequence {λ n } with λ n → 0 and a corresponding sequence of solution {u n } ⊂ W 2,p (Ω) of (P λ ) with u n ∈ ∂S. Increasing R if necessary, this means that u 0 -ε ≤ u n ≤ u 0 + ε and either max(u n -u 0 ) = ε or min(u n -u 0 ) = -ε. By Lemma 2.4 there exists a R > 0 such that, for all n ∈ N, u n W 2,p < R. Hence, up to a subsequence, u n → u in C 1 0 (Ω). From this strong convergence we easily observe that -∆u = µ(x)|∇u| 2 + h(x), in Ω, u = 0, on ∂Ω, and either max(u -u 0 ) = ε or min(u -u 0 ) = -ε i.e. u is a solution of (P 0 ) with u ∈ ∂S which contradicts Step 1.

We conclude by the invariance by homotopy of the degree that deg(I -M λ , S) = deg(I -M 0 , S) = 1.

Step 3: (P λ ) has two solutions when λ ∈ ]0, λ 0 [. By Step 2, the existence of a first solution u 0 -ε u λ,1 u 0 + ε is proved. Also, using Lemma 3.6, there exists A 1 > 0 large enough such that (3.3) has no solution for a ≥ A 1 . By Theorem 3.3 and Lemma 2.4 there exists a R 0 > R > 0 such that, for all a ∈ [0, A 1 ], every solution of (3.3) satisfies u C 1 < R 0 . Hence, by homotopy invariance of the degree, we have

deg(I -M λ , B(0, R 0 )) = deg(I -M λ -L -1 (A 1 c), B(0, R 0 )).
As for a = A 1 , the problem (3.3) has no solution, we have

deg(I -M λ -L -1 (A 1 c), B(0, R 0 )) = 0.
We then conclude that

deg(I -M λ , B(0, R 0 ) \ S) = deg(I -M λ , B(0, R 0 )) -deg(I -M λ , S) = -1.
This proves the existence of a second solution u λ,2 of (P λ ) with u λ,2 ∈ B(0, R 0 )\S.

Step 4: Existence of λ such that, for all λ ∈ ]0, λ[, the problem (P λ ) has at least two solutions with u λ,1 u λ,2 . Define λ = sup{µ | ∀λ ∈ ]0, µ[, (P λ ) has at least two solutions}.

For λ ∈ ]0, λ[, (P λ ) has at least two solutions u λ,1 and u λ,2 . Let us consider the strict lower solution α given by Lemma 4.2. As α ≤ u for all u solution of (P λ ), we can choose u λ,1 as the minimal solution with u λ,1 ≥ α. Hence we have u λ,1 u λ,2 as otherwise there exists a solution u with α ≤ u ≤ min(u λ,1 , u λ,2 ) which contradicts the minimality of u λ,1 . Now observe that, by convexity of y → |y| 2 , the function

β = 1 2 (u λ,1 + u λ,2
) is an upper solution of (P λ ) which is not a solution. Let us prove that β is a strict upper solution of (P λ ). Let u be a solution of (P λ ) with u ≤ β.

Then v := β -u satisfies -∆v -µ(x) ∇β + ∇u | ∇v ≥ λc(x)v ≥ 0, in Ω, v ≥ 0,
in Ω. By the strong maximum principle we deduce that either v 0 or v ≡ 0. If v ≡ 0, then β = u is solution which contradicts the construction of β. As u λ,1 β u λ,2 , we deduce from the fact that β is strict that u λ,1 β u λ,2 and hence we have proved the step.

Step 5: In case λ < +∞, the problem (P λ ) has at least one solution u. Let {λ n } ⊂ ]0, λ[ be a sequence such that λ n → λ and {u n } ⊂ W 2,p (Ω) be a sequence of corresponding solutions. By Theorem 3.3, there exists a constant M > 0 such that, for all n ∈ N, u n ∞ < M and, by Lemma 2.4, we have R > 0 such that, for all n ∈ N, u n W 2,p < R. Hence, up to a subsequence, u n → u in C 1 0 (Ω). From this strong convergence we easily observe that

-∆u = λc(x)u + µ(x)|∇u| 2 + h(x), in Ω, u = 0, on ∂Ω, namely u ∈ W 2,p ( 
Ω) is a solution of (P λ ).

Step 6: Uniqueness of the solution of (P λ ) in case λ < +∞. Otherwise, if we have two distincts solutions u 1 and u 2 of (P λ ), then, as in Step 4, we prove that β = 1 2 (u 1 + u 2 ) is a strict upper solution of (P λ ). Let us consider the strict lower solution α β of (P λ ) given by Lemma 4.2. By Theorem 2.1, we then have

R > 0 such that deg(I -M λ , S) = 1, where S = {u ∈ C 1 0 (Ω) | α u β, u C 1 < R}.

Arguing as in

Step 2, we prove the existence of ε > 0 such that, for all λ ∈ [λ -ε, λ + ε], deg(I -M λ , S) = 1 and, as in Step 3, we prove that (P λ ) has at least two solutions for λ ∈ [λ, λ + ε] which contradicts the definition of λ.

Step 7: Behaviour of the solutions for λ → 0. Let {λ n } ⊂ ]0, λ[ be a decreasing sequence such that λ n → 0. Without loss of generality, we suppose λ n ∈ ]0, λ 0 [. Then, by Steps 2 and 4, the corresponding solutions u λn,1 satisfy u λn,1 ≤ u 0 + ε. Recall that, by Corollary 3.2, there exists M > 0 such that, for all n, u λn,1 ≥ -M . This implies that the sequence {u λn,1 } is bounded in C(Ω). We argue then as in Step 5 to prove that u λn,1 → u in C 1 0 (Ω) with u solution of (P 0 ). By uniqueness of the solution of (P 0 ), we deduce that u = u 0 . Now let us consider the sequence {u λn,2 }. If {u λn,2 } is bounded, then as in Step 5, we have that u λn,2 → u in C 1 0 (Ω) with u solution of (P 0 ). By Step 3 and the facts that u λn,2 ∈ S, u λn,2 u λn,1 and u λn,1 → u 0 , we know that max{u λn,2 -u 0 } > ε. This implies that u = u 0 which contradicts the uniqueness of the solution of (P 0 ). Remark 4.2. Observe that, by the above proof, we see that the set of λ for which the problem (P λ ) has at least two solutions is open in ]0, +∞[. Proof of Theorem 1.4. We proceed in several steps.

Step 1: Every non-negative upper solution of (P λ ) satisfies u u 0 . If u is a non-negative upper solution of (P λ ) then u is an upper solution of (P 0 ). By Proposition 2.3 we deduce that u ≥ u 0 and hence u is not a solution of (P 0 ). As in Step 4 of the proof of Theorem 1.3, we prove that u u 0 .

Step 2: The problem (P λ ) has no non-negative solution for λ large. Let ϕ 1 > 0 the first eigenfunction of (1.1). If (P λ ) has a non-negative solution, multiplying (P λ ) by ϕ 1 > 0 and integrating we obtain

γ 1 Ω cuϕ 1 dx = - Ω ∆uϕ 1 dx = λ Ω cuϕ 1 dx + Ω µ|∇u| 2 ϕ 1 dx + Ω hϕ 1 dx,
and hence, for λ > γ 1 , as u ≥ u 0 , we have

0 ≥ (λ -γ 1 ) Ω cuϕ 1 dx + Ω µ|∇u| 2 ϕ 1 dx + Ω hϕ 1 dx ≥ (λ -γ 1 ) Ω cu 0 ϕ 1 dx + Ω µ|∇u| 2 ϕ 1 dx + Ω hϕ 1 dx
which gives a contradiction for λ large enough.

Step 3: Define λ = sup{λ | (P λ ) has a solution u λ ≥ 0}, then, λ < +∞ and, for all λ > λ, (P λ ) has no non-negative solution. This is obvious by definition of λ and Step 2.

Step 4: For all 0 < λ < λ, (P λ ) has well ordered strict lower and upper solutions.

Observe that u 0 is a lower solution of (P λ ) which is not a solution. By definition of λ, we can find λ ∈ ]λ, λ[ and a non-negative solution u λ of (P λ). Then u λ is an upper solution of (P λ ) which is not a solution and satisfies u λ ≥ u 0 by Step 1.

At this point following the arguments of Step 4 of the proof of Theorem 1.3, we prove that u 0 and u λ are strict lower and upper solutions of (P λ ).

Step 5: For all λ ∈ ]0, λ[, (P λ ) has at least two positive solutions with u 0 u λ,1 u λ,2 . By Step 4, Theorem 2.1 and Remark 2.2, we have R 0 > 0 such that deg(I -M λ , S) = 1 with

S = {u ∈ C 1 0 (Ω) | u 0 u u λ, u C 1 < R 0 }.
and we have the existence of a first solution u λ,1 of (P λ ) with u 0 ≤ u λ,1 ≤ u λ. Let us choose u λ,1 as the minimal solution between u 0 and u λ. Now, using Lemma 3.6, there exists A 1 > 0 large enough such that (3.3) has no solution for a ≥ A 1 . By Theorem 3.3 and Lemma 2.4 there exists R 1 > R 0 > 0 such that, for any a ∈ [0, A 1 ], every solution of (3.3) with u ≥ u 0 satisfies u C 1 < R 1 . Hence, by homotopy invariance of the degree we have

deg(I -M λ , D) = deg(I -M λ -L -1 (A 1 c), D), where D = {u ∈ C 1 0 (Ω) | u 0 u, u C 1 < R 1 }. As for a = A 1 , (3.3) has no solution, deg(I -M λ -L -1 (A 1 c), D) = 0 and we obtain deg(I -M λ , D \ S) = deg(I -M λ , D) -deg(I -M λ , S) = 0 -1 = -1.
This proves the existence of a second solution u λ,2 of (P λ ) with u λ,2 u 0 . As u λ,1 is the minimal solution between u 0 and u λ, we have u λ,1 u λ,2 as otherwise, by Theorem 2.1, we have a solution u with u 0 ≤ u ≤ min{u λ,1 , u λ,2 , u λ} which contradicts the minimality of u λ,1 . We proceed as in Step 4 of the proof of Theorem 1.3 to conclude that u λ,1 u λ,2 .

Step 6: For λ 1 < λ 2 , we have u λ 1 ,1 u λ 2 ,1 . As u λ,1 is the minimal solution above u 0 and, as in Step 4, u λ 2 ,1 is a strict upper solution of (P λ 1 ) with u λ 2 ,1 ≥ u 0 , we deduce that u λ 1 ,1 u λ 2 ,1 .

Step 7: The problem (P λ ) has at least one solution. Let {λ n } ⊂ ]0, λ[ be a sequence such that λ n → λ and {u n } ⊂ W 2,p (Ω) be a sequence of corresponding non negative solutions. We argue as in Step 5 of the proof of Theorem 1.3 to obtain that, up to a subsequence, u n → u in C 1 0 (Ω) with u ∈ W 2,p (Ω) solution of (P λ ).

Step 8: Uniqueness of the non-negative solution of (P λ ). The proof follows the lines of Step 6 of the proof of Theorem 1.3.

Step 9: Behaviour of the solutions for λ → 0. This can be proved as in Step 7 of the proof of Theorem 1.3. Proposition 4.3. Under assumption (A), assume that (P 0 ) has a solution u 0 ≤ 0 with cu 0 0. Then, for all λ ≥ 0, problem (P λ ) has at most one solution u ≤ 0.

Proof. The proof is divided in three steps.

Step 1: If u is a lower solution of (P λ ) with u ≤ 0, then u u 0 . In fact, u is a lower solution of (P 0 ) and, by Proposition 2.3, we have u ≤ u 0 . In addition for w = u 0 -u, as cu ≤ cu 0 0 we have

-∆w -µ(x) ∇u + ∇u 0 | ∇w = -λc(x)u 0, in Ω, w = 0, on ∂Ω.
This implies that w 0 i.e. u u 0 ≤ 0.

Step 2: If we have two solutions u 1 ≤ 0 and u 2 ≤ 0 of (P λ ) then we have two ordered solutions ũ1 ũ2 ≤ u 0 . By Step 1, we have u 1 u 0 and u 2 u 0 . In case u 1 and u 2 are not ordered, as u 0 is an upper solution of (P λ ), applying Theorem 2.1, there exists a solution u 3 of (P λ ) with max{u 1 , u 2 } ≤ u 3 ≤ u 0 . This proves the step by choosing ũ1 = u 1 and ũ2 = u 3 .

Step 3: Conclusion. Let us assume by contradiction that we have two solutions

u 1 ≤ 0 and u 2 ≤ 0. By Step 2, we can suppose u 1 u 2 . As |u 2 | 0, the set {v ∈ C 1 0 (Ω) | v ≤ |u 2 |} is an open neighborhood of 0 and hence the set {ε > 0 | u 2 -u 1 ≤ ε|u 2 |} is not empty. Then defining ε = inf{ε > 0 | u 2 -u 1 ≤ ε|u 2 |} we have that 0 < ε < ∞ and (4.3) ε = min{ε > 0 | u 2 -u 1 ≤ ε|u 2 |}.
Letting

w ε = (1 + ε)u 2 -u 1 ε we can write ∇u 2 = ( ε 1 + ε )∇w ε + ( 1 1 + ε)∇u 1 ,

and by convexity

|∇u 2 | 2 ≤ ( ε 1 + ε )|∇w ε| 2 + ( 1 1 + ε)|∇u 1 | 2 . We then obtain -∆w ε ≤ λc(x)w ε + µ(x)|∇w ε| 2 + h(x).
By the choice of ε > 0, w ε ≤ 0 and, by Step 1, w ε u 0 ≤ 0. At this point, we have a contradiction with the definition of ε given in (4.3).

Our next result can be viewed as a generalization of [2, Theorem 3.12].

Corollary 4.4. Under assumption (A), assume that h 0. Then, for all λ > 0, the problem (P λ ) has exactly one solution u ≤ 0.

Proof. Clearly u ≡ 0 is an upper solution of (P λ ) for all λ ≥ 0. By Lemma 4.2, for all λ ≥ 0, (P λ ) has a lower solution α λ ≤ 0. From Theorem 2.1 it follows that (P λ ) has a solution u λ with α λ ≤ u λ ≤ 0. Now, as u 0 satisfies

-∆u 0 = µ(x)|∇u 0 | 2 + h(x),
the strong maximum principle and h 0, implies that u 0 0 and in particular cu 0 0. We now conclude with Proposition 4.3.

Proof of Theorem 1.5. We proceed in several steps.

Step 1: For all λ > 0, u 0 is a strict upper solution of (P λ ). Clearly u 0 is an upper solution of (P λ ) which is not a solution. To prove that it is a strict upper solution, we argue as in Step 4 of the proof of Theorem 1.3.

Step 2: For all λ > 0, (P λ ) has a strict lower solution α with α ≤ β for all upper solution β of (P λ ). This is Lemma 4.2.

Step 3: For all λ > 0, (P λ ) has at least two solutions with

u λ,1 u 0 , u λ,1 u λ,2 and max u λ,2 > 0.
By Steps 1, 2 and Theorem 2.1, there exists a R > 0 such that deg(

I -M λ , S) = 1 with S = {u ∈ C 1 0 (Ω) | α u u 0 , u C 1 < R}.
In particular the existence of a first solution u λ,1 u 0 is proved.

The proof of the existence of a second solution u λ,2 with u λ,1 u λ,2 is derived exactly as in Step 3 and 4 of the proof of Theorem 1.3. By Proposition 4.3, we have max u λ,2 > 0.

Step 4: If λ 1 < λ 2 , then u λ 1 ,1 u λ 2 ,1 . As u λ 1 ,1 is a strict upper solution of (P λ 2 ) and u λ 2 ,1 is the minimal solution of (P λ 2 ), we have u λ 1 ,1 u λ 2 ,1 .

Step 5: Behaviour of the solutions for λ → 0. This can be proved as in Step 7 of the proof of Theorem 1.3.

Proof of Corollary 1.6. By the proof of Corollary 4.4, as h 0, we have the existence of a solution u 0 of (P 0 ) with u 0 0 and hence the result follows by Theorem 1.5.

Proof of Theorem 1.7. First observe that if (P λ ) has an upper solution β λ ≤ 0, then β λ satisfies also cβ λ 0 as otherwise, it is also an upper solution of (P 0 ), which contradicts the assumption (a) by Lemma 4.2 and Theorem 2.1.

Let us define λ = inf{λ ≥ 0 | (P λ ) has an upper solution β λ ≤ 0 with cβ λ 0}.

Let λ > λ. By definition of λ, there exists λ ∈ ]λ, λ[ such that (P λ) has an upper solution β λ ≤ 0 with cβ λ 0. Clearly β λ is an upper solution of (P λ ) which is not a solution and hence, as in Step 4 of the proof of Theorem 1.3, β is a strict upper solution of (P λ ). By Lemma 4.2, (P λ ) has a strict lower solution α ≤ β λ and α ≤ u for all solution u of (P λ ). Using Theorem 2.1 there exists R > 0 such that deg(

I -M λ , S) = 1 with S = {u ∈ C 1 0 (Ω) | α u β λ, u C 1 < R}.
In particular the existence of a first solution u λ,1 0 follows.

To obtain a second solution u λ,2 satisfying u λ,1 u λ,2 we now just repeat the arguments of Steps 3 and 4 of the proof of Theorem 1.3.

Again, following the arguments of Step 4 of the proof of Theorem 1.5, we prove that if

λ 1 < λ 2 , then u λ 1 ,1 u λ 2 ,1 .
To show that (P λ ) has at least one solution with u ≤ 0, let {λ n } ⊂ ]λ, +∞[ be a decreasing sequence such that λ n → λ and {u n } ⊂ W 2,p (Ω) be a sequence of corresponding solutions with u n ≤ u n+1 ≤ 0. As {u n } is increasing and bounded above, there exists M > 0 such that, for all n ∈ N, u n ∞ < M and hence, arguing as in Step 5 of the proof of Theorem 1.3, we prove that (P λ ) has at least one solution with u ≤ 0.

By assumption (a), we have that λ > 0 as we just proved that (P λ ) has at least one solution with u ≤ 0. The proof of the uniqueness of the non-positive solution of (P λ ) follows then as in Step 6 of the proof of Theorem 1.3. Finally (iii) follows by definition of λ > 0 and the first part of the proof.

Proof of Theorem 1.8. Let λ > ν 1 . We proceed in several steps.

Step 1: For k > 0 small, (Q λ,k ) admits a solution. In view of Lemma 4.2 and of Theorem 2.1 it suffices to show that (Q λ,k ) admits an upper solution.

Let ε 0 > 0 be given by Proposition 2.6 corresponding to c = c, d = µ 2 hand h = µ 2 h+ and choose λ 0 ∈ ]ν 1 , min(ν 1 + ε 0 , ν 1 + λ-ν 1 2 )]. Then let w 0 be the solution of

-∆u + µ 2 h-u = λ 0 cu + µ 2 h+ , in Ω, u = 0,
on ∂Ω. Also taking δ > 0 small enough we have that

λ 0 s ≥ (1 + λs) ln(1 + λs)
for all s ∈ [-δ, 0]. Thus defining βk = k λ w for k > 0 small enough, it follows that βk ∈ [-δ, 0] and

-∆ βk + µ 2 h- βk ≥ c(1 + λ βk ) ln(1 + λ βk ) + k µ 2 λ h+ , in Ω, βk = 0, on ∂Ω.
At this point defining β k = 1 µ 2 ln(λ βk +1) we see, after some standard calculations, that β k 0 is an upper solution for (Q λ,k ).

Step 2: For k large, the problem (Q λ,k ) has no solution. Let φ ∈ C ∞ 0 (Ω) such that φ 2 0. Then, using φ 2 as test function we obtain, by Lemma 3.1,

Ω 1 µ(x) |∇φ| 2 dx ≥ 2 Ω φ ∇u, ∇φ dx - Ω µ(x)|∇u| 2 φ 2 dx = λ Ω cuφ 2 dx + k Ω h+ φ 2 dx - Ω h-φ 2 dx ≥ -λM Ω cφ 2 dx + k Ω h+ φ 2 dx - Ω h-φ 2 dx
which is a contradiction for k > 0 large enough.

Step 3: Define 

k = sup{k ∈ ]0, +∞[ | the problem (Q λ,
-∆β = λc(x)β + k k µ(x)|∇β| 2 + k h+ (x) -k k h-(x) ≥ λc(x)β + µ(x)|∇β| 2 + k h+ (x) -h-(x), in Ω, β ≥ 0, on ∂Ω,
i.e. β is an upper solution of (Q λ,k ). Now, as in Step 4 of the proof of Theorem 1.4 we can prove that β is a strict upper solution of (Q λ,k ).

Step 4: Conclusion. At this point the proof follows as in the proof of Theorems 1.4 or 1.5. This is possible in view of Step 2 and of Theorem 3.3.

Proof of Corollary 1.9. First observe that, by [START_REF] Arcoya | Continuum of solutions for an elliptic problem with critical growth in the gradient[END_REF]Lemma 6.1] (see also the proof of Corollary 4.1 above), we know that (P γ 1 ) has no solution. Hence also, for all λ > 0, (P λ ) has no solution with cu ≡ 0 as otherwise u is solution for every λ ∈ R which contradicts the non existence of a solution for λ = γ 1 .

By Step 3 of the proof of Theorem 1.8, there exists k > 0 such that, for all k ∈ ]0, k], the problem (P λ) has a strict upper solution β 0 with β 0 0. The existence of λ 2 > γ 1 as in (iii) can then be deduced from Theorem 1.7.

By [START_REF] Arcoya | Continuum of solutions for an elliptic problem with critical growth in the gradient[END_REF]Theorem 1.1], decreasing k if necessary, we know that for all k ∈ ]0, k], the problem (P 0 ) has a solution u 0 0. Hence the existence of λ 1 as in (i) can be deduced from Theorem 1.4.

Proof of Theorem 1.10. First observe that, for all λ ∈ R, u ≡ 0 is solution of (1.5).

Step 1: for all λ ∈ ]0, γ 1 [, the problem (1.5) has a second solution u λ,2 0. Let us prove that the problem (1.5) has a strict upper solution β 0. To this end, let λ < γ 1 and ε > 0 such that, for all v ∈ [0, ε], λ (1+µ 2 v) ln(1+µ 2 v) µ 2 ≤ γ 1 v. Consider then the function β = εϕ 1 where ϕ 1 denotes the first eigenfunction of (1.1) with ϕ 1 ∞ = 1 and observe that

-∆ β λc(x) (1 + µ 2 β) ln(1 + µ 2 β) µ 2
, a.e. in Ω, β = 0, on ∂Ω.

Hence for β being defined by β = ln(µ 2 β+1) µ 2

, we have

-∆β λc(x)β + µ 2 |∇β| 2 ≥ λc(x)β + µ(x)|∇β| 2 , a.e. in Ω, β = 0, on ∂Ω.
This implies, as in Step 4 of the proof of Theorem 1.3, that β 0 is a strict upper solution of (1.5).

By [START_REF] Arcoya | Continuum of solutions for an elliptic problem with critical growth in the gradient[END_REF]Lemma 6.1], we know that, every solution u of (1.5) satisfies u ≥ 0 and by Lemma 4.2, the problem (1.5) has a strict lower solution α 0. Hence we conclude the proof of (i) following the same lines as in the proof of Theorem 1.4, the solution u λ,1 being u ≡ 0.

Step 2: For λ = γ 1 the problem (1.5) has only the trivial solution. This can be proved as in Corollary 4.1.

Step 3: For λ > γ 1 , the problem (1.5) has a second solution u λ,2 0. Let λ > γ 1 and λ 0 ∈ ]γ 1 , λ] such that, by Proposition 2.6, the problem (4.4)

-∆u = λ 0 c(x)u + 1, u ∈ H 1 0 (Ω) ∩ L ∞ (Ω) has a solution u 0. This implies that for ε > 0 small enough, the function

β 0 = εu satisfies -∆β 0 = λ 0 c(x)β 0 + ε ≥ λ 0 c(x)β 0 + µε 2 |∇u| 2 = λ 0 c(x)β 0 + µ|∇β 0 | 2
and the problem (P λ 0 ) has an upper solution β 0 with β 0 ≤ 0 and cβ 0 0. The result follows by Theorem 1.7.

Complement in case µ constant

First observe that, in the case µ constant, we have a necessary and sufficient condition for the existence of a solution of (P 0 ). Proof. By [3, Remark 3.2], we know that, if (P 0 ) has a solution then inf

{u∈H 1 0 (Ω)| u H 1 0 (Ω) =1} Ω |∇u| 2 -µh(x)u 2 dx > 0,
and hence ξ 1 (c) > 0.

On the other hand, if ξ 1 (c) > 0, this implies that the problem -∆w -µhw = µh + , in Ω, w = 0, on ∂Ω, has a positive solution w. It is then easy to prove that β = 1 µ ln(w + 1) is a positive upper solution of (P 0 ). As, by Lemma 4.2, (P 0 ) has a lower solution α ≤ β, we conclude by application of Theorem 2.1. Proposition 5.2. Assume that (A) holds with µ a positive constant and that there exists a sequence {λ n } ⊂ ]0, +∞[ with λ n → 0 and two sequences {u λn }, {ũ λn } of solutions of (P λn ) such that λ n u λn ∞ → 0 and λ n ũλn ∞ → 0, as λ n → 0. Then, for any n ∈ N sufficiently large, u λn = ũλn .

Proof. If u n is a solution of (P λn ) by the change of variable u n = 1 µ ln(v n + 1) we have that v n > -1 is solution of (5.1)

-∆v n -µhv n = λ n c (1 + v n ) ln(1 + v n ) + µh, in Ω, v n = 0, on ∂Ω. Setting D(λ n ) := u n ∞ , since v n = e µun -1 we deduce that v n ∞ ≤ C(λ n ) where C(λ n ) = e µD(λn) -1. Now observe that if we assume that λ n D(λ n ) → 0 then lim λn→0 λ n (ln(1 + C(λ n )) + 1) = lim λn→0 λ n D(λ n ) = 0.
As, by Proposition 5.1, ξ 1 (c) > 0, there exists n 0 ∈ N such that, for all n ≥ n 0

λ n (ln(1 + C(λ n )) + 1) < ξ 1 (c).
If we assume by contradiction that, for n ≥ n 0 , u λn = ũλn then (5.1) has also two distinct solutions v n,1 and v n,2 and w n = v n,1 -v n,2 is a solution of (5.2)

-∆w -µhw = λ n c ρ n (x) w, in Ω, w = 0, on ∂Ω

Case N = 1 and open problems

In case Ω = [-T 2 , T 2 ] i.e. N = 1 and µ > 0, c > 0 and h = 0 are constants, we can make a more precise study of the situation.

By the classical change of variable v = e µu -1, we are reduce to the problem (6.1)

-v -µhv = λ(v + 1) ln(v + 1) + µh, in [-T 2 , T 2 ] v > -1, in [-T 2 , T 2 ] v(-T 2 ) = 0, v( T 2 ) = 0.
It is easy to prove that in case λ = 0 this problem has a solution if and only if µ h < (π/T ) 2 which corresponds to the condition (1.2).

As this problem is autonomous, we can make a phase-plane analysis. There are three different situations: h > 0 and λ > 0 small, h > 0 and λ large, h < 0.

Case 1: 0 < λ < 2µh. In that case the phase plane is given by v v -1

We then see that the only possibility is to have positive solutions. Moreover considering the time map T + (a) which gives the time for the positive part of the orbit to go from (0, a) to (0, -a) with a > 0, it is easy to prove that This implies the existence of T 0 > 0 such that, for all T < T 0 , the problem (6.1) has two solutions and, for T > T 0 the problem (6.1) has no solution. Numerical experiment shows that the count is exact. This corresponds to what we prove in Theorem 1.4 together with [3, Lemma 6.1] where it is shown that, in case h 0, for all λ < γ 1 , every solution of (P λ ) is non-negative.

Open problem 1 Can we prove that, for all λ < γ 1 , every solution of (P λ ) is non-negative under the sole condition that (P 0 ) has a solution u 0 with u 0 ≥ 0 and cu 0 0? Open problem 2 Can we prove, under the assumptions of Theorem 1.4 or even under the assumptions of Theorem 1.3, that, for all λ < γ 1 , we have at most two solutions? Case 2: λ > 2µh > 0. In that case the phase plane is richer and is given by

v v -1
We see the possibilities of positive solutions but also of negative or sign-changing ones.

We can prove that if µ h ≥ (π/T ) 2 or λ ≥ (π/T ) 2 then the problem (6.1) has no non-negative solutions i.e. the time T + (a) for the positive part of the orbit to go from (0, a) to (0, -a) with a > 0 is too short with respect to the length of the interval we consider.

For what concerns negative or sign-changing solutions, we see that, if we denote by T 0 the time needed by the solution with max ]-T 2 , T 2 [ u = 0 to make a turn in the phase plane, then for T > T 0 , there is a negative solution as well as a signchanging one. This is the situation studied in Theorem 1.7.

But for T > kT 0 we have also solutions making k turns in the phase plane.

Open problem 3 Can we prove in Theorem 1.7 that the second solution changes sign?

Open problem 4 Can we prove that in a small interval below λ in Theorem 1.7, the problem (P λ ) has no solution and that u λ ≤ 0 but u λ 0 ?

Open problem 5 Can we prove the existence of more then two solutions for λ large? Is there a link with the spectrum of the problem (6.2)

-∆ϕ 1 = γc(x)ϕ 1 , ϕ 1 ∈ H 1 0 (Ω)?

Case 3: h < 0. In that case, the phase portrait is given by v v -1

and we see that we have always a negative solution. Moreover, if we denote by T 1 the time needed by the solution with min ]-T

, T

2 [ u = 0 to make a turn in the phase plane, then, for T < T 1 the problem (6.1) has a positive solution (as again, considering the time map T + (a) which gives the time for the positive part of the orbit to go from (0, a) to (0, -a) with a > 0, we have lim a→+∞ T + (a) = 0) and for T > T 1 we have a sign-changing solution. This is the situation considered in Theorem 1.5.

Open problem 6 Can we prove in Theorem 1.5 that the second solution is positive for λ > 0 small and changes sign for λ large? Moreover, for T > kT 1 we have also solutions making k turns in the phase plane.

Open problem 7

As in open problem 5, can we prove the existence of more then two solutions for λ large?

In addition to the above open problems directly induced by the phase plane analysis, we also propose the following questions.

Open problem 8 Can we give a more precise characterization of the situation in case h changes sign or u 0 changes sign?

Open problem 9 In [START_REF] Souplet | A priori estimates for elliptic equations involving indefinite gradient terms with critical growth[END_REF] some a priori bounds for non-negative solutions have been derived without assuming that µ(x) ≥ µ 1 > 0. Can a similar result be obtained in the general case ?

Open problem 10 In [START_REF] Arcoya | Continuum of solutions for an elliptic problem with critical growth in the gradient[END_REF], the results are obtained under less regularity assumptions (c, h ∈ L p (Ω) with p > N/2). In [START_REF] Abdellaoui | Elliptic problems with a Hardy potential and critical growth in the gradient: Non-resonance and blow-up results[END_REF], the regularity is even weaker. If some of our results are still valid when (A) is weakened, how dependent is the structure of the set of solutions of our regularity assumption ? 7. Appendix : Proof of Theorem 2.1.

Let us denote α := max{α i | 1 ≤ i ≤ k} where α 1 , . . . , α k are regular lower solutions of (2.1) and β = min{β j | 1 ≤ j ≤ l} where β 1 , . . . , β l are regular upper solutions of (2.1). The proof is divided into three parts. Part 1. Existence of a solution u of (2.1) with α ≤ u ≤ β. Observe that by Lemma 2.4, there exist R > 0 such that, for every function f satisfying (2.4) and every solution u of (2.1) with α ≤ u ≤ β, we have Then we consider the modified problem (7.2) -∆u = F (x, u, ∇u), in Ω, u = 0, on ∂Ω.

Notice that F is a L p -Carathéodory function and that there exists γ ∈ L p (Ω), such that |F (x, s, ξ)| ≤ γ(x), for a.e. x ∈ Ω and every (s, ξ) ∈ R × R N .

Step 2. Every solution u of (7.2) satisfies α ≤ u ≤ β. Let u be a solution of (7. Similarly, one proves that u ≤ β.

Step 3. Every solution of (7.2) is a solution of (2.1) and satisfies α ≤ u ≤ β. In

Step 2, we proved that every solution u of (7.2) satisfies α ≤ u ≤ β and hence is a solution of -∆u = f (x, u, ∇u), in Ω, u = 0, on ∂Ω.

As f satisfies (2.4), we have u C 1 (Ω) < R and hence u is a solution of (2.1).

Step 4. Problem The operator M is continuous, has a relatively compact range and its fixed points are the solutions of (7.2). Hence there exists a constant R > 0, that we can suppose larger than R, such that, for every u ∈ C 1 (Ω), Furthermore, by the excision property of the degree (see, e.g., [START_REF] Zeidler | Nonlinear Functional Analysis and its Applications I: Fixed Point Theorems[END_REF]), we get from (7.1) and (7. This ends the proof.

Mu C 1 (Ω) < R,

Figure 1 . 4 λ u 0 Figure 2 .

 1402 Figure 1. Illustration of Theorem 1.4

Figure 3 .

 3 Figure 3. Illustration of Theorem 1.7

λ γ 1 Figure 5 .

 15 Figure 5. Illustration of Theorem 1.10

Corollary 4 . 1 .

 41 is bounded. Now by Lemma 3.1 there is a lower bound on the solutions for λ ≤ Λ 2 . Thus C + must emanate from infinity to the right of λ = 0 with the positive part of the corresponding solution blowing up to infinity. Under assumption (A) and assuming that (P 0 ) has a solution, let ϕ 1 > 0 the first eigenfunction of (1.1). If Ω hϕ 1 dx ≥ 0, then we are in case (i) of Theorem 1.2 and max Proj R C + < γ 1 .

  k ) has at least one solution}, then k ∈ ]0, +∞[ and for k ∈ ]0, k[, the problem (Q λ,k ) has a strict upper solution.By Step 1 and 2 we have easilyk ∈ ]0, +∞[. Let k ∈ ]0, k[ and k ∈ ]k, k[ be such that (Q λ, k) has a solution β. Then β = k k βis an upper solution of (Q λ,k ) as

Proposition 5 . 1 .

 51 Assume that (A) holds with µ a positive constant. Then (P 0 ) has a solution if and only if the first eigenvalue ξ 1 (c) of the problem -∆w -µhw = ξ c w, in Ω, w = 0, on ∂Ω, satisfies ξ 1 (c) > 0.

1 .F

 1 Construction of a modified problem. Take R such that R > max{R, max1≤i≤k α i C 1 , max 1≤j≤l β j C 1 }and set for a.e. x ∈ Ω and every (s,ξ) ∈ R × R N , f (x, s, ξ) = f (x, s, ξ), if |ξ| ≤ R, f (x, s, R ξ |ξ| ), if |ξ| > R. Now we define the functions p i (x, s, ξ) = f (x, α i (x), ξ) + ω 1,i (x, α i (x) -s), if s < α i (x), f (x, s, ξ), if s ≥ α i (x),whereω 1,i (x, δ) = max |ξ|≤δ |f (x, α i (x), ∇α i (x) + ξ) -f (x, α i (x), ∇α i (x))|,andq j (x, s, ξ) = f (x, β j (x), ξ) -ω 2,j (x, s -β j (x)), if s > β j (x), f (x, s, ξ), if s ≤ β j (x),whereω 2,j (x, δ) = max |ξ|≤δ |f (x, β j (x), ∇β j (x) + ξ) -f (x, β j (x), ∇β j (x))|,for i ∈ {1, ..., k} and j ∈ {1, ..., l}. At last, we define for a.e. x ∈ Ω and every(s, ξ) ∈ R × R N , x, s, ξ), if s ≤ α(x),f (x, s, ξ), if α(x) < s < β(x), min 1≤j≤l q j (x, s, ξ), if s ≥ β(x).

  2). Assume by contradiction that min Ω (u -α) < 0. Let i ∈ {1, . . . , k} andx ∈ Ω such that min Ω (u -α) = min Ω (u -α i ) = (u -α i )(x) < 0. Define v = u -α i . As v ≥ 0 on ∂Ω we have x ∈ Ω. Therefore ∇v(x) = 0 and there is an open ball B ⊆ Ω, with x ∈ B such that, a.e. in B, |∇v(x)| ≤ |v(x)|, v(x) < 0 and -∆v ≥ F (x, u(x), ∇u(x)) -f (x, α i (x), ∇α i (x)) ≥ f (x, α i (x), ∇u(x)) + ω 1i (x, α i (x) -u(x)) -f (x, α i (x), ∇α i (x)) ≥ -ω 1i (x, |∇v(x)|) + ω 1i (x, |v(x)|) ≥ 0,as ω 1i (x, •) is increasing and |v(x)| ≥ |∇v(x)|. This contradicts the strong maximum principle.

( 7 . 2 )

 72 has at least one solution. Let us consider the solution operator M : C 1 (Ω) → C 1 (Ω) associated with (7.2), which sends any function u ∈ C 1 (Ω) onto the unique solution v ∈ W 2,p (Ω) of -∆v = F (x, u, ∇u), in Ω, v = 0, on ∂Ω.

Part 3 .

 3 and hence (see, e.g.,[START_REF] Zeidler | Nonlinear Functional Analysis and its Applications I: Fixed Point Theorems[END_REF])(7.3) deg(I -M, B(0, R)) = 1, where I is the identity operator in C 1 (Ω) and B(0, R) is the open ball of center 0 and radius R in C 1 (Ω). Therefore M has a fixed point and problem (7.2) has at least one solution.Step 5. Problem (2.1) has at least one solution. By Step 4, we get the existence of a solution u of the problem (7.2) and Step 2 implies that u is a solution of (2.1) satisfying α ≤ u ≤ β. Part 2. Existence of extremal solutions. We know, from Part 1, that the solutions u of (2.1), with α ≤ u ≤ β, are precisely the fixed points of the solution operator M associated with (7.2). SetH = {u ∈ C 1 (Ω) | u = Mu}.H is a non-empty compact subset of C 1 (Ω). Next, for each u ∈ H, define the closed set C u = {z ∈ H | z ≤ u}. The family {C u | u ∈ H} has the finite intersection property, as it follows from Part 1 observing that if u 1 , u 2 ∈ H, then min{u 1 , u 2 } is an upper solution of (7.2) with α ≤ min{u 1 , u 2 }. Hence C u 1 ∩ C u 2 = ∅. By the compactness of H there exists v ∈ u∈H C u ; clearly, v is the minimum solution in [α, β] of (2.1) in Ω. Degree computation. Now, let us assume that α and β are strict lower and upper solutions respectively. Since there exists a solution u of (2.1), which satisfies α ≤ u ≤ β, and every such solution satisfies α u β, it follows that α β. Hence S is a non-empty open set in C 1 (Ω) and there is no fixed point either of M or of M on its boundary ∂S. Moreover, by (7.1), the sets of fixed points of M and M coincide on S ∩ B(0, R) and we have deg(I -M, S ∩ B(0, R)) = deg(I -M, S ∩ B(0, R)).

  3) deg(I -M, B(0, R)) = 1. Finally, since all fixed points of M are in S ∩ B(0, R), we conclude deg(I -M, S ∩ B(0, R)) = deg(I -M, S ∩ B(0, R)) = deg(I -M, B(0, R)) = 1.
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with

and by assumption 0 < λ n ρ n < ξ 1 (c).

As (5.2) has a nontrivial solution, we have ξ i (λ n cρ n ) = 1 for some i ∈ N. Moreover, as λ n ρ n < ξ 1 (c), we know by [START_REF] De Figueiredo | Strict monotonicity of eigenvalues and unique continuation[END_REF] 

. This contradicts that the sequence of eigenvalues (ξ i (c)) i is strictly increasing and proves the proposition.

Under the assumption that µ is constant, the following lemma gives informations on the set of solutions of (P λ ) for λ > 0 small. Corollary 5.3. Assume that assumption (A) holds with µ a positive constant and that (P 0 ) has a solution u 0 . Let {u λn } be a sequence of solutions of (P λn ) satisfying λ n u λn ∞ → 0 as λ n → 0. Then we have, for any n ∈ N sufficiently large, (i) u λn = u λn,1 where u λn,1 is the minimal solution given in Theorem 1.3. In particular u λn → u 0 in C 1 0 (Ω). (ii) (λ n , u λn ) belongs to C + where C + is defined in Theorem 1.1.

Proof. Since {u λn,1 } satisfies λ n u λn,1 ∞ → 0 as λ n → 0 it directly follows from Proposition 5.2 that, for any n ∈ N large enough, u λn = u λn,1 . In particular it follows from Theorem 1.3 that u λn → u 0 in C 1 0 (Ω). Now by Theorem 1.1 we know that, for n ∈ N large enough, there exists u λn such that (λ n , u λn ) ∈ C + . Since, by continuity, we have that λ n u λn ∞ → 0 we deduce by (i) that u λn = u λn,1 . Thus u λn = u λn . Also using again that λ n u λn,1 ∞ → 0 as λ n → 0, we immediately deduce from Proposition 5.2 the following result. for some C > 0 is sharp.