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Climate change science is increasingly concerned with methods for managing and integrating sources of uncertainty

from emission storylines, climate model projections, and ecosystem model parameterizations. In tropical ecosystems,

regional climate projections and modeled ecosystem responses vary greatly, leading to a significant source of

uncertainty in global biogeochemical accounting and possible future climate feedbacks. Here, we combine an

ensemble of IPCC-AR4 climate change projections for the Amazon Basin (eight general circulation models) with

alternative ecosystem parameter sets for the dynamic global vegetation model, LPJmL. We evaluate LPJmL

simulations of carbon stocks and fluxes against flux tower and aboveground biomass datasets for individual sites

and the entire basin. Variability in LPJmL model sensitivity to future climate change is primarily related to light and

water limitations through biochemical and water-balance-related parameters. Temperature-dependent parameters

related to plant respiration and photosynthesis appear to be less important than vegetation dynamics (and their

parameters) for determining the magnitude of ecosystem response to climate change. Variance partitioning

approaches reveal that relationships between uncertainty from ecosystem dynamics and climate projections are

dependent on geographic location and the targeted ecosystem process. Parameter uncertainty from the LPJmL model

does not affect the trajectory of ecosystem response for a given climate change scenario and the primary source of

uncertainty for Amazon ‘dieback’ results from the uncertainty among climate projections. Our approach for

describing uncertainty is applicable for informing and prioritizing policy options related to mitigation and adaptation

where long-term investments are required.

Keywords: climate change, forest dieback, Latin hypercube, photosynthesis, variance partitioning, vegetation dynamics,

water-use

Introduction

Climate change research is increasingly concerned with

quantifying carbon cycle feedbacks, their probability,

and ecological impacts in the context of setting mitiga-

tion and adaptation policy (Friedlingstein et al., 2003;

Cox & Stephenson, 2007; Sitch et al., 2008). These issues

are especially relevant in tropical ecosystems where

changes in carbon fluxes and stocks may have dispro-

portionately larger effects on global biogeochemistry

and climate than in other regions (Cox et al., 2004;

Raddatz et al., 2007; Bonan, 2008; Sitch et al., 2008).

The Amazon Basin, for example, is categorized as a

terrestrial biogeochemical ‘hotspot’ where climate

change and deforestation may lead to massive losses

of carbon that acts as a positive feedback to rising

atmospheric CO2 concentrations (Cox et al., 2008;

Lenton et al., 2008; Nepstad et al., 2008). The probabi-

lity of climate change driven Amazon ‘dieback’ (i.e.,

the rapid change in vegetation cover, from forest to

nonforest, which may include the release of Amazon

forest carbon stocks to the atmosphere) remains

a subject of much debate within the climate and

vegetation modeling community, in part because of

the range of sensitivity of ecosystem model respon-

ses to drought but also due to the wide range of

projected climate scenarios for South America (Salazar

et al., 2007; Li et al., 2008; Sitch et al., 2008).

The temporal and spatial dynamics of future carbon

cycle feedbacks remain for the most part, probabilistic,

because they accumulate uncertainty from multiple
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sources ranging from greenhouse gas emission story-

lines (Nakicenovic, 2000), variations between climate

sensitivity of general circulation models (GCMs)

(Li et al., 2006), and differences among the parameter-

ization of terrestrial ecosystem models (Cramer et al.,

2001). Within these primary sources of uncertainty

exists differences between process formulations that

vary among models and their representation of earth

system dynamics. Beyond the level of ‘first principles,’

where processes are governed by well-established phy-

sical laws, many parameters and processes include

uncertainty because of their different theoretical and

empirical foundations, for example, relating leaf re-

spiration to a Q10 function vs. leaf nitrogen content.

Variability is also inherent to ecological systems, result-

ing from genetic or phenotypic variation and may often

be overlooked in modeling because of the necessity to

generalize certain concepts within a hypothesis testing

framework, such as the concept of plant functional

types (PFTs) (Prentice et al., 2007). In this context,

climate impact science generally proceeds within a risk

assessment framework to inform management and

policy decisions related to adaptation and mitigation

(Jones, 2001; Cox & Stephenson, 2007).

Constraining parameter and process uncertainty

within climate and vegetation models is challenging

in tropical regions because of the complexity of ecosys-

tem–climate feedbacks (Werth & Avissar, 2004) and the

diversity and abundance of tropical plant species and

their functional traits (Reich, 1995). Tropical climate

projections from atmospheric GCMs vary widely, with

some models representing 20th century climate patterns

more realistically than others (Li et al., 2006). Observa-

tional data (i.e., remote sensing and field inventories)

that might be used for model calibration and evaluation

are often problematic, because of their coarse spatial

resolution or limited spatial coverage of field sites

(Phillips et al., 2002). Remote sensing and eddy covar-

iance data may also be biased because of the presence of

seasonal cloud cover or atmospheric stability problems

(Saleska et al., 2003; Kobayashi & Dye, 2005). Tropical

aboveground biomass and carbon fluxes can be strongly

influenced by site specific disturbance histories (Friend

et al., 2007), soil nutrient status (e.g., the presence of

‘terra preta’ soils) and hydrologic conditions (i.e., terra

firme uplands vs. seasonally inundated floodplain for-

ests) that are not represented in regional to global scale

models.

Probabilistic modeling can utilize and integrate these

sources of uncertainty by using model variance parti-

tioning and signal-to-noise ratio approaches to better

quantify the robustness of projected ecosystem change.

An improved understanding of the relative contribution

of model parameters to uncertainty can also help guide

data assimilation approaches to estimate model para-

meters and better target future field research objectives.

There are many examples of earth system model un-

certainty analysis that have focused on ecosystem mod-

el parameter uncertainty (Hallgren & Pitman, 2000;

Zaehle et al., 2005; Wramneby et al., 2008; Xu et al.,

2009), process formulation (Huntingford et al., 2008;

Galbraith D, Huntingford C, Cox PM, Levy PE, Sitch

S, Meir P, Williams M, unpublished results), and climate

projection variability (Zaehle et al., 2007) including

coupled vegetation-climate dynamics (Alton et al.,

2007). However, few approaches have explicitly exam-

ined the combination of vegetation model uncertainty

in the context of climate projection ensemble variability.

The objectives of this paper are to evaluate the spatio-

temporal dynamics of ecosystem parameter importance

to 21st century climate change using the LPJmL dynamic

global vegetation model (DGVM) (Sitch et al., 2003;

Bondeau et al., 2007). We approach this problem by

focusing on the importance of LPJmL parameters using

Latin hypercube sampling methods and Monte Carlo

simulations in a two-stage process. First, we compared

simulated output against observations for six tropical

flux tower locations. This analysis identified the most

important ecosystem model parameters responsible for

simulation uncertainty. In the second stage, we con-

ducted basin-wide simulations with climate data from

eight GCMs to investigate the uncertainty of tropical

ecosystem dynamics from the year 2000 to 2100. These

simulations identified the relative importance of para-

meters controlling changes in carbon and vegetation

dynamics, and provided the basis for partitioning un-

certainty between LPJmL and the GCM ensemble.

Materials and methods

LPJmL model description

For this study, we used the LPJmL DGVM modified to include

cropland dynamics (Sitch et al., 2003; Bondeau et al., 2007). This

version also includes an updated hydrologic cycle (Gerten

et al., 2004) and modifications to leaf ‘dark’ respiration to

represent the formulation presented in Haxeltine & Prentice

(1996a). Additional changes also include (1) changes to tropi-

cal drought deciduous (TrRG) phenology, whereby TrRG drop

leaves only due to moisture stress and (2) the lowering of

maximum establishment rate for seedlings from 0.24 to 0.12

individuals per square meter. Both changes were implemented

to stabilize vegetation and carbon dynamics and we explore

their significance with their inclusion in the Latin hypercube

parameter set (described in ‘Parameter selection approach’).

LPJmL estimates daily photosynthesis and transpiration

for nine PFTs that are distinguished by their photosynthetic

pathway (C3 or C4), physiognomy (woody or herbaceous), and

phenology (deciduous or evergreen). Carbon is allocated to
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various above and belowground pools and competition be-

tween individuals occurs for light and water. A fire distur-

bance module simulates consumption of biomass and

resulting mortality (Thonicke et al., 2001). The LPJ-DGVM

framework has been extensively validated at global scales

(Sitch et al., 2003) and for temperate and boreal regions

(Hickler et al., 2006), this study is the among first to evaluate

LPJ against tropical flux tower data.

Two sets of model simulations were performed. The first

focused on evaluating LPJmL against flux tower measure-

ments and observed climate, selected along a precipitation

gradient (Table 1) with a full set of 41 perturbed parameters

(‘Parameter selection approach’). The second analysis evalu-

ated entire Amazon Basin-wide responses with a subset of

these parameters to an ensemble of climate change projections.

We confined our analysis to the spatial and temporal patterns

of LPJmL outputs for carbon stocks and fluxes for the flux

tower comparison and to carbon stocks and plant cover for the

basin-wide simulations. The model simulations (‘Datasets and

Simulation Protocol’) included ecological effects from the

wildfire disturbance module, and focused on the natural

dynamics of Amazonian forests. Although cropland dynamics

are an important feature of tropical land cover change, there is

large uncertainty of their intensity and spatial patterns into the

future (Soares-Filho et al., 2006; Walker et al., 2009; Poulter

et al., In press). Here, we focused our analysis on the primary

driver related to the Amazon dieback phenomenon, which is

climate-driven changes in precipitation and temperature (Cox

et al., 2004).

Parameter selection approach

We identified a set of 41 parameters used in modeling ecosys-

tem processes in LPJmL and affecting the carbon and water

cycle, and vegetation dynamics (Table S1). These parameters

were selected by combining literature review with an a priori

focus on additional parameters considered important for

tropical regions. We relied on several previous studies that

have evaluated parameter uncertainty and their ranges for LPJ

and the related BIOME model (Hallgren & Pitman, 2000;

Zaehle et al., 2005; Wramneby et al., 2008). Similar model–data

comparisons have identified canopy and belowground pro-

cesses as a priority for realistically modeling tropical ecosys-

tems (Saleska et al., 2003). To address these findings, we

included parameters affecting leaf fall (i.e. leaf longevity and

a soil moisture threshold for leaf abscission). For belowground

processes, we explored parameter uncertainty for soil depth and

rooting distributions described for various ecosystem types in

Amazonia (Poulter et al., 2009b). For most parameters, their

range was determined from literature values (rather than opti-

mization, e.g., see Trudinger et al., 2007) and represented by a b-

distribution: however, a uniform distribution was used when

little to no justification for a central value existed (Table S1).

As in Zaehle et al. (2005), Latin hypercube sampling (McKay

et al., 1979) was used to generate parameter sets for the flux

tower comparison (1000 sets) and the basin-wide simulations

(200 sets). The Latin hypercube sampling approach is designed

to create a distribution of collections of parameters while

accounting for previously sampled parameter values. In order

to fully cover the hyper-dimensional parameter space it is

recommended that at least 1.5–10 times the number of para-

meters are sampled (Saltelli & Tarantola, n.d.). For the site-

level simulations, 1000 sets were generated for 41 parameters

and for the basin-wide simulations, a reduced set of 21 para-

meters were selected with 200 sets generated (see ‘Estimating

parameter importance’ for description of reduced set and its

selection) (Table 2).

Datasets and simulation protocol

For the flux tower comparison, we used climate data for six

locations provided by the Large Scale Biosphere Atmosphere

Table 1 Site names and vegetation characteristics from LBA-MIP, the number in the first column corresponds with location

on Fig. 1

Site name

Latitude,

Longitude

Flux

tower

Vegetation type

(undisturbed)

Dry season length

(months

o100mmppt)

1. Manaus KM34 2136035.9900S

6011203600W

X Evergreen broadleaf forest 2.1

2. Rebio Jaru Forest, Ji Parana (Tower A) 101404800S

6115504700W

X Evergreen broadleaf forest 4.5

3. Santarém KM67 215103500S

5415703600W

X Evergreen broadleaf forest 5.4

4. Santarém KM84 310100400S

5415303900W

X Evergreen broadleaf forest 5.4

5. Bananal Island 914901200S

501903500W

X Evergreen broadleaf forest 5.5

6. Sao Paulo Cerrado (Pé-de-Gigante Reserve) 2113701200S

4713805900W

X Cerrado 5.9

LBA-MIP, Large Scale Biosphere Atmosphere Model Intercomparison Project.

3



T
a
b
le

2
L
is
t
o
f
p
ar
am

et
er
s,

o
ri
g
in
al

v
al
u
e,

an
d
p
ar
am

et
er

ra
n
g
es
,
u
se
d
in

b
as
in
-w

id
e
si
m
u
la
ti
o
n
s

P
ar
am

et
er

n
am

e
U
n
it
s

M
ai
n
p
ro
ce
ss

O
ri
g
in
al

v
al
u
e

L
at
in

h
y
p
er
cu

b
e

d
is
tr
ib
u
ti
o
n

L
o
w
er

es
ti
m
at
e

U
p
p
er

es
ti
m
at
e

R
ef
er
en

ce

L
o
w
er

so
il
d
ep

th
M

H
y
d
ro
lo
g
y

10
00

U
n
if
o
rm

30
0

10
00

0
P
o
u
lt
er

et
al
.
(2
00

9b
)

M
ax

im
u
m

ev
ap

o
tr
an

sp
ir
at
io
n
ra
te

(T
rR

G
)

m
m

d
ay

�
1

7
B
et
a*

4
8

H
al
lg
re
n
&

P
it
m
an

(2
00

0)

M
ax

im
u
m

ev
ap

o
tr
an

sp
ir
at
io
n
ra
te

(T
rE

V
)

7
3

7.
5

M
ax

im
u
m

es
ta
b
li
sh

m
en

t
ra
te

#
p
er

m
2

V
eg

et
at
io
n
d
y
n
am

ic
s

0.
12

0.
05

0.
48

D
o
lm

an
et

al
.
(1
99

1)

R
o
o
ti
n
g
d
is
tr
ib
u
ti
o
n
(T
rR

G
)

F
ra
ct
io
n

A
ll
o
ca
ti
o
n

0.
6

U
n
if
o
rm

0.
6

1
P
o
u
lt
er

et
al
.
(2
00

9b
)

R
o
o
ti
n
g
d
is
tr
ib
u
ti
o
n
(T
rE

V
)

0.
85

0.
6

1

L
ea
f
lo
n
g
ev

it
y
th
re
sh

o
ld

fo
r
ra
in
g
re
en

s
D
ay

s
36

5
B
et
a*

12
0

36
5

R
ei
ch

(1
99

5)

L
ea
f
to

ro
o
t
b
io
m
as
s
ra
ti
o
u
n
d
er

n
o
n
w
at
er
-s
tr
es
se
d
co
n
d
it
io
n
s

(T
rR

G
)

F
ra
ct
io
n

1
0.
85

1.
15

N
o
re
fe
re
n
ce

(1
5%

C
V
)w

A
lb
ed

o
U
n
it
-l
es
s

P
h
o
to
sy
n
th
es
is

0.
17

0.
08

0.
17

B
o
n
an

(2
00

8)

L
ea
f
re
sp

ir
at
io
n
as

a
fr
ac
ti
o
n
o
f
R
u
b
is
co

ca
p
ac
it
y
in

C
3
p
la
n
ts

0.
01

5
0.
01

0.
02

1
F
ar
q
u
h
ar

et
al
.
(1
98

0)
,

H
al
lg
re
n
&

P
it
m
an

(2
00

0)

S
ap

w
o
o
d
tu
rn
o
v
er

(T
rR

G
)

Y
ea
rs

20
5

10
0
(6
0)

B
ar
te
li
n
k
(1
99

8)

S
ap

w
o
o
d
tu
rn
o
v
er

(T
rE

V
)

20
5

10
0
(6
0)

L
ea
f
tu
rn
o
v
er

(T
rE

V
)

2
1
(2
)

8
R
ei
ch

(1
99

5)

In
tr
in
si
c
q
u
an

tu
m

ef
fi
ci
en

cy
o
f
C
O

2

u
p
ta
k
e
in

C
3
p
la
n
ts

U
n
it
-l
es
s

0.
08

0.
02

(0
.0
5)

0.
12

5
H
al
lg
re
n
&

P
it
m
an

(2
00

0)
,

F
ar
q
u
h
ar

et
al
.
(1
98

0)

In
tr
in
si
c
q
u
an

tu
m

ef
fi
ci
en

cy
o
f
C
O

2

u
p
ta
k
e
in

C
4
p
la
n
ts

0.
05

3
0.
03

0.
05

4

P
h
o
to
sy
n
th
es
is

sc
al
in
g
p
ar
am

et
er

(T
rR

G
)

0.
5

0.
3

0.
7

H
ax

el
ti
n
e
&

P
re
n
ti
ce

(1
99

6a
)

P
h
o
to
sy
n
th
es
is

sc
al
in
g
p
ar
am

et
er

(T
rE

V
)

0.
5

0.
3

0.
7

P
h
o
to
sy
n
th
es
is

co
-l
im

it
at
io
n
sh

ap
e

p
ar
am

et
er

(y
)

0.
7

0.
2

0.
99

6
C
o
ll
at
z
et

al
.
(1
99

1)

L
ig
h
t
ex
ti
n
ct
io
n
co
ef
fi
ci
en

t
0.
5

0.
4
(0
.5
)

0.
9

S
h
u
tt
le
w
o
rt
h
(1
98

8)

S
p
ec
ifi
c
le
af

ar
ea

(T
rR

G
)

m
2
g
�
1
C

A
ll
o
ca
ti
o
n

0.
5

0.
35

0.
65

N
o
re
fe
re
n
ce

(3
0%

C
V
)w

S
p
ec
ifi
c
le
af

ar
ea

(T
rE

V
)

2
1.
4

2.
6

T
rE

V
an

d
T
rR

G
re
fe
r
to

th
e
tr
o
p
ic
al

ev
er
g
re
en

an
d
tr
o
p
ic
al

ra
in
g
re
en

p
la
n
t
fu
n
ct
io
n
ty
p
es

u
se
d
in

L
P
J,
re
sp

ec
ti
v
el
y.

* B
et
a
d
is
tr
ib
u
ti
o
n
(w

h
er
e
a
5

2
an

d
b
5

2)
.

w
B
en

ch
m
ar
k
ed

p
ar
am

et
er
s
in

p
ar
en

th
es
es
.

4



Model Intercomparison Project (LBA-MIP) as input for LPJmL

simulations (da Rocha et al., 2009). The six sites were natural

tropical forest stands (Fig. 1) where dry season length (number

of months with o100mm precipitation) ranged from 2.1 to 5.9

months. Hourly observed climate data (temperature, precipi-

tation, and incoming shortwave solar radiation) were aggre-

gated to monthly mean daily values. Incoming shortwave

radiation was converted to percent cloud cover using equa-

tions from Haxeltine & Prentice (1996a). To extend the clima-

tology from site years to a full 20th century simulation we

normalized the Climatic Research Unit (CRU) climate dataset

(New et al., 2002; Österle et al., 2003) to the monthly site data so

that simulations began in the year 1901, following methods

similar to Zaehle et al. (2005). Site specific soil texture data

were related to their corresponding FAO soil type (Zobler,

1986) and global concentrations of atmospheric CO2 used to

represent site conditions from the CDIAC database (Keeling &

Whorf, 2005).

The basin-wide simulations used data from eight GCMs

involved with the IPCC Fourth Assessment Report (Table 3).

These GCMs have been evaluated against various climate

observations for the Amazon Basin (i.e., long-term trends in

precipitation) and shown to simulate realistic 20th century

climate, and also provide a wide range of future temperature

and precipitation changes resulting in high GCM model un-

certainty (Fig. 2; Li et al., 2006, 2008; Reichler & Kim, 2008). The

climate model data (monthly precipitation, temperature, and

percent cloud cover) were resampled from their original

spatial resolution to a regular 11 resolution grid using bilinear

interpolation and bias corrected using an anomaly approach

(Malhi et al., 2009a). This bias correction adjusted GCM model

over or underprediction of observed climate and caused the

various GCM 20th century predicted climates to become more

similar. Climate anomalies were calculated for the GCM data

by comparing their values to a mean baseline period, 1961–

1990. These anomalies were then added (a ratios approach was

used to correct the bias in precipitation data) to the mean CRU

climatology (for the period 1961–1990) to create a 1901–2100

monthly time series. The number of wet days per month,

required for distributing monthly precipitation to daily

amounts (Gerten et al., 2004), were not available from the

GCMs. For this input, we repeated the 1960–1991 monthly

wet days throughout the 21st century and assumed that

changes in total monthly precipitation were more influential

on modeled processes than the number of monthly wet days.

Soil type corresponded to the FAO classification (Zobler, 1986).

Atmospheric CO2 data, as well as the climate projections,

corresponded to the SRES A2 storyline (Nakicenovic, 2000)

because current CO2 emissions most closely follow this trajec-

tory (Raupach et al., 2007).

For all LPJmL simulations (flux tower and basin-wide), a

1000 year spin-up was made using the first 30 years of climate

data (1901–1930). The transient climate simulation was per-

formed following this spin-up. Aweather generator randomly

allocated monthly precipitation to daily values and a fixed

random seed was used so that daily precipitation was dis-

tributed consistently between parameter sets. This process, the

spin-up and transient simulations, was repeated for each new

parameter set.

Evaluation datasets

Flux tower data for net ecosystem exchange (NEE) and its

derived component fluxes, ecosystem respiration (Reco) and

gross primary productivity (GPP), were obtained from the

Brazil Flux Network (da Rocha et al., 2009). Because of the

challenges associated with implementing eddy covariance in

tropical sites, site-specific quality control procedures and gap-

filling routines were implemented by LBA-MIP at the Biogeo-

chemical Ecology Research Laboratory at the University of

Arizona to produce a consistent monthly resolution time

series. These algorithms used site-specific nighttime friction

velocity (u*) filters, various time averaging windows to

estimate nighttime Reco, and look-up tables [that included

Fig. 1 Map of Amazon Basin and flux tower sites evaluated in

this study. The dry season lengths are computed from TRMM

satellite data (Poulter & Cramer, 2009) and show the mean of the

years 1998–2008.

Table 3 Selected global climate models used in this study

Model

2095–2100

Delta

precipitation

Delta

temperature

CSIRO MK 3.0 �4.42 3.90

GFDL CM 2.1 �0.08 4.59

GISS Model E-R 15.27 3.62

IPSL CM4 44.64 4.09

MPI ECHAM 5.0 �0.16 5.45

NCAR PCM1 14.6 2.29

UKMO HadCM3 �28.94 7.15

UKMO HadGEM �11.89 5.44

Simulations were performed at 11 spatial resolution starting in

the year 1901 and ending in 2098. The emissions storyline was

the SRES A2 scenario. Units are change from 1990 baseline, in

percent (%) for delta precipitation and 1C for temperature.
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photosynthetic active radiation (PAR)] to estimate missing

GPP. Despite the uncertainty associated with gap-filling, the

datasets provide spatially and temporally consistent data with

which we could evaluate LPJmL fluxes.

Benchmarking

Benchmarking was used to eliminate extreme parameter set

combinations resulting in unrealistic simulated ecosystem

fluxes or stocks in comparison with observations. For example,

some parameter sets contained values that had multiplicative

effects on LPJmL processes, e.g., a set containing both very low

light-use efficiency and slow sapwood turnover could produce

abnormally low carbon stocks. To resolve this problem, carbon

stocks and fluxes from field observations, generally known

within at least � 30% (Saatchi et al., 2007), were used to

remove extreme LPJmL parameter sets.

This benchmarking approach was implemented twice using

biomass data, first for the site level simulations, and then again

at the basin level. For each site, aboveground biomass data

were available from several field surveys (Baker et al., 2004;

Malhi et al., 2006) and the mean and standard deviation of

these calculated to compare with LPJmL-simulated carbon

stocks. Parameter values causing extreme biomass outliers

were identified (see parameters in parentheses in Table S1)

and the parameter range adjusted before running the basin-

wide simulations. For the basin-wide simulations, we used

data for aboveground biomass from Saatchi et al. (2007) and

Houghton et al. (2001) to remove unrealistic simulations before

conducting the variance partitioning analysis (‘Variance parti-

tioning’).

Estimating parameter importance

We used several techniques to explore the importance of the

parameters on LPJmL processes. First, we evaluated output

from the flux tower simulations to eliminate parameters that

were not a significant source of uncertainty in LPJmL. We did

this by estimating the ranked partial correlation coefficient

(RPCC) for each parameter for a subset of LPJmL outputs

(Zaehle et al., 2005). The RPCC measures the significance of the

relationship between parameter variability and model output,

and was calculated with the 30-year mean (1971–2000) of the

following variables; annual fluxes for GPP, net primary pro-

duction (NPP), dry season NEE, Reco, and evapotranspiration

(ET) and for the state variables, vegetation and soil carbon

content, tropical evergreen cover, and soil moisture content.

An absolute cut-off RPCC value of o0.2 at any of the six flux

sites was used in order to select the most important para-

meters for the basin-wide simulations (Zaehle et al., 2005). To

investigate the characteristics of which parameter set(s) best

matched the measurements we also calculated a root mean

Fig. 2 Annual precipitation (a–c) and annual air temperature (d–f) projections of climate data used in LPJmL simulations (a 10-year

moving average was applied to smooth interannual variability for presentation purposes).
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square error (RMSE) for observed NEE, Reco, and GPP for each

parameter set with the corresponding simulations.

For the analysis of the basin simulations, we used the same

RPCC approach to explore spatio-temporal patterns of para-

meter importance. This was implemented in a two-fold ap-

proach; first, for each individual GCM, we summarized

parameter contributions to changes in the main variables

related to the Amazon ‘dieback’ hypothesis, carbon stocks

and forest cover. Changes in vegetation and soil carbon, and

tropical evergreen cover, were calculated between 1971–2000

and 2071–2098, for eastern and western Amazonia, the bound-

ary defined by 651 west longitude following Malhi et al. (2009a).

We then mapped (also for each individual GCM) the RPCC

values for changes in these outputs at 11 spatial resolution.

Variance partitioning

We used a variance partitioning concept first presented in a

simple climate model by Cox & Stephenson (2007) and im-

plemented for GCMs by Hawkins & Sutton (2009). Using this

approach, the importance of the various sources of uncertainty

can be quantified for different regions at various timescales. A

signal-to-noise ratio was then calculated to investigate the

robustness of simulation output in the context of simulation

uncertainty. The three sources of uncertainty considered were:

(1) natural internal variability, the natural fluctuations of

model responses to short-term climate variability (IV), (2)

global climate model uncertainty (GCM), and (3) vegetation

model uncertainty (LPJmL). These were estimated for both the

eastern and western portion of the Amazon Basin (as defined

previously) for LPJmL outputs directly related to Amazon

dieback (vegetation and soil carbon, and tropical evergreen

cover).

Before calculating the variance components, each individual

LPJmL simulation (200 parameter sets� 8 GCMs) was refer-

enced to its 1961–1990 mean to represent the change from this

climatological period. A fourth order polynomial was fit to

each time series from which the IV, LPJmL, and GCM compo-

nents were calculated. The IV component is the variance of the

residuals from each polynomial fit across all LPJml and GCM

simulations. The LPJmL component was the mean of the

variance of the polynomial fits for each GCM simulation.

The GCM component was calculated as variance of the mean

predictions for each individual climate model. Further details

on this method can be found in Hawkins & Sutton (2009).

Results

Flux tower RPCC and RMSE

The most important parameters (RPCC40.4) contribut-

ing to the variability of yearly NEE (Table 4), soil and

vegetation carbon stocks (Tables S2 and S3), and GPP

(Table S4) at the flux sites were related to photosynthetic

capacity (light-use efficiency and a photosynthetic para-

meter related to fraction of absorbed photosynthetic

available radiation). At intermediate importance T
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(RPCC5 0.3–0.4) were parameters determining carbon

allocation and vegetation dynamics (i.e., sapwood turn-

over and maximum establishment rate). Also important

at the wet sites (RPCC5 0.2–0.3), but higher at the dry

sites, were parameters related to water use (rooting

distribution and maximum ET). Temperature-related

parameters, such as those used to determine photosyn-

thetic enzyme stress or tissue and growth respiration,

were not significantly correlated with variability in

carbon or water fluxes.

Compared with observations, the magnitude of si-

mulated carbon fluxes were within the range of mea-

sured NEE (Fig. 3). However, the monthly modeled

fluxes were generally out of phase with observations

reflecting a combination of possible problems in model

parameterization, measurement error and unique local-

site conditions. For example, the RMSE was highest at

the Bananal Island site (85.8 gCm�2month�1 for NEE)

where a 4–5 month inundation period (Borma et al.,

2009) reduces soil respiration fluxes (Fig. S2) – a process

not modeled with LPJmL. However, measurement error

at Bananal Island may also be high because of the

flooded soil conditions and possible dissolved organic

carbon losses not measured with the eddy covariance

technique. At drier sites, the RMSE was lower (38.7–

40.5 gCm�2month�1) because of a more distinct seaso-

nal precipitation cycle that clearly limited GPP and soil

respiration in the dry season (Figs S1 and S2). At the

wetter, terra firme sites (KM34, KM67, and KM83), NEE

RMSE ranged between 25.4 and 48.5 gCm�2month�1

with seasonal out-of-phase problems associated with

dry-season declines in simulated GPP, whereas obser-

vations suggest sustained dry-season GPP.

For soils and rooting depths, the parameter sets

corresponding to the lowest RMSE for NEE and GPP

were generally consistent with field observations sug-

gesting deep soil and rooting depths (Table 5). Deeper

soil and root profiles were more important at the wetter

sites in order to offset dry-season moisture limitations

on photosynthesis, whereas at the dry sites, water

limitation occurred in the dry season regardless of soil

depth. The maximum ET rate parameter, which deter-

mines simulated evaporative supply, had lower error

with higher parameter values for the wet sites than for

the drier sites in order to continually provide moisture

for maintaining stomatal conductance. For both wet and

dry sites, error was lowest with albedo reduced to 0.12,

from the global mean default value of 0.17, resulting in

more efficient use of PAR and photosynthesis rates.

We found that compared with observed carbon

stocks, the LPJmL simulations tended to underestimate

standing biomass (Fig. 4). Using the benchmarking

approach, we removed parameter set simula-

tions where modeled biomass was outside of a � 30%

Fig. 3 Net ecosystem exchange (NEE) for the six flux tower sites [NEE5NPP�RH (heterotrophic respiration)]. Confidence intervals

are generated from the 1000 parameter set combinations and following simulations. NPP, net primary production.
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margin of error around the observed values. We identi-

fied four parameters contributing erroneously low bio-

mass values; these were related to slow sapwood and

leaf turnover rates, and low light-use efficiencies (quan-

tum-use efficiency and extinction coefficient) used in

photosynthesis (Table 1). Slow sapwood turnover and

low light-use efficiency results in large diameter, slow-

growing trees, and underestimates of aboveground live

biomass. The range of each of these parameters was

adjusted to be more similar to the original value used in

Sitch et al. (2003) and these revised parameters used in

the basin-wide simulations. Of the total set of 41 para-

meters, we subset 21 parameters that had an absolute

RPCC value 40.2 to be included in the basin-wide

simulations (Table 2).

Basin-wide RPCC for changes in carbon and vegetation

The subset of 21 parameters (using the revised para-

meter ranges for four of the parameters) was used to

generate 200 basin-wide simulations for each of eight

GCM projections. The average basin-wide simulations

reproduced carbon stocks within the range of previous

field and remote sensing studies for the averaging

period of 1971–2000. However, there remained the

tendency for the carbon stock estimates to be on the

low-end of corresponding observations (Table 6). For

example, across all 1600 simulations, 20th century

aboveground carbon stocks averaged 48.7 PgC (and

ranged between 11.6 and 175.8 PgC) compared with

estimates of 59–73 PgC for aboveground live biomass

by Saatchi et al. (2007) and 33–93PgC from Houghton

et al. (2001). Soil carbon estimates were similar to

previous studies and ranged from 34 to 36 PgC com-

pared with 33–39PgC (Bernoux et al., 2002). For the

benchmarking of the basin-wide simulations, we re-

moved parameter sets which resulted in regional car-

bon estimates outside the range of observed

aboveground live biomass (55–110PgC). About 25%

of the simulations passed this test (the removed simula-

tions generally included slow turnover rates and low

light-use efficiency parameters), and were used for the

variance partitioning modeling (‘Fractional and abso-

lute variance, and signal-to-noise ratios’).

Basin-wide responses to climate change for tree cover

(Fig. 5a), aboveground live biomass (Fig. 5b) and soil

carbon (Fig. 5c) varied significantly between climate

scenarios but little among parameter sets. The long-

term changes in tree cover, and above- and below-

ground carbon stocks also varied in spatial pattern

and magnitude among climate projections. In Western

Amazonia there was a slight decrease to no change in

tropical evergreen cover for the CSIRO, GISS, and MPI

GCMs, whereas in Eastern Amazonia, three GCMs

Fig. 4 Correlation between observed and simulated above-

ground biomass. Standard error from simulated is calculated

from the 1000 parameter sets. For the observed, if multiple

studies available, a standard error was computed. The bench-

marked data points represent simulations that were within 30%

of the observed mean values.

Table 5 Mean value and range, for selected parameters that were in the lowest root mean square error (RMSE) category

Parameter name

(with units)

Wettest site (Manaus KM34) Driest site (Pe de Gigante)

GPP NEE GPP NEE

Lower soil depth (cm) 5983.8 (1806.9–9927.3) 5992.5 (2318.5–9366.3) 3789.8 (1099.6–9123.8) 4316.2 (1000–7538.6)

Maximum

evapotranspiration rate

(mmday�1, TrEV)

6.2 (5.4–6.8) 5.8 (4.7–6.6) 4.7 (3.8–6.4) 5.9 (5.1–7.0)

Rooting distribution

(fraction, TrRG)

0.76 (0.63–0.83) 0.80 (0.60–0.99) 0.83 (0.65–0.97) 0.84 (0.60–0.98)

Rooting distribution

(fraction, TrEV)

0.72 (0.61–0.88) 0.84 (0.64–0.99) 0.72 (0.60–0.96) 0.69 (0.62–0.85)

Albedo (unitless) 0.12 (0.08–0.14) 0.12 (0.11–0.16) 0.12 (0.08–0.15) 0.12 (0.09–0.17)

GPP, gross primary production; NEE, net ecosystem exchange.
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Fig. 5 Changes in ecosystem variables for three different climate projects representing changes to a wet, stable, and dry precipitation

regime (Fig. 2) for (a) tropical evergreen forest cover (b) aboveground live biomass, and (c) soil carbon stocks.

Table 6 Average Amazon Basin (1971–2000) summary of tree cover and carbon stocks compared with observations from eight

GCMs

LPJmL variable

Range (1 standard

deviation)

With benchmarking

[using Saatchi et al.’s

(2007) biomass estimate] Observations

Tropical evergreen cover (%) 58.79 (13.96) 61.16 (16.66) None

Aboveground C-storage (PgC) 48.79 (16.76) 67.28 (11.44) 39–93 PgC (Houghton et al., 2001)

69–103 PgC (Saatchi et al., 2007)

Belowground C-storage (PgC) 35.13 (7.51) 30.69 (5.91) 33–39.8 PgC (Bernoux et al., 2002)

On average, 25% of the parameter sets met the benchmarking criteria and were used in the variance partitioning model.

GCMs, general circulation models.
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projected increases in tropical evergreen cover and

three other GCMs projected decreases (Fig. 6a).

Changes in vegetation carbon were equally variable

between models and within the basin (Fig. 6b). Both

HadCM3 and HadGEM projected large decreases in

carbon stocks compared with the NCAR, GISS, and

IPSL that projected increases (Fig. 6b). MPI, CSIRO

and GFDL projections resulted in little to no change in

vegetation carbon. Changes in soil carbon stocks were

more consistent, with little to small increases occurring

(Fig. S3).

The Hadley CM3 climate projection was associated

with the most extreme climatic drying and warming

scenario (Fig. 2) and resulted in the largest vegetation

carbon losses (Fig. 6b). For this scenario, the most

important parameters (Table 7) determining the magni-

tude of changes in carbon stocks were related to vegeta-

tion dynamics and water use. For all climate scenarios,

Fig. 6 (a) Change in vegetation carbon for all general circulation models (GCMs), (b) change in tropical evergreen cover (changes in soil

carbon in Supporting Information). Dashed line represents the hydrologic delineation of the Amazon Basin.
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high maximum establishment rate reduced the amount

of aboveground carbon due to competition among

individuals. This was because the establishment rate

determines tree density and corresponding competition

for light and water. Under a drier climate, high estab-

lishment rates allow for rapid recolonization following

mortality (from drought or fire) decreasing the relative

change in carbon losses. Under wetter future climates, a

high maximum establishment rate caused competition

to increase, causing changes in biomass to be reduced.

In terms of water use, a higher proportion of roots in the

upper soil layer appeared to be a disadvantage under a

drying climate because of less access to deep water

storage (resulting in a negative correlation between

rooting distribution and changes in aboveground

live biomass, bottom row, Fig. 7a). Under wet climate

Fig. 7 Ranked partial correlation coefficient (RPCC) spatial patterns for changes in vegetation carbon (1991–2000 vs. 2090–2098) for all

21 parameters (see Table 1 for references) used for the basin-wide Latin hypercube analysis for the HadCM3 climate projection. The

change in vegetation carbon for the standard parameter set, mean change in vegetation carbon for all parameter sets, and standard

deviation for all parameter sets is also shown. The first row corresponds to parameters related to carbon allocation, the second row for

photosynthesis, and the third row contains parameters related to water use. The RPCC correlations are shown for the Hadley CM3 (a),

which projects a drier climate and GISS ER (b), which projects a wetter climate and increases in aboveground live biomass.
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projections, however, water-related parameters (bottom

row of Fig. 7b) became relatively less important and

limitations related to photosynthesis (e.g., light extinc-

tion coefficient, light-use efficiency) become more im-

portant on the changes in carbon storage.

Changes in soil carbon stocks were strongly coupled to

aboveground processes regulating productivity and rates

of litterfall (Fig. S4). Under the dry climate projections,

soil carbon losses increasedwith parameter combinations

that increased aboveground productivity i.e., the photo-

synthesis scaling parameter and quantum use efficiency

(Table S6). Soil carbon losses decreased with parameters

that reduced litter inputs throughmortality, most notably

increased deep rooting and decreased maximum ET.

Under wetter climates, soil carbon stocks increased be-

cause of increased aboveground productivity and litter-

fall inputs, the parameters limiting productivity were all

positively correlated with soil carbon (Table S6).

Changes in tropical broadleaf evergreen tree cover

exhibited similar directional changes as vegetation car-

bon stocks although less spatial variability (Fig. 6). The

response of tropical evergreen vegetation cover to cli-

mate was dependent not only on parameter values, but

also to competition with the drought deciduous PFT.

For example, high light-use efficiency of the tropical

drought deciduous PFT resulted in large decreases in

tropical evergreen cover. In the short-term, it was com-

petitively advantageous for the tropical evergreen PFT

to have high leaf longevity and deeper rooting profiles,

but these traits also made the PFT more resilient to

climatic stress. For the wetter climates, indirect controls

on productivity (maximum ET rate, root distribution,

Fig. 8 Summary of variance partitioning for tropical evergreen tree cover. The lead time is the number of years since year 2000. Figures

(ai, aii, and aiii) are for the Eastern Amazon and (bi, bii, and biii) for the Western Amazon.
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and leaf-mass to root-ratio) were increasingly impor-

tant, presumably because competition with the tropical

drought deciduous PFT became more of a limiting

factor than climate.

Fractional and absolute variance, and signal-to-noise
ratios

The benchmarked basin simulations (‘Basin-wide RPCC

for changes in carbon and vegetation’) were used to

partition variance between the IV, LPJmL, and GCM

components. This approach was used to better under-

stand the spatio-temporal dynamics and robustness of

the various sources of uncertainty of the model output

variables. These are illustrated as their relative fractions

and absolute values for tropical evergreen cover (Fig. 8)

and vegetation carbon (Fig. 9) for East and West Ama-

zonia. The lead time dependence of variance partition-

ing varies between LPJml outputs, and is dependent on

the geographic area of interest.

Averaged across all GCM scenarios, the decrease in

evergreen tree cover is small (o1.5% by 2050 and

o4.5% by 2100) and the variations between climate

projections large, resulting in low signal-to-noise ratios

(Fig. 8). In Eastern Amazonia, a large portion of the total

uncertainty is from the GCM component. However in

Western Amazonia, both LPJmL and GCM uncertainty

contribute approximately equal variance as the GCMs

are more consistent in their projected climate regimes,

at least through the mid-21st century (Fig. 2).

Fig. 9 Summary of variance partitioning for vegetation carbon. The lead time can be thought of as year 2000 equal to lead time 0.

Figures (ai, aii, and aiii) are for the Eastern Amazon and (bi, bii, and biii) for the Western Amazon.
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The sources of variability in changes in aboveground

biomass are, in general, similar to tree cover dynamics.

By 2050, basin-wide changes in vegetation carbon

stocks increased from 3.3 to 12.7 PgC, but by 2098, this

change in carbon stocks diverged to between a

�16.4 PgC decrease and a 19.1 PgC increase. In Eastern

Amazonia, the signal-to-noise ratio (mean change in

output variable divided by square root of the total

variance) was lower than in the West, reflecting the

large variability in climate projections that led to either

increased or decreased vegetation carbon stocks (Fig. 6).

In Western Amazonia, there was more agreement across

GCM climate projections and the signal-to-noise ratio

suggests that up to 2050–2060, changes in vegetation

carbon are relatively robust. Post-2050, variability in

GCM projections decreases the signal-to-noise ratio

and in 2080, this becomes o1.

Discussion and conclusions

State of DGVM understanding of tropical processes

Our analysis of parameter uncertainty and its effects on

carbon stocks and fluxes illustrates that there remains

large uncertainty for modeling tropical processes under

changing climates. With the present-day climate, the

agreement between seasonal LPJmL simulations and

observations of carbon fluxes is relatively poor, suggest-

ing that processes, in addition to parameters, remain

inadequately characterized. In addition to hydrologic

and light-use-related processes, the seasonal release of

nutrients (i.e., phosphorous) can also exert some control

on dry to wet season differences in GPP (Grant et al.,

2009). Within LPJmL, much of the uncertainty appears

to come from a relatively small subset of model para-

meters that are related to light-dependent photosyn-

thetic processes (for the fluxes) and vegetation

dynamics (for stocks). To reduce parameter uncertainty,

future field research must provide statistically repre-

sentative samples of structural and physiological mea-

surements to assist in parameter optimization. In

addition, site-specific characteristics (i.e., the presence

of seasonally flooded soils) and observational error may

also contribute to the low correlation between observa-

tions and simulations. Our site-level results are similar

to previous analyses conducted for global (Zaehle et al.,

2005) and northern-temperate regions (Wramneby et al.,

2008), suggesting that parameter sensitivities and their

importance are similar across multiple biomes.

Under climate change, we find that changes in vege-

tation and soil carbon pools are determined mainly by

parameters related to vegetation dynamics (i.e., max-

imum establishment rate) and competition (i.e., rooting

depths). Parameters related to photosynthesis (e.g.,

light-use efficiency) are important in determining the

initial carbon stocks, but more importantly, those para-

meters related to vegetation dynamics determine the

pace of ecosystem recovery, or biome change, following

drought or fire-related forest mortality. The simulated

interactions between fuel accumulation and fire fre-

quency concur with other studies that suggest shifts

in Amazonian forest composition to savanna systems

will likely be mediated by changes in disturbance

regime (Malhi et al., 2009a). The different parameter

sets did not influence the trajectory of ecosystem re-

sponse to climate (Fig. 5a–c), for example, under the

drier climate projections, LPJmL projected carbon losses

and decreases in tropical evergreen cover regardless of

parameter combination (see mean and standard devia-

tion of responses in Fig. 7a and b).

The apparent lack of importance of temperature-

dependent processes (i.e., growth and maintenance

respiration, or those parameters related to photosyn-

thetic biochemistry) may be due to several reasons.

First, the photosynthesis scheme in LPJmL uses the

Haxeltine & Prentice (1996b) derivation for calculating

canopy maintenance respiration. With this approach,

canopy respiration is directly related to the maximum

carboxylation rate of photosynthesis (Vcmax), an indica-

tor of leaf nitrogen content, which is shown to be

positively correlated with leaf respiration in tropical

forests (Cavaleri et al., 2008). This formulation decreases

the temperature dependence of NPP to canopy respira-

tion, which can account for the majority of autotrophic

respiration fluxes (Malhi et al., 2009b). The rates of

sapwood and root respiration follow the Lloyd & Taylor

(1994) approach that is related to Q10 factor (the change

in respiration rate with a 10 1C change in temperature),

but because they constitute a smaller contribution to

autotrophic respiration, their temperature-dependent

parameters are less important in full ecosystem scale

assessment. Simulated soil respiration is already close

to its maximum in tropical ecosystems, and so there is

little potential for increased soil respiration or a large

sensitivity to climate change.

This analysis of the relative importance of the para-

meters determining the scale of ‘dieback’ highlights the

significance of including vegetation dynamics when

considering ecosystem responses to climate. Equilibrium

models that do not include vegetation dynamics, i.e.,

Salazar et al. (2007), may over- or underestimate ecosys-

tem response to climate impacts if the process of vegeta-

tion recovery or competition is excluded. We found that

with higher establishment rates there was faster recov-

ery of aboveground live biomass following disturbance.

This led to a lower rate of change in forest cover or

carbon stocks for LPJmL, but did not alter the overall

trajectory of ecosystem response to climate change.
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GCM variability

The variance partitioning approach attributed much of

the long-range uncertainty of Amazon dieback to diver-

gence in late-21st century climate projections. However,

this contribution may be somewhat reduced if uncer-

tainty related to DGVM structure is also considered (i.e.,

by comparing multiple DGVMs to one another in a

model-intercomparison framework). While we investi-

gated only multiple-versions of the same DGVM struc-

ture, intermodel comparison projects have shown

Amazon dieback to be ubiquitous across multiple

DGVMs, with the main difference between models in

the extent and magnitude of dieback (Cramer et al.,

2001; Cox et al., 2004; Sitch et al., 2008). Different DGVM

structures may result in higher or lower temperature

responses of the carbon cycle (Galbraith D, Huntingford

C, Cox PM, Levy PE, Sitch S, Meir P, Williams M,

unpublished results) or models may ignore CO2 feed-

backs on water-use efficiency (Salazar et al., 2007) that

may ameliorate dieback to a certain extent (Lapola et al.,

2009; Poulter et al., In press). Coupled carbon-climate

models also include important positive feedbacks on

climate that offline models ignore, for example at the

regional scale, approximately 20% of Amazon drying

occurred from reductions in transpiration (Betts et al.,

2004). Despite the uncertainty related to the representa-

tion of processes, the multiple GCM projections and

their magnitude of combined drying and warming over

the Amazon Basin appear to contribute the largest

source of uncertainty for forest dieback.

The results here present a challenge for assessing the

strength of future global carbon cycle feedbacks and for

implementing adaptation and mitigation strategies to

maintain ecosystem services. The uncertainty in Amazon

climate projections has been acknowledged in several

previous studies (Li et al., 2006; Malhi et al., 2008). Several

shortcomings related to 20th century climate modeling of

Amazon precipitation, are outlined by Malhi et al. (2009a)

who present a combination of hypotheses ranging from

the application of coarse-grid scales that do not capture

fine-scale meteorological processes to the role of topogra-

phy in determining the southern extent of the ‘South

American monsoon,’ which most models overestimate.

Much of the variability in future precipitation (�15% to

1 10%) is related to changes in the parameterization of

ocean dynamics amongmodels (Li et al., 2006). Currently,

the GCM that best captures 20th century climate patterns

and realistically models the relationship between tropical

climate and sea surface temperatures is the Hadley CM3

model, which also projects the greatest drying for the

Amazon in the 21st century (Cox et al., 2008).

In Figs 8 and 9, the spatio-temporal effects of GCM

uncertainty are presented. The GCM variance could be

considered an underestimate because we focused on

only one future emissions storyline and on those GCMs

that met criteria for representing 20th century Amazon

climate (Li et al., 2008; Reichler & Kim, 2008). Emissions

uncertainty is independent from GCM uncertainty, with

its contribution increasing during the 21st century and

related to socio-economic development (Hawkins &

Sutton, 2009). In the absence of GCM uncertainty, the

signal-to-noise ratios for changes in carbon storage were

robust throughout most of the 21st century (i.e.41) and

despite the contribution of uncertainty from LPJmL,

adaptation and mitigation might follow robust findings

that to assist policy making and decision process. The

GCM variability reduces the signal-to-noise ratio below

1 for Eastern Amazonia for the entire 21st century and

so further filtering of GCMs or improvements in the

consistency of their projections is required before plan-

ning can be implemented with confidence. The changes

in tree cover are generally of smaller magnitude than

changes in vegetation carbon and the signal-to-noise

ratio was remained small both spatially and with chan-

ging lead time. This suggests that more conspicuous

indicators of ecosystem vulnerability to climate, such as

carbon stocks, may be more useful for assessing climate

impacts.

What is probability of Amazon dieback

While there remains strong disagreement between

GCMs on the direction of precipitation changes across

the Amazon Basin (IPCC, 2007), our study is consistent

with previous research that shows there remains high

risk of biome shifts in the Amazon under certain climate

regimes (Scholze et al., 2006; Sitch et al., 2008). It is

becoming clearer the probability of Amazon dieback for

a given CO2 rise scenario is highly dependent on GCM

projections rather than dependent on ecosystem pro-

cesses or their parameterization (Sitch et al., 2008). We

found that the different parameter combinations did

influence the timing and magnitude of carbon losses or

vegetation shifts, but not the general trajectory of these

responses. This was illustrated for scenarios which had

deeper soil profiles or changes to the rooting distribu-

tion where neither change resulted in increased resili-

ence of the Amazon or prevented dieback if the drying

was significant. These findings have recently been sup-

ported by tropical field experiments, which have shown

that after 1–2 years of precipitation reductions tree and

liana mortality increase and productivity decreases

(Nepstad et al., 2007; Brando et al., 2008). Other model-

ing studies using LPJmL have also shown that thres-

hold responses for changes in aboveground live

biomass may exist and are mostly related to decreases

in precipitation (Cowling & Shin, 2006; Galbraith D,
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Huntingford C, Cox PM, Levy PE, Sitch S, Meir P,

Williams M, unpublished results).

Applications to impact analysis, mitigation, and
adaptation

The method that we present for partitioning vegetation

model uncertainty from GCM projection variability was

developed to inform policy responses to climate change

(Cox & Stephenson, 2007; Hawkins & Sutton, 2009). In

the short-term (decadal scale), the contribution of mod-

el internal variability (from year to year climate fluctua-

tions) decreases as the signal from climate change

becomes stronger. Our results suggest that the optimal

planning horizon, when signal-to-noise ratio is greatest,

is spatially and temporally dependent. Over the short to

medium term (10–60 years) the signal-to-noise ratio for

changes in carbon stocks is highest, and investments

over this time period would be associated with higher

confidence. For changes in forest cover, the signal-to-

noise ratio is less robust, suggesting that planning

might focus on other indicators for ecosystem vulner-

ability.
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Supporting Information 1

2

Figure S1:  3 

Simulated and measured gross ecosystem production (GEP) for the 6 flux tower sites. 4 

Confidence intervals are generated from the 1000 parameter set combinations and 5 

following simulations. 6

7

Figure S2 8 

Simulated and measured ecosystem respiration (Reco) for the 6 flux tower sites. 9 

Confidence intervals are generated from the 1000 parameter set combinations and 10 

following simulations. 11 

 12 

Figure S3 13 

Spatial pattern of changes in soil carbon from 1981/00 mean reference period and 14 

2081-2098 projection for all 8 climate models (SRES A2 emissions storyline). 15 

 16 

Figure S4 17 

Spatial pattern of ranked partial correlation coefficients (RPCC) for all parameters 18 

used in full Basin-wide simulations. The first column show the changes in soil carbon 19 

stocks between 2001/10 reference period and 2091/98 projection period for the 20 

standard parameter set (Std), the average of all parameter sets (Avg), and the standard 21 

deviation of soil carbon changes for all parameter sets (stdv). The first row 22 

corresponds to parameters related to carbon allocation, the second row for 23 

photosynthesis, and the third row contains parameters related to water use. The RPCC 24 

correlations are shown for the Hadley CM3 and GISS ER climate projections. 25 

 26 

Figure S5 27 

Spatial pattern of ranked partial correlation coefficients (RPCC) for all parameters 28 

used in full Basin-wide simulations. The first column show the changes in tropical 29 

evergreen cover between 2001/10 reference period and 2091/98 projection period for 30 

the standard parameter set (Std), the average of all parameter sets (Avg), and the 31 

standard deviation of tropical evergreen cover changes for all parameter sets (stdv). 32 

The first row corresponds to parameters related to carbon allocation, the second row 33 

for photosynthesis, and the third row contains parameters related to water use. The 34 

RPCC correlations are shown for the Hadley CM3 and GISS ER climate projections. 35 

36 
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Table S1: List of parameters, original value, and parameter ranges, used in flux site 1 

simulations and Basin-wide simulations (boldfaced). 2 

Parameter Name Units 
Main 

Process 

Orig. 

Value 

Latin Hypercube 

Distribution 

Distribution 
Lower 

Est. 

Upper 

Est. 
Reference 

Lower soil depth m 

Hydrology 

1000 Uniform 300 10000 
(Poulter et al., 

2009) 

Maximum evapotranspiration rate ( TrRG) 
mm d-1 

7 

a.Beta 

4 8 (Hallgren et al., 

2000) Maximum evapotranspiration rate (TrEV) 7 3 7.5 

Maximum establishment rate # per m2 
Vegetation 

Dynamics 
0.12 0.05 0.48 

(Dolman et al., 

1991) 

Rooting distribution (TrRG) 

fraction 

Allocation 

0.6 

Uniform 

0.6 1 (Poulter et al., 

2009) 
Rooting distribution (TrEV) 0.85 0.6 1 

Leaf  longevity threshold for raingreens days 365 

a.Beta 

120 365 

(Reich, 1995) Soil water stress threshold for raingreens 

(fraction) 

Fraction 

0.3 0.2 0.45 

Leaf to root biomass ratio under non-water 

stressed conditions (TrRG) 
1 0.85 1.15 bNo reference 

(15% CV) Leaf to root biomass ratio under non-water 

stressed conditions (TrEV) 
1 0.85 1.15 

Albedo unitless 

Photo-

synthesis 

0.17 0.08 0.17 (Bonan, 2008) 

Maximum temperature for photosynthesis (C3) 

°C 

45 31.5 58.5 

bNo reference 

(30% CV) 

Maximum temperature for photosynthesis (C4) 55 38.5 71.5 

Min. temperature shape parameter for optimal 

photosynthesis ( TrRG) 
25 17.5 32.5 

Min. temperature shape parameter for optimal 

photosynthesis ( TrEV) 
25 17.5 32.5 

Max. temperature shape parameter for optimal 

photosynthesis (TrRG) 
30 21 39 

Max. temperature shape parameter for optimal 

photosynthesis (TrEV) 
30 21 39 

Min. temperature shape parameter for optimal 

CO2 uptake (TrRG) 
2 1.4 2.6 

Min. temperature shape parameter for optimal 

CO2 uptake (TrEV) 
2 1.4 2.6 

Max. temperature shape parameter for optimal 

CO2 uptake (TrRG) 
55 38.5 71.5 

Max. temperature shape parameter for optimal 

CO2 uptake (TrEV) 
55 38.5 71.5 

Growth respiration per unit NPP 

unitless 

Allocation 

0.25 0.15 0.35 

Leaf respiration as a fraction of Rubisco 

capacity in C3 plants 
0.015 0.01 0.021 (Farquhar et al., 

1980, Hallgren et 

al., 2000) 
Leaf respiration as a fraction of rubisco capacity 

in C4 plants 
0.02 0.017 0.023 

Sapwood turnover (TrRG) 

years 

20 5 
100 

(60) 
(Bartelink, 1998) 

Sapwood turnover (TrEV) 20 5 
100 

(60) 

Leaf turnover (TrEV) 2 1 (2) 8 (Reich, 1995) 

Tissue respiration rate (non-tropical PFTs) 
gCgN-1d-1 

1.20 0.90 1.51 bNo reference 

(15%) Tissue respiration rate (TrBE TrBR) 0.20 0.15 0.24 

Intrinsic quantum efficiency of CO2 uptake in 

C3 plants 

unitless 
Photo-

synthesis 

0.08 
0.02 

(0.05) 
0.125 (Hallgren et al., 

2000, Farquhar 

et al., 1980) 
Intrinsic quantum efficiency of CO2 uptake in 

C4 plants 
0.053 0.03 0.054 

Photosynthesis scaling parameter (TrRG) 0.5 0.3 0.7 (Haxeltine et al., 

1996) Photosynthesis scaling parameter (TrEV) 0.5 0.3 0.7 

Photosynthesis co-limitation shape parameter 

(θ) 0.7 0.2 0.996 
(Collatz et al., 

1991) 

Light extinction coefficient 0.5 0.4 (0.5) 0.9 
(Shuttleworth, 

1988) 

Optimal Ci/Ca (λ, C3) 0.8 0.6 0.8 (Wong et al., 

1979) Optimal Ci/Ca (λ, C4) 0.4 0.31 0.4 

Min. canopy conductance (TrRG) 
mm d-1 Hydrology 

0.5 0.42 0.58 
(Korner, 1994) 

Min. canopy conductance (TrEV) 0.5 0.42 0.58 

Specific leaf area (TrRG) 
m2 g-1C Allocation 

0.5 0.35 0.65 bNo reference 

(30% CV) Specific leaf area (TrEV) 2 1.4 2.6 
a Beta distribution (where α = 2 and β = 2) 3 
bBenchmarked parameters (following flux site comparison) in parentheses. 4

5



Table S2: 1 

Ranked partial correlation coefficients for individual flux sites (fulfilling criteria of 2 

being greater than a value of 0.2). The sites are ordered from left to right in terms of 3 

dry season length. A positive correlation indicates that variability in vegetation carbon 4 

storage is positively correlated with changes in the parameter value. These parameters 5 

were selected for the full Basin-wide simulation parameter set. 6

7
Vegetation carbon 

Parameter Name 

→ Wet climate to dry climate → 

Manaus 

KM34 

Ji 

Parana 

Santarem 

KM67 

Santarem 

KM83 

Bananal 

Island 
Pe de Gigante 

Intrinsic quantum 

efficiency of CO2 

uptake in C3 plants 

0.729 0.466 0.597 0.589 0.769 0.675 

Sapwood turnover 

(years, TrEV) 
-0.578 -0.273 -0.25 -0.267 -0.368 -0.335 

Photosynthesis 

scaling parameter 

(TrEV) 

0.517 0.267 0.291 0.329 0.286 0.332 

Maximum 

establishment rate 

(individuals per 

m2) 

-0.438 -0.333 -0.265 -0.371 -0.158 -0.147 

Maximum 

evapotranspiration 

rate (mm d-1, 

TrEV) 

0.388 0.155 0.177 0.187 0.304 0.581 

Photosynthesis co-

limitation shape 

parameter (θ) 
0.352 0.195 0.214 0.249 0.395 0.347 

Rooting 

distribution 

(fraction, TrEV) 

-0.287 -0.159 -0.187 -0.087 -0.029 -0.081 

Specific leaf area 

(m2 g-1C, TrEV) 
-0.2 -0.054 -0.034 -0.09 -0.123 -0.131 

Light extinction 

coefficient 
-0.14 -0.166 -0.164 -0.265 -0.14 -0.213 

Sapwood turnover 

(years, TrRG) 
-0.113 -0.116 -0.156 -0.182 -0.358 -0.224 

Photosynthesis 

scaling parameter 

(TrRG) 

-0.113 0.025 -0.027 0.009 0.218 0.036 

8 



Table S3 1 

Ranked partial correlation coefficients for individual flux sites (fulfilling criteria of 2 

being greater than a value of 0.2). The sites are ordered from left to right in terms of 3 

dry season length. A positive correlation indicates that variability in soil carbon 4 

storage is positively correlated with changes in the parameter value. These parameters 5 

were selected for the full Basin-wide simulation parameter set. 6

7
Soil carbon 

Parameter Name 

→ Wet climate to dry climate → 

Manaus 

KM34 

Ji 

Parana 

Santarem 

KM67 

Santarem 

KM83 

Bananal 

Island 

Pe de 

Gigante 

Intrinsic quantum 

efficiency of CO2 

uptake in C3 plants 

0.823 0.738 0.676 0.682 0.373 0.565 

Photosynthesis 

scaling parameter 

(TrEV) 

0.481 0.387 0.315 0.254 0.048 0.177 

Photosynthesis co-

limitation shape 

parameter (θ) 
0.463 0.384 0.395 0.401 0.29 0.325 

Leaf  longevity 

threshold for 

raingreens (days) 

0.294 0.239 0.183 0.201 0.272 0.287 

Photosynthesis 

scaling parameter 

(TrRG) 

0.222 0.113 0.167 0.226 0.2 0.255 

Intrinsic quantum 

efficiency of CO2 

uptake in C4 plants 

0.147 0.124 0.238 0.192 0.226 0.274 

Maximum 

evapotranspiration 

rate (mm d-1, 

TrEV) 

0.117 0.192 0.074 0.136 -0.042 0.228 

Maximum 

evapotranspiration 

rate (mm d-1, 

TrRG) 

0.041 0.029 0.044 0.036 0.101 0.202 

Maximum 

establishment rate 

(individuals per 

m2) 

0.011 0.052 -0.1 -0.08 -0.178 -0.224 

8 



Table S4 1 

Ranked partial correlation coefficients for individual flux sites (fulfilling criteria of 2 

being greater than a value of 0.2). The sites are ordered from left to right in terms of 3 

dry season length. A positive correlation indicates that variability in annual GPP 4 

storage is positively correlated with changes in the parameter value. These parameters 5 

were selected for the full Basin-wide simulation parameter set. 6

7
Annual Gross Primary Production 

Parameter Name 

→ Wet climate to dry climate → 

Manaus 

KM34 

Ji 

Parana 

Santarem 

KM67 

Santarem 

KM83 

Bananal 

Island 

Pe de 

Gigante 

Intrinsic quantum 

efficiency of CO2 

uptake in C3 plants 

0.938 0.93 0.894 0.889 0.796 0.893 

Photosynthesis 

scaling parameter 

(TrEV) 

0.791 0.756 0.667 0.635 0.391 0.531 

Leaf  longevity 

threshold for 

raingreens (days) 

0.396 0.396 0.298 0.357 0.351 0.378 

Photosynthesis co-

limitation shape 

parameter (θ) 
0.393 0.368 0.266 0.271 0.158 0.233 

Maximum 

evapotranspiration 

rate (mm d-1, TrEV) 

0.272 0.319 0.089 0.177 0.137 0.283 

Rooting 

distribution 

(fraction, TrEV) 

-0.243 -0.417 -0.235 -0.205 -0.129 -0.074 

Photosynthesis 

scaling parameter 

(TrRG) 

0.134 0.162 0.137 0.2 0.248 0.248 

8 



Table S5 1 

Ranked partial correlation coefficients for individual flux sites (fulfilling criteria of 2 

being greater than a value of 0.2). The sites are ordered from left to right in terms of 3 

dry season length. A positive correlation indicates that variability in tropical 4 

evergreen cover is positively correlated with changes in the parameter value. These 5 

parameters were selected for the full Basin-wide simulation parameter set. 6

7
Tropical Evergreen Cover 

Parameter Name 

→ Wet climate to dry climate → 

Manaus 

KM34 

Ji 

Parana 

Santarem 

KM67 

Santarem 

KM83 

Bananal 

Island 

Pe de 

Gigante 

Photosynthesis 

scaling parameter 

(TrRG) 

-0.668 -0.59 -0.578 -0.641 -0.531 -0.463 

Intrinsic quantum 

efficiency of CO2 

uptake in C3 plants 

-0.63 -0.496 -0.431 -0.489 -0.178 -0.339 

Maximum 

evapotranspiration 

rate (mm d-1, 

TrEV) 

0.511 0.449 0.365 0.522 0.661 0.846 

Photosynthesis 

scaling parameter 

(TrEV) 

0.449 0.446 0.412 0.5 0.47 0.413 

Sapwood turnover 

(years, TrRG) 
0.437 0.419 0.32 0.39 0.317 0.263 

Sapwood turnover 

(years, TrEV) 
-0.337 -0.322 -0.234 -0.309 -0.343 -0.26 

Maximum 

evapotranspiration 

rate (mm d-1, 

TrRG) 

-0.3 -0.291 -0.191 -0.282 -0.353 -0.533 

Rooting 

distribution 

(fraction, TrEV) 

-0.267 -0.322 -0.254 -0.251 -0.04 -0.208 

Leaf turnover 

(years, TrEV) 
0.216 0.175 0.192 0.221 0.169 0.211 

Specific leaf area 

(m2 g-1C, TrEV) 
-0.21 -0.191 -0.147 -0.219 -0.22 -0.228 

Leaf  longevity 

threshold for 

raingreens (days) 

-0.198 -0.246 -0.212 -0.12 -0.178 -0.224 

8 
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