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Net biome production of the Amazon Basin
in the 21st century

Global change includes multiple stressors to natural ecosystems ranging from direct climate and land-use impacts to indirect 
degradation processes resulting from fire. Humid tropical forests are vulnerable to projected climate change and possible synergistic 
interactions with deforestation and fire, which may initiate a positive feedback to rising atmospheric CO2. Here, we present results 
from a multifactorial impact analysis that combined an ensemble of climate change models with feedbacks from deforestation and 
accidental fires to quantify changes in Amazon Basin carbon cycling. Using the LPJmL Dynamic Global Vegetation Model, we 
modelled spatio-temporal changes in net biome production (NBP); the difference between carbon fluxes from fire, deforestation, soil 
respiration and net primary production. By 2050, deforestation and fire (with no CO2 increase or climate change) resulted in carbon 
losses of 7.4–20.3 Pg C with the range of uncertainty depending on socio-economic storyline. During the same time period, 
interactions between climate and land use either compensated for carbon losses due to wetter climate and CO2 fertilization or 
exacerbated carbon losses from drought-induced forest mortality (�20.1 to 1 4.3 Pg C). By the end of the 21st century, depending on 
climate projection and the rate of deforestation (including its interaction with fire), carbon stocks either increased (1 12.6 Pg C) or 
decreased (�40.6 Pg C). The synergistic effect of deforestation and fire with climate change contributed up to 26–36 Pg C of the 
overall decrease in carbon stocks. Agreement between climate projections (n 5 9), not accounting for defor-estation and fire, in 2050 
and 2098 was relatively low for the directional change in basin-wide NBP (19–37%) and aboveground live biomass (13–24%). The 
largest uncertainty resulted from climate projections, followed by implementation of ecosystem dynamics and deforestation. Our 
analysis partitions the drivers of tropical ecosystem change and is relevant for guiding mitigation and adaptation policy related to 
global change.
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Introduction

Global change encompasses multiple direct and indirect

threats to ecosystems (Vitousek, 1994), the interactions

of which present a challenge for impact assessment and

implementing climate mitigation strategies. In tropical

regions, ecosystem change is taking place rapidly due to

the direct impacts of increasing deforestation (Hought-

on et al., 2000; Achard et al., 2002) and its indirect effects

on forest integrity related to increasing fire from inten-

tional and accidental ignitions (Cochrane et al., 1999;

Morton et al., 2008). Tropical forest loss is also enhanced

during drought years where the synergistic effects of

deforestation, fire and climate cause widespread degra-

dation or conversion of forest to nonforest habitat

(Aragão et al., 2008; Barlow & Peres, 2008).

Tropical regions are vulnerable to climate change

because changes in the seasonality and magnitude of

precipitation can lead to large water deficits followed by

increased forest mortality and decreased productivity

(Clark et al., 2003; Nepstad et al., 2007). Earth system

models have identified the Amazon Basin as vulnerable

to ecosystem collapse or ‘dieback’ because of climate
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change induced drought and increasing air temperature

leading to widespread forest mortality and the release

of large amounts of carbon to the atmosphere (Cramer

et al., 2004; Cox et al., 2004, 2008; Sitch et al., 2008). The

interactions between deforestation, fire, and climate

change in the Amazon Basin impact global biogeochem-

istry, biodiversity, and climate; however, the combined

effects of these drivers remain poorly understood and

the feedback-strength inadequately quantified (Soares-

Filho et al., 2006; Malhi et al., 2008; Cochrane & Barber,

2009). Improving our understanding of spatio-temporal

dynamics of tropical forest change is necessary to im-

plement local, regional, and global climate mitigation

policies as well as to reduce uncertainty on the effec-

tiveness of forest adaptation and mitigation on climate

change (Van Vuuren et al., 2008).

In the policy context, strategies for adapting tropical

forests to climate change or to mitigate CO2 emissions

through carbon sequestration, by conservation or active

forest management, rely on projections of ecosystem

dynamics across various spatial and temporal scales

(Fearnside, 2001; Killeen & Solorzano, 2008; Nepstad

et al., 2008). These management scenarios are also im-

plemented across various levels of governmental and

nongovernmental agencies and based on threat analysis

or the identification of biodiversity or other ecosystem

service hotspots, for example (Fearnside, 2003; Agrawal

et al., 2008). At global scales, policies associated with the

United Nations Framework Convention on Climate

Change (UNFCCC) are motivated primarily by the

Kyoto Protocol and more recently, Reduced Emissions

through Deforestation and Degradation (REDD) (Gulli-

son et al., 2007). At regional to local scales, mitigation

and adaptation are carried out through local conserva-

tion approaches (Killeen & Solorzano, 2008) and forest

restoration practices that promote biodiversity (Chaz-

don, 2008). In most cases, the long-term success of these

policies would be enhanced if planning were better

integrated with process-based modelling and the iden-

tification of ecosystem services and their vulnerability

to global change.

Our current understanding of the spatio-temporal

pattern of broad-scale threats to Amazon Basin ecosys-

tems is one of several limiting factors to prioritizing the

implementation of such adaptation and mitigation

policies (Malhi et al., 2008). Nepstad et al. (2008) present
various scales of planning criteria, that span from local

to global, to avoid the Amazon ‘tipping point’ (Lenton

et al., 2008) and possible positive carbon cycle feedbacks

following deforestation, fire, and climate change. Their

approach relies on information that provides indices of

ecosystem services and their robustness over long time

scales. At present, this type of approach is problematic

because most impact assessment research has focused

on the individual components of global change or have

used equilibrium vegetation models, rather than com-

prehensive assessments where interactions and possible

nonlinear responses may emerge (Cardoso et al., 2003;

Cramer et al., 2004; Soares-Filho et al., 2006; Salazar et al.,

2007; Golding & Betts, 2008).

In this study, we quantify the synergistic impacts of

climate change and forest degradation and their feed-

back on carbon cycling in the Amazon Basin in order to

quantify carbon dynamics and to identify regions

where the implementation of mitigation and adaptation

policies may be vulnerable. Specifically, we carried out

a set of multifactorial simulations using a Dynamic

Global Vegetation Model (DGVM) that included fire,

deforestation, and climate change drivers and their

various storylines to simulate Amazonian ecosystem

dynamics through the 21st century. These storylines

include nine climate model projections from the IPCC

Fourth Assessment Report (AR4), two land-use scenar-

ios from the SimAmazonia land-use model (Soares-

Filho et al., 2006), and two forest fire scenarios that

include accidental ignitions related to deforestation.

We focused on the change in spatio-temporal dynamics

of carbon stocks and fluxes within the basin by calculat-

ing net biome productivity (NBP) (Schulze et al., 2000).

NBP balances carbon emissions from fire, deforestation,

agricultural harvest, and ecosystem respiration fluxes

with net primary production and indicates the carbon

source-sink strength and possible positive feedback flux

to atmospheric CO2 concentrations.

Materials and methods

Study region

We modelled ecosystem dynamics for the entire Ama-

zon Basin, 5.9 million km2, which is mostly contained

within Brazil (69%) and affected by Brazilian land-

management policies (Nepstad et al., 2008). We focused

in particular on Amazonian rainforests and savannah

vegetation where the annual temperature and precipi-

tation average 24.0–26.2 1C and � 2100–2900mmyr�1

from southwest to northwest Amazonia (Malhi &

Wright, 2004). Since the early 20th century, 413% of

Amazonia has been deforested or degraded (Soares-

Filho et al., 2006), and ongoing deforestation and slash

and burn practices associated with road building are

responsible for the continued conversion of forest to

mechanized agriculture (e.g. soybean and livestock

production) (Nepstad et al., 2006). Climate change pro-

jections for this region are uncertain (Fig. 1), while the

majority of general circulation models (GCM) consis-

tently project increasing temperature, precipitation

changes vary both in the direction of change and in
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the magnitude of change (Li et al., 2006; Malhi et al.,
2009). The effects of climate change and elevated CO2

may already be apparent in Amazonian ecosystems

(Wright, 2005), indicated by increasing forest biomass

(Baker et al., 2004), forest turnover (Phillips et al., 2004),

and liana density (Phillips et al., 2002).

Simulation model

We used the LPJmL DGVM (Sitch et al., 2003; Bondeau
et al., 2007) to investigate transient Amazonian ecosystem

responses to an ensemble of climate change scenarios, and

a range of coupled forest fire and deforestation storylines.

LPJmL includes natural, cropland, and pasture vegetation

dynamics (Bondeau et al., 2007), natural fire disturbance

(Thonicke et al., 2001), and improvements related to

hydrologic processes (Gerten et al., 2004). Monthly air

temperature, precipitation and cloud cover, described in

‘Simulation protocol’, are interpolated to quasi-daily

values and used to simulate first-order physiological

processes, such as photosynthesis and transpiration,

which then determine vegetation composition and

dynamics. Daily precipitation is distributed using a

weather generator that randomly distributes daily rain-

fall volume over a known number of rain days in a

month (Gerten et al., 2004). Soil type, which determines

texture and water holding capacity, is determined from

a global dataset (Zobler, 1986), and annual atmospheric

CO2 observations come from Carbon Dioxide Informa-

tion Analysis Center (CDIAC) observations and projec-

tions from the Special Report on Emission Scenarios

(Nakicenovic, 2000; Keeling & Whorf, 2005). The LPJ

modelling framework has been evaluated at global and

regional scales for boreal (Lucht et al., 2002), temperate

(Zaehle et al., 2005), and tropical ecosystems (Cramer

et al., 2004; Poulter et al., 2009) and the seasonal cycles of

gross primary production (GPP) and carbon stocks are

simulated within the range of tropical field observations

(Poulter et al., 2009; Poulter et al., in review).

LPJmL simulates physiological processes, photosynth-

esis and transpiration on a daily time step using a

Farquhar–Collatz canopy conductance scheme modified

for global modelling purposes (Farquhar et al., 1980;

Haxeltine & Prentice, 1996). Carbon allocation, vegeta-

tion dynamics for nine ‘natural’ plant functional types

(PFT), fire disturbance, and land-use change are calcu-

lated annually. Individual, half-degree grid cells are

partitioned to natural and managed land fractions com-

posed of multiple potential crop types (Bondeau et al.,

2007). Land-use fraction is input in a diagnostic mode

(described in ‘Land use dynamics’) on an annual time

step to determine specific crop fractions (Bondeau et al.,

2007). The fire module, ‘GlobFirm’ has two main com-

ponents, a burned area module and a vegetation mor-

tality module (Thonicke et al., 2001). Burned area is

empirically related to an annual fire season length index,

which describes the probability of a fire occurrence. This

index is calculated daily by relating simulated soil

moisture to the ‘moisture of extinction’ (where fire can

no longer spread) only when litter biomass is greater

than a threshold of 200 gm�2. PFTs are prescribed

individual fire resistance parameters that determine

the proportion of individuals that die each year (with

mortality-related carbon returning to the atmosphere in

the same year as a combustion flux). The existing fire

model does not consider the role of human ignitions

(which we update in ‘Fire module updates’), generally

resulting in underestimation of fire frequency where

human use of fire is widespread (Thonicke et al., 2001).

Fire module updates

In tropical Amazonia, fire frequency is strongly corre-

lated with human land-use and deforestation (Cochrane

et al., 1999; Nepstad et al., 1999; Cochrane, 2003; Morton

et al., 2008). This is because few natural ignition sources

exist and high fuel moisture typically stops or slows the

spread of fire when an ignition does occur. Deforesta-

tion, however, increases the number of fire ignitions and

Fig. 1 Mean annual climate projections, (a) precipitation (b)

and temperature, for the entire Amazon Basin (smoothed with a

10-year moving average) used as inputs for LPJmL simulations.

Nine GCMs were selected from the SRES A2 IPCC storyline. (c)

deforestation trend for the entire Amazon Basin from Soares-

Filho (2006) where BAU is business as usual.
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initiates a positive fire feedback cycle (Cochrane et al.,

1999, Cochrane and Barber, 2009). This feedback cycle

follows the first fire of an intact tropical forest, where

tree mortality causes canopy openings and increased

fuel loads. Subsequently, relative humidity drops and

dead fuel accumulates, and dries faster, causing sec-

ondary ignitions to burn with higher intensity and

severity. These wildfire dynamics are most common in

frontier deforestation regions, whereas in more perma-

nent agriculture areas, mechanized agriculture tends to

reduce repeat fires (Morton et al., 2008).

To account for these feedbacks we added to the LPJmL

Globfirm module a scalar related to the effect of human

activities and land-use change on fire ignitions and fire

season length. We parameterized the scalar using satel-

lite remote sensing data of active fire counts, precipita-

tion, and land use from the Brazilian Legal Amazon.

Active fire count (hot pixel) data were derived from a

daily, 1 km spatial resolution, NOAA-12 database from

the Brazilian Institute for Space Research (INPE) for the

year 2000 (Aragão et al., 2007). Fire counts were aggre-

gated to 0.251 resolution by summing the number of hot

pixels over 1 year. Land cover data were acquired from

the Vegetation Map of South America (Eva et al., 2002),

which consists of 42 land cover classes at 1 km spatial

resolution, classified from a multiresolution set of sa-

tellite data. We estimated agricultural cell fraction by

summing the 1 km pixels classified as ‘intensive agri-

culture’ within each 0.251 spatial resolution cell and

dividing by the total pixel area.

To parameterize the fire scalar, the annual fire count

vector was normalized by the maximum number of

counts so that the range was between 0 and 1. Agricul-

tural cell fraction was then used as an independent

variable to predict fire counts. The data followed a

nonlinear function that was fitted with two parameters

(Fig. 2). We estimated these parameters (a and b) using a

least-squares approach

Fs ¼ aðexpð�bAÞÞA2
; ð1Þ

where Fs is equal to the fire scalar, a5 82.99 � 10.57,

b5 6.77 � 0.32, and A is the grid cell agricultural frac-

tion (0–1). The scalar, Fs, was then incorporated to

GlobFirm to adjust the existing empirical relationship

between fire season length and area burned using

agriculture fraction input from the SimAmazonia data-

set (see ‘Land use dynamics’).

Previous studies have shown that fire count data (i.e.

hot pixels) are linearly related to area burned around

the globe (Van der Werf et al., 2003; Giglio et al., 2006).

This scalar, Fs, represents a combination of a theoretical,

but data constrained, relationship between deforesta-

tion and the number of fire ignitions. Because of the

spatial extent of the satellite data used in this analysis,

the model is parameterized specifically for regional

Amazon Basin simulations.

Land use dynamics

Land-use input data were prepared from the SimAma-

zonia dataset for a Business as Usual (BAU) and a

Governance scenario (Soares-Filho et al., 2006). These

data represent land cover at 1 km resolution for the

years 2002–2050 for forest, nonforest, and deforested

classes, using observational data from the Amazon

Deforestation Monitoring Project (PRODES) as the

2002 baseline year (Soares-Filho et al., 2006). The Sim-

Amazonia dataset models annual deforestation from

statistically derived spatial relationships between forest

cover, proposed road building, and regional socioeco-

nomic projections (i.e. population growth).

To integrate the SimAmazonia land use simulations

within LPJmL, the data were first aggregated to 0.51

resolution (matching the climate input data) and the

‘deforested’ category assigned to the grazing/pasture

crop functional type (CFT) category, the most common

form of land use following deforestation (Fearnside &

Barbosa, 1998; Asner et al., 2004). To extend the dataset

from 2002 back to 1901, required for the full transient

model run, we assumed that rates of deforestation were

minimal until 1960 because of evidence that intensive

deforestation did not begin until the 1970s (Fearnside,

1996) and then used a simple linear interpolation to

simulate forest loss until the 2002 land-use configura-

tion was reached (similar to Houghton et al., 2000). The

SimAmazonia land-use data were also extended to the

year 2100 by extending the mean rate of deforestation

Fig. 2 Relationship between agriculture cell fraction and fire

count fraction from NOAA-12 satellite. As intact forest is defor-

ested the pattern of agriculture is fragmented amongmany small

plots. These small plots are more likely associated with acciden-

tal or intentional ignitions. More extensive agriculture is mana-

ged through mechanized farming, rather than fire, and repeat

fires decrease. Solid line indicates the predicted fire effect from

the model fit in Eq. (1).
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from 2046 to 2050 for each grid cell until either 80% of

the grid cell had been deforested or until the protected

area fraction of that grid cell was reached. We used the

World Database on Protected Areas (WDPA) 2009

(Jenkins & Joppa, 2009) to estimate the grid cell fraction

under protection. The o80% rule was implemented

similar to previous modelling studies of tropical

deforestation (Houghton et al., 2000; Cramer et al.,

2004) and corresponds to a combination of more strin-

gent future government land-use policies to slow defor-

estation and reduced access to forested areas because of

a lack of road access.

The vegetation dynamics for the pasture cell fraction

follow those described by Bondeau et al. (2007). Grasses

are distinguished by two different photosynthetic path-

ways, C3 and C4, and their relative abundance is deter-

mined by climate and competition, with C4 grasses

predominant in tropical regions. Simulated disturbance

(e.g. grazing by cattle) occurs when the grass leaf area

index (LAI) reaches its maximum phenology and bio-

mass, at this point, 50% of the aboveground biomass is

consumed and released to the atmosphere, while 50%

remains on site. Deforestation is determined on an

annual time step, in this case, the current year natural

cell fraction is compared with the new year managed

land fraction. If the annual fraction of managed land is

greater than the previous year, then the natural fraction

is reduced (i.e. deforestation occurs). Selective logging

is an important driver of forest structural change in the

Amazon Basin (Asner et al., 2006). However, our simu-

lated deforestation dynamics only represent even-age

management (i.e. clearcutting) rather than selective

logging because the forest stand dynamics in LPJmL

follow a mean individual approach and age structure is

not represented. The aboveground live biomass is har-

vest with 85% of sapwood and 100% heartwood and

foliage removed as a carbon flux to the atmosphere,

while 15% of sapwood enters the soil carbon pool

directly (as fine and coarse roots).

Simulation protocol

A complete set of factorial simulations were conducted

with IPCC AR4 climate projection data (for the SRES A2

emissions scenario) and SimAmazonia land-use data

(Soares-Filho et al., 2006). The SRES A2 emissions sce-

nario was selected because recent observations show

that atmospheric greenhouse gas concentrations most

closely follow this trajectory and intensity of current

greenhouse gas generation (Raupach et al., 2007). We

selected nine GCM models (Fig. 1) based on a compar-

ison of their performance against observed tropical

Amazon Basin climate indices (Li et al., 2006, 2008;

Malhi et al., 2009). These models have been shown to

reproduce changes in the long-term trend of precipita-

tion over the Amazon Basin (Li et al., 2008) and also

represent a range of future climate projections for the

region. The climate projection data were normalized to

a common reference period (1961–1990) with data from

the Climatic Research Unit (CRU) (New et al., 2002;

Österle et al., 2003). An additional ‘no climate change’

scenario (including holding CO2 concentrations at pre-

sent levels) was generated to extend the CRU 1901–2007

climatology to the year 2100. This was accomplished by

selecting annual climates from the 30-year time period

1978–2007 and randomly extending these from 2008 to

2100. A 1000-year model spin-up using the first 30 years

of climate data (1901–1930) and preindustrial CO2 con-

centrations was implemented to equilibrate soil carbon

pools and vegetation dynamics. The transient climate

simulations then began in 1901 and ended in 2098 (the

common end year for the AR4 climate scenarios).

Data analysis

We present results for changes from a baseline of 2003–

2005 (the first years of the actual simAmazonia simula-

tions based on observed land cover distribution) for

vegetation, soil, and litter carbon stocks (PgC), annual

carbon fluxes (PgCyr�1), and tropical evergreen PFT

cover (%). Annual NBP was calculated as

NBP ¼ ðRþ Fþ LþHÞ � ðNPPþ EÞ; ð2Þ

where R is ecosystem respiration, F is fire carbon flux, L

is deforestation flux, H is pasture harvest flux resulting

from grazing, NPP is net primary production of the

undisturbed forests, and E is tree or grass seedling

establishment flux on previously disturbed sites. Our

calculation of NBP focuses only on terrestrial processes

and we do not consider possible carbon export via river

flow (Richey et al., 2002).

To summarize GCM projection uncertainty, we used

methods similar to Scholze et al. (2006). For each GCM

projection, we calculated the standard deviation (s) of

annual aboveground live biomass and NBP for the

2003–2005 time period. This was compared with the

mean change for the 2045–2050 and the 2095–2098 time

periods. An increase or decrease of the model variable

of more than � 1s was considered ecologically signifi-

cant. When applied to all GCM projections (n5 9), this

approach allowed us to quantify the fraction of models

in agreement with changes in NBP and aboveground

live biomass.
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Results

Carbon stocks

For the present climate, LPJmL simulated carbon stocks

within the range of estimates from previous studies (see

Fig. 3a for the complete range of above- and below-

ground estimates) (Houghton et al., 2001; Saatchi et al.,
2007). We estimated basin-wide aboveground live bio-

mass as 80.53 PgC with no land use and 74.8 PgC with

land use, within the range of Saatchi’s et al. (2007)

remotely sensed estimate for aboveground live biomass

of 59–73 PgC and the estimate of 39–93 PgC for the

Brazilian Amazon by Houghton et al. (2001), but lower

than the estimate of Soares-Filho et al. (2006) of

119 � 23 PgC that assumed higher mean biomass per

unit area than simulated here. The differences may also

be attributed to the approach used by LPJmL to parti-

tion standing dead biomass directly into the litter and

soil carbon pools, whereas bottom-up field based ap-

proaches frequently include both live and dead above-

ground biomass in their estimates (Saatchi et al., 2007).

Litter and soil carbon stocks were 7.2 and 34.5 PgC,

respectively, with no land use and 6.7 and 33.7 PgC

with land use, the difference reflecting increased litter

inputs with higher aboveground live biomass. The

simulated soil carbon estimates were also within the

range of previous estimates of 36.4 � 3.4 PgC from

bottom-up accounting approaches (Bernoux et al.,

2002) and 28.3 PgC of Milne et al. (2007). Total basin

wide carbon (vegetation, soil, and litter carbon pools)

was 109.5–122.2 PgC, with and without land use.

Across climate and land-use storylines, there was large

uncertainty in the transient dynamics of the above-

ground carbon stocks (Fig. 4). By the year 2050, land-

use change from deforestation reduced forest cover

between 20% and 40% under the BAU and Governance

land-use scenarios (and an additional 5–10% forest loss

by 2100), respectively (Fig. 1c). The BAU deforestation

scenario consistently reduced aboveground live biomass

across all the climate projections; however, the loss of

carbon under the lower rate of deforestation in the

Governance scenario (Fig. 4), was compensated by wet-

ter climate projections and CO2 fertilization. In general,

the changes in vegetation carbon stocks were more sen-

sitive to the various storylines than the soil or litter pools,

which had smaller standard error (Fig. 3b). The longer

residence time of the soil carbon pool acted to buffer

against interannual changes in climate, but quickly re-

sponded to changes in aboveground litter inputs with

the soil carbon pool decreasing with deforestation.

For the entire basin, with no deforestation, projected

decreases in aboveground biomass were consistent

between models only 13–14% of the time in 2050 and

23–24% of the time in 2098 (Table 2a). Within the basin,

most of the deforestation occurred within Eastern Ama-

zonia, which was also where climate impacts on vege-

tation were characterized by higher agreement in the

long-term climate projections (up to 75%). In Western

Amazonia, there was much lower agreement regarding

the direction and magnitude of aboveground biomass

change among GCM models (Fig. 5), due to uncertainty

in climate projections, with o46% of the GCMs in

agreement over the long term (Table 2). The role of fire

on vegetation carbon stocks had little effect on changes

Fig. 3 (a) Basin wide carbon stocks for three different time

periods summarized for all climate and land-use storylines. (b)

Changes in basin wide carbon stocks from 2003 to 2005 mean

baseline summarized for all climate and land-use storylines.

Error bars represent 1 SE summarizing the variability across all

climate models. The CRU-baseline simulation is the result with-

out climate change and reflects the ‘equilibrium’ ecosystem state.

Fig. 4 Change in basin-wide vegetation carbon relative to the

2003–2005 baseline. Envelope width represents 95% confidence

interval for entire GCM ensemble.
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in vegetation stocks for the moderate to wet scenarios,

but became more important with its interaction with

deforestation under drier climates (see ‘Discussion’).

Carbon fluxes

For the baseline period, basin-wide NPP ranged between

5.6 and 5.7PgCyr�1 (Fig. 6a) and was within the range of

independent estimates from remote sensing and previous

modelling approaches (Table 1). Basin-wide hetero-

trophic respiration was slightly higher under the no-

deforestation scenario (5.2PgCyr�1 compared with

4.8PgCyr�1) because of the greater litter inputs from

forest vegetation (Fig. 6a). Net ecosystem exchange (NEE)

tended to be negative (a carbon sink) following all land-

use storylines during the baseline period, and ranged

from a flux of �0.60PgCyr�1 with no deforestation to

�0.84PgCyr�1 with deforestation and fire, reflecting the

lower soil respiration of the pasture ecosystems (where a

negative flux represents a carbon sink).

The cumulative carbon fluxes from disturbance (fire,

deforestation, and pasture grazing) were � 0.73PgCyr�1

for the baseline period (Fig. 6a), compared with

0.1–0.4 PgCyr�1 from previous studies (Houghton

et al., 2000). The component fluxes were within the

range of previous estimates (Table 1); simulated defor-

estation contributed between 0.18 and 0.22 PgCyr�1

(Fig. 3b) compared with 0.1–0.3 PgCyr�1 (Houghton

et al., 2000), fire emissions ranged between 0.20 and

0.29 PgCyr�1, and grazing/harvest emissions from pas-

tures were 0.22 PgCyr�1. The interaction of deforesta-

tion with accidental fire ignitions resulted in an increase

in the fire carbon flux by about 30% during the baseline

period using the modified GlobFirm module (Fig. 6a).

Carbon fluxes, for all components, increased during

the 21st century simulations (Fig. 6a and b). Up to 2050,

NPP increased because of strong CO2 fertilization and a

relatively neutral climate effect (Fig. 1a and b). These

Fig. 5 Proportion of GCMs in agreement with a decrease in

aboveground live biomass of more than 1s in 2095–2098 (com-

pared with a 2003–2005 baseline) following Scholze et al. (2006).

Fig. 6 (a) Basin-wide carbon fluxes for three different time periods summarized for all climate and land-use storylines. (b) Changes in

basin-wide carbon fluxes from 2003 to 2005 baseline summarized for all climate and land-use storylines. Error bars represent 1 SE

summarizing the variability across all climate models. The CRU-baseline simulation is the result without climate change and reflects the

‘equilibrium’ ecosystem state.
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climatic changes were accompanied by increasing rates

of deforestation, fire, and pasture/grazing fluxes that

influenced the overall trajectory of cumulative NBP. The

total land-use carbon flux to the atmosphere due to

deforestation (in the absence of fire, climate change, or

CO2 fertilization) ranged from 7.4 to 21.0 PgC by 2050

(Table 3), slightly lower than Soares-Filho et al. (2006)

estimate of aboveground vegetation losses of 15 to

32 � 8 PgC by 2050 (see ‘Land use dynamics’ for dis-

cussion). After the year 2060 (Fig. 4), increasing tem-

perature acted to increase soil respiration and under

some climate projections, decreasing precipitation had a

negative effect on NPP and rates of mortality. Future

carbon emissions from fire ranged from 0.25 to

0.51 PgCyr�1 in the year 2050 and 0.24–0.76 PgCyr�1

by 2098 with the range related to climate uncertainty

and deforestation storylines (Fig. 3b).

NBP

LPJmL simulations for mean annual NBP were slightly

negative, �0.16 to �0.49PgCyr�1 (i.e. a carbon sink), for

all land-use and fire storylines during the baseline period

(Table 1). The inclusion of land-use fluxes increased NBP

(i.e. became less negative) because of the contribution of

carbon losses to the atmosphere from deforestation,

pasture grazing, and fire. There are a limited number

of evaluation datasets for modelled NBP fluxes because

by definition, it integrates over large temporal and

spatial scales. Bottom-up accounting methods suggest

that carbon fluxes from disturbance and productivity

nearly balance one another in the Brazilian Amazon

(Houghton et al., 2000) and top-down atmospheric in-

version studies suggest a sink of �0.24 � 0.64PgCyr�1

or less (i.e. more positive) for South America (Gurney

et al., 2004; Stephens et al., 2007) (Table 1).

Cumulative NBP reflected the synergistic effects of

deforestation and climate change throughout the 21st

century. The BAU deforestation storyline resulted in a

cumulative carbon flux to the atmosphere of

� 14–28PgC, whereas the no deforestation scenario

resulted in a continued strong regional carbon sink

until � 2060. Post 2060, respiration fluxes tended to

increase due to higher temperature (Fig. 6b) and the

storylines began to show a weakening of the regional

carbon sink. Up to 2060, NBP carbon fluxes for the

Governance scenario for deforestation were near zero,

but became a carbon source following the combined

effects of increasing temperature and decreasing pre-

cipitation in the mid–late 21st century.

Agreement among GCM models for increasing NBP

was low (Table 2b). By 2050, 27–42% of the models

agreed with an increase in NBP, which decreased in

2098, where 22–44% agreed. The spatial pattern of

model agreement was highest in the first half of the

21st century while deforestation strongly determined

carbon fluxes. By 2098, model agreement was lower

because climate projections and their wide range of

uncertainty was the main driver of carbon fluxes.

Table 1 Comparison of LPJmL fluxes with observations from modelling, remote sensing, and field studies

Flux

LPJmL (2003–2005)

(PgCyr�1)

Observation (including

models, inversion,

field studies) (PgCyr�1) Extent Reference

NPP 5.6–5.7 4.8–5.9 (1980s)

3.8–5.9

Brazilian Amazon Potter et al. (2001), Tian et al.

(1998)

NEE �0.84 to �0.49 �0.4 to 0.5

0.18

�3.0 to 0.75

Amazonia Potter et al. (2001), Houghton

et al. (2000), Ometto et al.

(2005)

Forest fire 0.20–0.29 0.05 (1989–1998)

0.3–0.5

0.5

0.27–0.8

0.11–0.64 (future)

Brazilian Amazon

Central America/

northern South

America

South America

Houghton et al. (2000),

Cardoso et al. (2003), Van

der Werf et al. (2003, 2004)

Deforestation flux 0.17–0.22 0.18 (1989–1998)

0.35 (1970–1998)

0.30 (1996)

0.37 (0.19–0.53) (1980s)

Brazilian Amazon Houghton et al. (2000), Hirsch

et al. (2004), Nepstad et al.

(1999), DeFries et al. (2002)

NBP (Eq. 2) �0.49 to �0.15 0 � 0.2 (1988–1998)

�0.24 ( � 0.64)

Amazon/S. America Houghton et al. (2000),

Gurney et al. (2004)

Not all flux variables were available for comparison, most notably, heterotrophic respiration. However, Basin wide net ecosystem

exchange (NEE5R–NPP) and NPP are similar between observations and LPJmL simulations suggesting that heterotrophic

respiration flux is reasonable.
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Discussion

Changes in Amazonian biogeochemistry

Interannual variability in the Amazon Basin carbon

cycle has a significant influence on global atmospheric

chemistry (Rödenbeck et al., 2003). During drought

years, for example, anomalous increases in global atmo-

spheric CO2 come primarily from the Amazon Basin

from a combination of fire, decreased productivity and

increased ecosystem respiration (Rödenbeck et al.,

2003). Reducing uncertainty in future changes in the

global carbon cycle depends on quantifying regional

negative or positive feedbacks and their contribution to

Table 3 Mean change in total above and belowground carbon stocks (PgC) from baseline period (2003–2005)

Driver 2045–2050 2095–2098

No fire, no deforestation

No climate change 3.3 0.6

Climate change and CO2 10.04 (3.2 to 16.1) 14.06 (�16.6 to 33.1)

Fire

No climate change 3.3 0.2

Climate change and CO2 9.22 (2.9 to 16.3) 13.69 (�19.0 to 33.5)

Deforestation

No climate change �13.75 (�20.1 to �7.4) �22.15 (�30.5 to 13.8)

With climate change and CO2 �7.55 (�20.1 to 4.3) �11.58 (�39 to 12.6)

Fire1 deforestation

No climate change �14.35 (�20.3 to �8.4) �22.3 (�30.1 to �14.5)

With climate change and CO2 �8.49 (�19.9 to 3.2) �12.67 (�40.6 to 12.1)

Total carbon is sum of vegetation biomass, litter, and soil carbon pools. In parentheses are minimum and maximum simulated

changes in carbon for the nine AR4 GCMs. The no climate change scenarios have no range because only the CRU climatology were

used. Negative values represent a loss of carbon to the atmosphere.

Table 2 Agreement (%) among climate projections (n5 9) for (a) a decrease in aboveground live biomass and (b) an increase in

NBP, a weakening of the carbon sink (o � 1s from the baseline period)

Scenario

Projection time period

2045–2050 2095–2098

East West Basin East West Basin

(a)

No fire

Climate change 17.7 8.2 13.5 30.7 15.3 23.9

Climate change and deforestation (Governance) 46.9 26.1 37.7 54.7 33.5 45.3

Climate change and deforestation (BAU) 72.1 34.3 55.4 77.5 44.1 62.8

Fire

Climate change 18.6 8.9 14.3 31.4 15.8 24.5

Climate change and deforestation (Governance) 53.4 30 43.1 57.4 36.3 48.1

Climate change and deforestation (BAU) 75 38 58.6 81 46.9 65.9

(b).

No fire

Climate change 22.2 19.9 21.2 35.1 38.1 36.4

Climate change and deforestation (Governance) 25.1 25.4 25.2 28.5 39 33.2

Climate change and deforestation (BAU) 44 37.8 41.3 28.7 42.1 34.6

Fire

Climate change 22 17.8 20.1 39.1 36.1 37.8

Climate change and deforestation (Governance) 24.1 23.5 23.8 28.9 35.9 32

Climate change and deforestation (BAU) 41.1 35.4 38.6 27.3 38.4 32.2

East and western regions of the Amazon Basin are defined by �65.51 longitude.

9



rising atmospheric CO2 concentrations, especially from

tropical ecosystems (Cox et al., 2004; Sitch et al., 2008).

Here, we show that the synergistic effects of climate,

deforestation, and fire, are not simply ‘additive’ because

of ecosystem feedbacks that exist to mitigate, or exacer-

bate, the exogenous drivers of stress. Process-based

DGVMs provide an important perspective for under-

standing and partitioning these dynamics and their

component fluxes. So far, previous accounting methods

(Houghton et al., 2000; Soares-Filho et al., 2006) or

equilibrium models (Salazar et al., 2007) have been

unable to quantify the effect of these feedbacks and

the magnitude of uncertainty. Because of the feedbacks

identified by LPJmL and also because of the uncertainty

among climate projections, changes in total carbon

stocks have large ranges than previous acknowledged,

and either increase by 33.5 PgC or decrease by 40.6 PgC

due to climate, fire, and deforestation interactions by

2098 (Table 3). This range is somewhat smaller, and is

more likely to be negative when only the deforestation

scenarios are considered, with a decrease of

40.6–12.6 PgC (Table 3).

Much of the modelled carbon cycle uncertainty is

explained by ecosystem responses to GCMs that simulate

either moderately wet future climates (GISS, IPSL, MIUB,

and NCAR) or little change in precipitation and warm-

ing (CSIRO and GFDL). In contrast, the MPI and both

the UKMO models project decreasing precipitation

and warming temperatures resulting in reduced carbon

stocks and NPP. We plotted the change in dry season

length (number of months with o100mm precipitation)

with the change in aboveground live biomass for each of

the deforestation and fire scenarios in Fig. 7. Above-

ground live biomass decreases linearly with increasing

dry season length, with the interaction between fire and

deforestation more important with the more extreme

drying scenarios. Climate evidently has the primary

effect on the change in carbon stocks, with deforestation

and fire having secondary effects. By contrast, we have

also investigated ecosystemmodel parameter uncertainty

and found it to be less important than climate model

uncertainty for reducing our confidence in Amazonian

carbon dynamics (B. Poulter, unpublished results).

The role of CO2 fertilization was also important in our

simulations, and caused an increase in photosynthetic

rates and water-use efficiency as stomatal conductance

decreases to maintain an optimal internal CO2 concen-

tration (following observations by Wong et al., 1979).

Under the SRES A2 emissions scenario (used in this

study) atmospheric CO2 concentrations increase to

about 850 ppm by the year 2100. This CO2 fertilization

effect has been shown to be significant in other con-

tinental-scale studies (Zaehle et al., 2007), where the

authors showed NBP to become strongly negative in

late 21st century Europe. Field experiments to evaluate

tropical ecosystem responses to elevated CO2 have yet

to be conducted, but model sensitivity analyses have

shown up to a 35% increase in tropical NPP (with no

change in climate) at 550 ppm (Hickler et al., 2008),

while here we show a � 30% change in NPP for our

CO2 and climate interaction scenarios. Such a strong

tropical response to CO2 may be realistic if water-use

efficiency increases, but our simulations show that this

response is not sustainable if precipitation declines

beyond a certain level, which is also consistent with

field and inversion studies that have shown tropical

productivity is sensitive to drought (Clark et al., 2003;

Rödenbeck et al., 2003).

Terrestrial processes and their uncertainty

To reduce the uncertainty of the Amazon Basin NBP

dynamics, it is clearly necessary to reduce GCM un-

certainty but also to reduce uncertainty of the socio-

economic, land-use storylines and their implementation

within the LPJmL framework. The disturbance flux

components of NBP (i.e. deforestation, fire, and pasture

grazing) may be more challenging to quantify com-

pared with carbon fluxes derived directly from eco-

physiological processes (i.e. photosynthesis and respira-

tion). This is because of a larger uncertainty for scaling

disturbance processes from heterogeneous field studies

to ecosystem model formulations and their parameters

(Ramankutty et al., 2007).

Fig. 7 This figure illustrates the feedbacks modelled by LPJmL

and shows the relationship between the change in dry season

length (DSL) and the change in aboveground live biomass (Pg C)

for each GCM and land-use/fire scenario. Filled (black) symbols

are with fire, and the open (white) symbols are without fire. The

letters above the points correspond to the climate models in

Figure 1a and Figure 1b. The change in aboveground live

biomass decreases linearly with increasing DSL and the interac-

tion with fire and deforestation becomes more important with

drying climates.
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Our estimates for deforestation and fire fluxes are

low in comparison with previous studies (Table 1). This

is partly because the dynamics of residual carbon

from deforestation are unclear, with some studies as-

suming all vegetation carbon is removed (Morton et al.,

2006) and other studies assuming a constant fraction

remains (Soares-Filho et al., 2006; Ramankutty et al.,

2007). Our fire carbon flux may also be low because

it does not include fluxes from pasture fires, which can

be significant sources of carbon fluxes (Guild et al.,

2004). However, in LPJmL litter biomass did not

limit fire ignitions and was frequently above the

200 gm�2 threshold, whereas high litter moisture re-

duced the probability of fire spread in simulated natural

vegetation fraction. Partitioning the pasture harvest

flux, which in 2050 reaches 0.54 and 0.97 PgCyr�1

under the Governance and BAU scenarios, to fire fluxes

would also improve and increase our basin-wide fire

carbon emissions. The high pasture flux is difficult to

confirm because pasture management has not been

scaled to the basin from field studies, but our m�2

estimates of NPP are within the range of previous work

0.78 kgCm�2 yr�1 compared with 0.9 kgCm�2 yr�1

(Potter et al., 1998).

Ecosystem feedbacks

The feedbacks between climate, fire, and deforestation

on tropical forest integrity have been recognized for

some time, but only recently investigated in biogeo-

chemical ecosystem models for tropical ecosystems

(Nepstad et al., 1999; Golding & Betts, 2008). Incorpor-

ating the effects of fire into earth system models

(coupled climate, ocean, and ecosystem models) is

considered one of the remaining challenges for the earth

science community (Bowman et al., 2009). While the

LPJmL model does not include biophysical or biogeo-

chemical feedbacks from fire and deforestation on cli-

mate, we illustrate that these interactions will have a

large climate effect as they may add an additional

26 PgC to the atmosphere by 2098 (comparing the ‘no

fire, no deforestation and climate change’ row with the

‘fire, deforestation and climate change’ row in Table 3).

At the single grid cell scale (Fig. 8), the modelled

interactions clearly show the synergistic effects; increas-

ing temperature and decreasing precipitation cause an

increase in fire emissions and decrease in aboveground

carbon. The addition of deforestation activities cause

fire emissions to increase further, combining with cli-

mate to increase carbon emissions. In comparison with

previous studies, LPJmL uses similar root and soil

depths to other models (Poulter et al., 2009) suggesting

that hydrologic responses should be similar, but the

extent of Amazon dieback remains somewhat less

severe (Cox et al., 2004; Salazar et al., 2007). LPJmL is

somewhat less sensitive to temperature than other

DGVM models (D. Galbraith, unpublished results)

and the CO2 feedback on water-use efficiency is ignored

in equilibrium models (Salazar et al., 2007).

Prioritizing mitigation and adaptation

The spatio-temporal dynamics of GCM model agree-

ment illustrates that uncertainty indices have the po-

tential to inform adaptation and mitigation options

Fig. 8 At the single grid cell level, climate–deforestation–fire

interactions are clearly illustrated. As precipitation decreases

and fuel loads dry, fire becomes more frequent causing carbon

emissions to increase. Deforestation causes fire emissions to

increase further due to accidental ignitions from encroaching

road building and slash and burn agricultural practices.

D, deforestation; ND, no-deforestation; F, fire.
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within the Amazon Basin. The large range of uncer-

tainty from climate ensemble approaches makes it

challenging for decision makers to anticipate impacts

and policy responses (Cox & Stephenson, 2007). This

study provides an example for estimating the range of

ecosystem responses to climate and disturbance and

can be used as informative weighting factors for prior-

itizing adaptation and mitigation strategies and to in-

tegrate process-based climate assessments with

management planning (Scholze et al., 2006; Cox &

Stephenson, 2007).

An application of this is illustrated by Nepstad et al.

(2008), who recommend a hierarchical approach to-

wards reducing the vulnerability of Amazonia to defor-

estation, fire, and land-use change. The hierarchy

represents the different scales of governmental policies

necessary to achieve a comprehensive sustainability

strategy for Amazon ecosystems. At the local-scale,

they recommend ‘judicious use of fire’ and a strategy

that encourages alternative land-management practices

and suppression. At local to regional scales, incentives

to slow land-use transitions from forest to pasture

combined with practices to improve pasture manage-

ment. At regional scales, protected areas and mini-

mizing road building efforts to slow associated defor-

estation are recommended. And finally, global policies,

most notably associated with UNFCCC to provide

incentives to reduce deforestation through REDD and

ultimately mitigate climate change impacts. By isolating

and identifying interactions between drivers on

changes in Amazonian carbon stocks and fluxes, it will

be possible evaluate and quantify the effectiveness of

these various policies on avoiding the Amazon ‘tipping

point’.

Conclusion

We present a modelling approach that quantifies the

synergistic effects of the main drivers responsible for

Amazon-related degradation responsible for ‘tipping

point’ scenarios (Lenton et al., 2008; Nepstad et al.,

2008). The multiple threats and limited resources to

confront these threats requires that policies are imple-

mented strategically both in space and time, as well as

include the capacity to adapt to new threats as they

emerge. These policies also take place within multiple

sources of uncertainty that range from storylines to

model variability (Cox and Stephenson 2007). Our

results support previous findings that highlight direct

land-use impacts as the predominant driver of eco-

system change in the short-term that are gradually

overwhelmed by climate impacts and synergistic inter-

actions in the long term.
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Österle H, Gerstengarbe FW, Werner PC (2003) Homogenisierung und

Aktualisierung des Klimadatensatzes der Climate Research Unit der

Universität of East Anglia, Norwich. Terra Nostra, 6, 326–329.

Phillips OL, Baker TR, Arroyo L et al. (2004) Pattern and process in

Amazon tree turnover. Philosophical Transactions of the Royal Society of

London, 359, 381–407.

Phillips OL, Martinez RV, Arroyo L et al. (2002) Increasing dominance of

large lianas in Amazonian forests. Nature, 418, 770–774.

Potter C, Klooster S, de Carvalho CR et al. (2001) Modeling seasonal and

interannual variability in ecosystem carbon cycling for the Brazilian

Amazon region. Journal of Geophysical Research, 106, 10423–10446.

Potter CS, Davidson EA, Klooster S, Nepstad D, de Negreiros GH, Brooks

V (1998) Regional application of an ecosystem production model for

studies of biogeochemistry in Brazilian Amazonia. Global Change

Biology, 4, 315–333.

Poulter B, Heyder U, Cramer W (2009) Modelling the sensitivity of the

seasonal cycle of GPP to dynamic LAI and soil depths in tropical

rainforests. Ecosystems, 12, 517–533.

Ramankutty N, Gibbs HK, Achard F, DeFries R, Foley JA, Houghton RA

(2007) Challenges to estimating carbon emissions from tropical defor-

estation. Global Change Biology, 13, 51–66.

Raupach MR, Marland G, Ciais P, Le Quere C, Canadell JG, Klepper G,

Field CB (2007) Global and regional drivers of accelerating CO2

emissions. Proceedings of the National Academy of Science, doi: 10.1073/

pnas.0700609104.

Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL (2002)

Outgassing from Amazonian rivers and wetlands as a large tropical

source of atmospheric CO2. Nature, 416, 617–620.

Rödenbeck C, Houweling S, Gloor M, Heimann M (2003) CO2 flux history

1982–2001 inferred from atmospheric data using a global inversion

of atmospheric transport. Atmospheric Chemistry and Physics, 3,

1919–1964.

Saatchi SS, Houghton RA, dos Santos Alvala RC, Soares JV, Yu Y (2007)

Distribution of aboveground live biomass in the Amazon Basin. Global

Change Biology, 13, 816–837.

Salazar LF, Nobre CA, Oyama MD (2007) Climate change consequences

on the biome distribution in tropical South America. Geophysical

Research Letters, 34, L09708, doi: 10.1029/2007GL029695.

Scholze M, Knorr W, Arnell NW, Prentice IC (2006) A climate-change risk

analysis for world ecosystems. Proceedings of the National Academy of

Science, 103, 13116–13120.

Schulze ED, Wirth C, Heimann M (2000) Managing forests after Kyoto.

Science, 289, 2058–2059.

Sitch S, Huntingford C, Gedney N et al. (2008) Evaluation of the terrestrial

carbon cycle, future plant geography and climate-carbon cycle feed-

backs using five Dynamic Global Vegetation Models (DGVMs). Global

Change Biology, 14, 2015–2039.

Sitch S, Smith B, Prentice IC et al. (2003) Evaluation of ecosystem

dynamics, plant geography and terrestrial carbon cycling in the

LPJ dynamic global vegetation model. Global Change Biology, 9,

161–185.

Soares-Filho BS, Nepstad DC, Curran LM et al. (2006) Modelling con-

servation in the Amazon basin. Nature, 440, 520–523.

Stephens BB, Gurney KR, Tans PP et al. (2007) Weak northern and strong

tropical land carbon uptake from vertical profiles of atmospheric CO2.

Science, 316, 1732–1735.

Thonicke K, Venevsky S, Sitch S, Cramer W (2001) The role of fire

disturbance for global vegetation dynamics: coupling fire into a

dynamic global vegetation model. Global Ecology and Biogeography, 10,

661–677.

Tian H, Melillo JM, Kicklighter DW, McGuire AD, Helfrich JVK III, Moore
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