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Abstract

We introduce a numerical methodology to compute the solution of an

adhesive normal contact problem on rough surfaces with the Boundary Ele-

ment Method. Based on the Fast Fourier Transform and the Westergaard’s

fundamental solution, the proposed algorithm enables to solve efficiently the

constrained minimization problem: the numerical solution strictly verifies

contact orthogonality and the algorithm takes advantage of the constraints

to speed up the minimization. Comparisons with the analytical solution

of the Hertz case prove the quality of the numerical computation. The

method is also used to compute normal adhesive contact between rough

surfaces made of multiple asperities. keywords:Adhesive normal contact,

BEM, rough surfaces

1 Introduction

Natural surfaces are rough and composed of many asperities over a wide range
of length scales. Contact mechanics of rough surfaces need to account for the
complex interactions between these asperities. Numerical simulations can re-
veal how the true contact area (which is a small fraction of the nominal contact
area), the distribution of contact clusters sizes, and the distribution of local pres-
sures, amongst other quantities of interest, vary with load and surface roughness
[31, 21, 23, 3, 22, 14, 4, 26, 6]. A fundamental understanding of the micro contacts
finds many applications including friction, wear, or the thermal or electrical con-
ductivity of an interface. At the small scale, an additional complexity is brought
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by non-negligible Van der Waals forces. Adhesion is of primary concern for the
robustness and reliability of micro-electromechanical systems (MEMS) and nano-
electromechanical systems (NEMS). It needs to be accurately accounted for in
numerical methods.

Classical theories describing adhesion for the case of Hertz contact have been
developed several decades ago [17, 15, 10]. However, these models only consider
a single asperity and therefore do not account for elastic interactions between
asperities, although it is known ([12, 11, 4, 20]) that neglecting these interactions
leads to wrong estimates of the true contact area. Several numerical approaches
including adhesion for contact between rough surfaces have been developed in the
past decades. These include the diffusion model of Persson [24], the Boundary-
Element Method (BEM) [5, 6, 7], and the Green’s Function Molecular Dynamics
method (GFMD) [18, 21]. Resolving accurately and efficiently for the true contact
area in the presence of adhesive forces yield several numerical challenges. Yet, to
the best of the authors’ knowledge, the current literature does not explain in detail
the coupling of adhesive forces with inequality contact constraints for the BEM.

The objective of this paper is therefore to fill this void. We present an efficient
algorithm to compute the solution of the frictionless normal adhesive contact prob-
lem within the Boundary Element Method (BEM). Because of the use of BEM,
we will only consider elastic linear behaviour. Including material non-linearities
such as plasticity is a an additional difficulty that can be addressed with Finite El-
ement Method for example. Interested readers may refer to [30]. Here, we present
an algorithm that is composed of two nested conjugate gradients. It enables to
solve adhesive normal contact by ensuring strictly the contact inequality and be-
haves better than penalization techniques, which relax the contact inequality by
authorizing small interpenetration [30].

In section 2, we describe the mechanical model. Then, in section 3, the problem
is discretized and the algorithms employed to solve the constrained minimization
problem are presented. The first part of section 4 is dedicated to the validation of
the proposed method by comparing our numerical results to analytical solutions
in the Hertzian case. The second part of section 4 consists in the comparison of
contact maps for rough surfaces with and without adhesive behaviour. Section 5
concludes the paper.

2 Mechanical model

We study the frictionless normal contact between two homogeneous semi-infinite
solids: one flat elastic isotropic deformable solid (under small displacements hy-
pothesis) of Young’s modulus E and Poisson’s ratio ν and a rigid (infinitely stiff)
rough surface with an height profile h.
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2.1 Continuous formulation

We use an integral formulation [26] that enables to compute the solution in the
whole domain from the normal displacement field u obtained at the surface S of
the flat deformable solid. The problem is therefore solved only at the surface,
which represents a reduction of dimension with the obvious advantage to reduce
the computational cost. Integral representations can be used to compute quantities
inside the bulk (displacements in the bulk for instance) as a post-processing step.
The elastic behaviour is described through a convolution product with a kernel
defined from a fundamental solution.

More precisely, the link between normal displacement upxq and the normal
pressure ppxq at the surface is:

upxq “
ż

S

Kpx ´ x1qppxqdx1 (1)

If we use the Boussinesq’s fundamental solution, Kpxq is the surface deflection
at the point of coordinate x produced by a concentrated normal load of unit
magnitude, applied at the surface at the origin p0, 0q. In this paper, we decide
to use the Westergaard’s solution [29] that connects pressure to displacements in
Fourier’s space thanks to influence coefficients.

We note g the gap defined by:

gpxq “ upxq ´ hpxq (2)

The condition of non interpenetration between the two solids imposes that

@x, gpxq ě 0 (3)

The prescribed loading is given in terms of the mean value of the gap:

1

S

ż

S

pupxq ´ hpxqqdS “ g0 (4)

In the following, we first give the formulation of the contact problem without
adhesion before introducing adhesive interactions in section 2.3.

2.2 In absence of adhesion

The displacement field u is the solution of the minimization problem:

u “ argmin
uPA

Eppuq (5)
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where A is the space of admissible displacement fields characterized by:

u P A ô @x, upxq ´ hpxq ě 0 and
1

S

ż

S

pupxq ´ hpxqqdS “ g0 (6)

When there is no adhesion, the potential energy is equal to the elastic energy:

Ep “ Eelas “ 1

2

ż

S

upxqppxqdS (7)

In the space A, the inequality constraint corresponds to inter-penetration re-
strictions and the equality condition corresponds to the applied load. The well-
known Hertz-Signorini-Moreau orthogonality [27] for contact reads:

@x, ppxqgpxq “ 0, ppxq ě 0, gpxq ě 0 (8)

The pressure being always positive can be either interpreted physically (only com-
pressive forces can exist since there is no adhesion) or mathematically (the pressure
is actually the Lagrange multiplier associated to the constraint of non-inter pen-
etration). Let us note that this is a condition that connects the primal variable
(the gap g) to the dual variable (the pressure p).

2.3 In presence of adhesion

When adhesion is considered, the potential energy is the sum of elastic energy and
adhesive energy:

Ep “ Eelas ` Eadh (9)

where the adhesive energy is usually a function of the distance between the two
surfaces:

Eadh “ fpgq (10)

The displacement field u is still the solution of the minimization problem

u “ argmin
uPA

Eppuq (11)

Let us rewrite the constrained minimization by defining the Lagrangian:

Lλpuq “ Eppuq ´
ż

S

λpu ´ hqdS (12)

where λ is the Lagrange multiplier that has to be positive λ ě 0. The stationarity
of the Lagrangian reads:

BLλpuq
Bu “ p ` Bf

Bu ´ λ “ 0 (13)
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As a consequence, the Lagrange multiplier is equal to the sum of the elastic pressure
p and the adhesive force.

The orthogonality for adhesive contact now reads:

@x,

$

&

%

`

ppxq ` Bf
Bu

˘

gpxq “ 0

ppxq ` Bf
Bu

ě 0
gpxq ě 0

(14)

The equality can be explained by the Lagrangian: when the constraint is not
saturated (g ą 0), the Lagrange multiplier is null (λ “ 0) and when the constraint
is saturated (g “ 0), the Lagrange multiplier is strictly positive λ ą 0. From a
mechanical viewpoint, at points where the two surfaces are not in contact (g ą 0),
the sum of forces is zero (elastic forces equilibrate adhesion forces). At points
where the two surfaces are in contact (g “ 0), the sum of forces has to be strictly
positive.

2.4 Stability analysis

Adhesion may cause the loss of convexity of the potential energy, which could lead
to unstable solutions [9]. Without adhesion, the second derivative of the poten-
tial energy is the elastic stiffness, which is a positive operator. As a consequence,
the equilibrium solution is always stable. With adhesion, the second derivative
of the energy may be negative. If it is the case, it implies that the equilibrium
solution found by optimizing the energy is unstable. Many numerical techniques
exist to compute bifurcated solutions and to study the stability of mechanical sys-
tems [19]. However, the contact constraint complicates this analysis since not all
perturbations around an equilibrium position are admissible. This paper focuses
on the computation of an equilibrium solution discarding the question of its sta-
bility. Nonetheless, we provide an outlook on the consequences of this issue on
the algorithm we propose in subsection 3.3.

3 Discretized problem and resolution algorithms

Next, we present the discretized problem and algorithms to solve the adhesive
contact.

3.1 Discretized problem

We consider a square surface of length L, which is discretized as a grid with the
discretization length l. We aim at solving the continuous problem on the N “ L2

l2

grid points (collocation) using BEM. We will denote by bold font u the vector
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collecting the N nodal values of displacement and p the vector collecting the N

nodal values of pressure. The scalar ui is the value of the vertical displacement at
the grid node i. We note e the vector whose each component is 1.

The convolution product (1) is computed in Fourier’s space so that the link
between the displacement vector u and the elastic pressure vector p is the following:

u “ FFT-1pKFFTppqq (15)

where FFT is the 2D Fast Fourier Transform, FFT-1 is the Backward 2D Fast
Fourier Transform, and K is a diagonal NxN matrix that contains the influence
coefficients for the reference Westergaard solution [29]. These constant coefficients
depend on the discrete set of frequencies admissible for the chosen discretization
and on the Young’s modulus E (see [28] for their expressions). The use of Fast
Fourier Transform (FFT) implicitly enforces periodic boundary conditions on the
surface. In K the coefficient associated to the 0-frequency is 0. Indeed, the dis-
placement of the surface is only known up to a rigid-body motion. We can also
compute a centered pressure, that is to say a pressure with mean value 0, from a
displacement u using the relation:

p “ FFT-1pK´1 FFTpuqq (16)

We define the gap vector g “ u ´ h and the admissible space

u P A ô @i P r1;Ns, gi ě 0 and
1

N

N
ÿ

i“0

gi “ g0 (17)

The discretized problem reads:

Find u P A minimizing Eppuq (18)

3.2 Resolution algorithm

Solving the mechanical problem consists in minimizing a functional under equality
and inequality constraints. Many strategies exist to solve this type of problem (see
[30, 1] for a review of those techniques for contact problems). In our framework,
since the rough surface is rigid, the projection of any trial solution onto the con-
strained space is straightforward. We will use a constrained conjugate gradient
algorithm to solve the problem. As a consequence, when the solver has converged,
the constraint is strictly verified (up to machine precision) and contact orthogo-
nality is guaranteed. Instead of solving the problem with pressure as the unknown,
we choose the gap to be the unknown. This choice is justified by the fact that
the projection to satisfy the constraint on the gap is simple (the rough surface is
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rigid) and is independent of the adhesive potential. On the contrary, ensuring the
constraint on the dual variable depends on the adhesive potential and may become
much more difficult.

The algorithm we present in this paper is composed of two minimizations that
are performed thanks to an iterative scheme. After initialization, the first search
direction to minimize the potential energy is computed. The updated unknown
vector may not verify the constraints and is therefore projected on the admissible
space. Only when converged may the solution be the vector minimizing the po-
tential energy and also respecting the constraints. To describe the algorithm, we
first introduce I, the set of points in the grid, Ina the set of points i where gi “ 0
and qi ă 0, where q is the vector defined as the sum of the elastic pressure p and
the adhesive force:

q “ p ` Bf
Bu (19)

The subscript na stands for non admissible since the sum of elastic and adhesive
pressures should always be positive (14). Inc, where the subscript nc stands for
non contact, is the set of points i where gi ą 0. Nnc denotes the number of points
in Inc. Ic, where the subscript c stands for contact, is the set of points i where
gi “ 0. Obviously, Ina Ă Ic. The contact zone is therefore described by Ic. At
convergence, we should have Ina “ H and Inc and Ic forming a partition of I.

The algorithm (see Algorithm 1) is composed of two nested loops each corre-
sponding to a minimization process. The objective of the outer loop is to minimize
the potential energy Ep, which might create interpenetrated situations. The role
of the inner loop is to project the unknowns on the admissible space (no inter
penetration and enforcement of the targeted mean gap) and to minimize the or-
thogonality on the non contact set Inc. Both minimizations are based on the
classical conjugate gradient algorithm. The stopping criterion is defined using the

scalar product ǫ “
N
ř

i“1

| gipqi ´ 1
Nnc

ř

Inc

qiq |“
N
ř

i“1

| giq1
i |.

At the end of the algorithm, because equation (16) only gives a centered field,
it is required to recover the mean value of the total pressure q. This is done at the
end of the outer loop, by computing p0 “ ´min

I
qi so that the final total pressure

is q ` p0e.
As a consequence, the fields computed verify contact inequalities. Indeed,

@i P Ic, gi “ 0 and @i P Inc, gi ą 0. Because of the definition of p0, the final total
pressure is such that @i P I, pqi ` p0q ě 0.

Contact orthogonality is ensured thanks to the following property, whose con-
ditions are verified at convergence.

Property 1. If @i P Ic, gi “ 0, @i P Inc, gi ą 0, Ina “ H and ǫ “ 0
then @i P Inc, pqi ` p0q “ 0 with p0 “ ´min

I
qi
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Proof. First, since ǫ “ 0, we know that @i P Inc, q
1
i “ 0. Therefore @i P Inc,

q1
i “ qi ´ 1

Nnc

ř

Inc

qi “ 0. As a consequence, on Inc, qi is constant. Moreover, since

Ina “ H, we have @i P Ic, q
1
i ě 0, so @i P Ic, qi ě 1

Nnc

ř

Inc

qi. As a consequence,

min
I

qi “ 1
Nnc

ř

Inc

qi “ qi,iPInc
.

Finally, on Inc,
qi ` p0 “ qi ´ min

I
qi

“ 1

Nnc

ÿ

Inc

qi ´ 1

Nnc

ÿ

Inc

qi

“ 0

(20)

The fundamental following remarks explain how the algorithm can be rewritten
in an elegant condensed form. First, the derivative of the energy functional and
the derivative of P is q in both cases. In the outer loop, Ina is empty so I “ Inc`Ic.
As a consequence, the minimum of Ep on Inc is the minimum of Ep on I. Also, the
two optimal scalars τ and α that are to be multiplied to the search direction in
conjugate gradient iterations (see algorithms 1 and 2) are equal. Moreover, in the
inner loop, P “ 0 implies that the energy functional is minimum so that the test
to stop the algorithm can be placed at the end of the inner loop. Finally, we can
gather the loops by adding a new variable δ which is set to 1 when minimizing the
energy functional, and to 0 when imposing the constraints. We thus obtain the
condensed form of the algorithm (algorithm 3), which is similar to the pressure
formulation presented in [25].

We highlight the fact that every search direction in the inner loop is a good
search direction for the energy minimization. At convergence, the contact orthog-
onality is strictly verified. This would not have been the case with a penalization
approach [30], where the non negativity of the gap is ensured weakly by penaliz-
ing negative gaps. A penalization approach requires the introduction of a scalar
parameter representing an additional stiffness. The larger this stiffness, the lower
the interpenetration. However, it is well-known that in order to obtain a negligi-
ble penetration, the penalty parameter has to be very large, which often leads to
ill-conditioned problems since the ratio between the penalization parameter and
the Young’s modulus may become large. Uzawa algorithm [30] is based on an
augmented Lagrangian formulation that enables to obtain no penetration with a
finite penalization parameter. However, this algorithm requires to define the initial
penalization parameter and the step size and is more complex to implement than
the simpler formulation we present. Finally, since with those types of approach
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the orthogonality is not strictly enforced, the reconstruction for the total pressure
from its centered counter-part may lead to wrong results.

The algorithm can only be used in the case of one deformable surface on a
rigid surface. Indeed, if the two surfaces are deformable, many properties are lost.
First, because the fundamental solution is no longer invariant by translation, the
influence coefficients in matrix K depend on the point so that the computation of
elastic behaviour becomes very expensive. Moreover, the detection of the contact
zone is more difficult and the projection on the admissible space is not possible
anymore. Alternative strategies have to be used (see [30] with active-set technique
for example).

3.3 Comments on stability issue for the resolution algo-

rithm

The algorithm computes an equilibrium solution. As explained in subsection 2.4,
the computed equilibrium may be unstable and therefore unrealistic since any
arbitrary small perturbation will lead to the modification of the response into one
of the stable positions. Depending on both the surface and the adhesion potential,
one or several equilibrium positions may exist and they may be either stable or
unstable. The consequences on the algorithm are that the solution may strongly
depend on the initialization and on the critical value for the stopping criterion.
In other words, two different contact maps can be obtained from two different
initializations. However, since this algorithm is giving an equilibrium solution, it
prepares further stability analysis. This requires the computation of eigenvalues
of the second derivative operator of the problem at the equilibrium position under
the inequality contact constraints. This is the topic of ongoing work.

4 Validation

This section aims at validating the presented algorithm. We first compare the
obtained numerical results with known analytical solutions for the Hertz problem
without and with adhesion. Then, we illustrate the influence of adhesion on the
contact clusters on a rough surface.

4.1 Hertzian case

The surface profile h is given by:

hprq “ ´ r2

2R
(21)

9



and this surface is considered infinitely rigid. We study the elastic response of a flat
surface of effective Young’s modulus E “ 1. The radius R of the indenter is equal
to 2L where L stands for the length of the surface. In the presented calculations
L will be set to 1. We will only consider small loads so that the periodic boundary

conditions are not too influential. The stopping criterion is ǫ “
N
ř

i“1

giq
1
i ă 10´9.

4.1.1 Without adhesion

Without adhesive forces, the exact axi-symmetric pressure and displacement solu-
tions are given by:

$

’

&

’

%

pexprq “ 2E

πR

?
a2 ´ r2

uexprq “ hprq ` a

πR

?
r2 ´ a2 ` r2 ´ 2a2

πR
arccos

´a

r

¯

(22)

where a is the exact contact radius.
In Figure 1, we plot the profile at y “ 0 of displacement and pressure for

the exact solution and the computed one for mean value of gap g0 “ 0.0398L,
which corresponds to the loading pressure p0 “ 2.10´4E in a 512x512 grid. Once
again, we observe a good agreement between the two. The difference observed in
displacements when x Ñ L is due to the periodic boundary conditions (PBC) used
in the simulation, while the Hertz model considers an infinite solid.

In table 1, we give the relative error at convergence, in energy norm η defined
by

η2 “

ż

S

pu ´ uexqpp ´ pexqdS
ż

S

uexpexdS

(23)

for 6 different discretizations.

Remark 1. Since u is the approximate solution computed by collocation, η is

computed as following:

η2 “

N
ÿ

i“1

pui ´ uexpxiqqppi ´ pexpxiqq
ż

S

uexpexdS

(24)
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We observe that the error for a 64x64 grid is already small and that refining the
grid size reduces the error, although the reduction is not significant, once again
because the numerical solution is slightly perturbed by the periodic boundary
conditions.
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m
e
n
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Figure 1: Comparison between analytical Hertzian solution and BEM computed
solution on a 512x512 grid with load p0 “ 2.10´4E. On the left, pressure dis-
tributions are plotted and on the right displacements are plotted. The observed
difference between displacements is due to the periodic boundary conditions in the
BEM simulation.

We also implemented, in our home-made software, a standard penalization
technique with the penalization parameter kpen “ 5000 and as well as an Uzawa
algorithm. In addition to the relative error in energy norm, we give the relative
error θ defined by:

θ2 “

ż

S

pu ´ uexqpu ´ uexqdS
ż

S

uexuexdS

(25)

Table 2 gathers the relative errors θ and η and the minimum value of the
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gap at convergence for each method. We observe a negative gap for the penalty
approach. The three methods give similar relative error in displacement but only
the constrained gradient gives a small error in energy norm. This is due to the
recovery of the mean value of the pressure at convergence. In Uzawa and penalty
algorithms, since the orthogonality between gap and pressure is not ensured, wrong
results are obtained while recovering the mean value p0 using theorem 1.

4.1.2 Adhesive contact

In order to compare with exact solutions for adhesive contact, we choose the simple
Maugis-Dugdale adhesive potential [17] that considers that the adhesive force is
constant if the gap between the two surfaces is smaller than the characteristic
length ρ. Adhesion does not have any effect if the gap is larger than ρ. We note
γ the surface energy. As a consequence, the adhesive potential reads:

Eadh “

$

’

&

’

%

0 if g ą ρ

´γ

ż

S

ˆ

1 ´ gpxq
ρ

dS

˙

if g ď ρ (26)

Therefore, the adhesive force derived from this potential is:

fadh “
"

0 if g ą ρ
γ

ρ
if g ď ρ

(27)

This Maugis-Dugdale (MD) model also allows to study two asymptotic cases:

• the Johnson-Kendall-Roberts (JKR) approximation [15], which neglects ad-
hesive forces outside the contact area and leads to an infinite elastic stress at
the edge of contact, as in linear fracture mechanics. The JKR theory applies
to large compliant spheres.

• the Derjaguin-Muller-Toporov (DMT) approximation [10], which assumes
that adhesive forces can act outside the contact area but do not deform
surfaces in the contact area. The DMT theory applies for small stiff spheres.

The Tabor coefficient µT is a dimensionless scalar parameter that enables to
determine if the problem is close to the JKR approximation or to the DMT one.
It is defined by:

µT “ γ
2

3R
1

3

ρE
2

3

(28)

where R is the typical local radius of curvature of the considered surface (here the
radius of the sphere). Small µT corresponds to DMT approximation and large µT

corresponds to JKR approximation.
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In the following, we will consider two cases for the adhesive parameters: (ρ “
3.0 10´4L, γ “ 1.0 10´5EL) and (ρ “ 2.0 10´3L, γ “ 1.0 10´4EL). The stiffness
of the material is E in both cases. The solution for the first set of parameters
will be compared to the exact solution of the JKR model since the chosen values
define a small Tabor coefficient and an effect of adhesion that exists only near the
contact zone. The solution for the second set of parameters will be compared to
the exact solution of the MD-model. The JKR solution is given by:

$

’

’

&

’

’

%

pexprq “ 2E

πR

?
a2 ´ r2 ´ KI?

πa

a?
a2 ´ r2

uexprq “ hprq ` a

πR

?
r2 ´ a2 ` r2 ´ 2a2

πR
arccos

´a

r

¯

` 2KI

πE

?
πa arccos

´a

r

¯

(29)

where KI “
b

2γ

E
. One clearly sees the stress singularity at r “ a. Of course, the

infinite value of the stress at r “ a cannot be captured by numerical simulation.
In table 3, we give the relative error in energy norm for 5 different discretiza-

tions. Contrary to the non-adhesive case, the 64x64 surface does not give a good
approximation of the solution. It illustrates that adhesion is more demanding in
terms of discretization: the grid has to represent correctly the new parameter ρ

which can be quite small.
In figure 2, we give the profile of both pressure and displacement for computed

and exact solutions on a 2048x2048 grid. The agreement between the two is very
good and the difference is due to the non-zero length ρ in the simulation, the
discretization and the periodic boundary conditions.

The MD exact solution is given by:

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

pexprq “ 2E

πR

?
a2 ´ r2 ´ 2σ0

π
arctan

˜

c

c2 ´ a2

a2 ´ r2

¸

uexprq “ hprq ` a

πR

?
r2 ´ a2 ` r2 ´ 2a2

πR
arccos

´a

r

¯

` 4σ0

Eπa

«

ac2
ż minpr,cq

a

?
r2 ´ t2

t2
?
c2 ´ t2

dt ´
?
c2 ´ a2

´?
r2 ´ a2 ´ a arccos

´a

r

¯¯

ff

(30)
To obtain the relationship between the model parameters, the load, the contact

area and the adhesive zone radius c, it is necessary to solve iteratively a non-linear
equation that connects all these scalars. To avoid this difficulty, we chose to use
the quasi-analytical formula proposed in [8].
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Figure 2: Comparison between analytical solution of the JKR adhesive model on
Hertzian contact and BEM computed solution for a MD adhesive potential with
characteristic length for adhesion ρ “ 3.10´4L on a 2048x2048 grid with mean
value of gap g0 “4.05 10´2L. The difference observed is due to the non-zero
length ρ in the simulation, the discretization and the PBC.

In table 4, we give the relative error in energy norm for 5 different discretiza-
tions. Once again, we observe that adhesion is more demanding in terms of dis-
cretization.

In figure 3 we give the profile of both pressure and displacement for computed
and exact solutions on a 1024x1024 grid. We observe that the computed solution
is very close to the exact solution. The zone with negative pressure is larger than
in the JKR case, which is consistent with a larger value of ρ.

Finally, we give on the same Figure 4, the estimation of convergence rates for
the three presented cases.

4.2 Adhesive contact between rough surfaces

In this section we compute the solution of the adhesive contact on a rough surface
for non-adhesive contact (zero Tabor coefficient) and adhesive contact.
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Figure 3: Comparison between analytical solution of the MD adhesive model on
Hertzian contact and BEM computed solution for a MD adhesive potential with
characteristic length for adhesion ρ “ 2.10´3L on a 2048x2048 grid with mean
value of gap g0 “4.29 10´2L. The difference observed is due to the discretization
and the PBC.

First we describe the rough surface and the way we generate it. Then we give
the contact maps obtained in presence and absence of adhesion.

4.2.1 Description of the rough surface

A rough surface is usually described by its auto-correlation function Rhpxq

Rhpxq “ 1

L2

ż

S

hpx ´ x1qhpx1qdx1 (31)

or by its power spectral density (PSD), which is the Fourier transform of the
auto-correlation function [16].

To define the form of the PSD for a rough surface, we introduce the following
wavelengths: λs (shortest wavelength), λr (roll-off wavelength) and λl (largest

15
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Figure 4: Errors and estimation of convergence rates for Hertz problem without
adhesion (ηHertz) and with adhesion (ηMD, ηJKR) : including adhesion lower the
convergence rate : the exponent goes from 1.8 to 1.5.

wavelength). Therefore, we also have the following wave numbers: ks “ L
λs
, kr “ L

λr

and kl “ L
λl
.

The power spectral density of natural rough surfaces often follows a self-affine
behavior:

Φp|k|q “

$

’

&

’

%

C if kl ď |k| ď kr

C
´

|k|
kr

¯´2´H

if kl ď |k| ď kr

0 otherwise

(32)

where H is the Hurst exponent and C the roughness amplitude. |k| is the norm of
the wave vector:

|k| “
b

k2
x ` k2

y (33)

To construct periodic rough surfaces, we use a Fourier-based filtering algorithm
[13], which can be summarized as follows:

16



1. Generate random heights ηpx, yq according to an isotropic normal law (Gaus-
sian white noise)

2. Compute the PSD Spkx, kyq “ S of η (should be constant)

3. Define the PSD Φpkx, kyq of the desired surface from the parameters

4. Compute

Hpkx, kyq “ Φpkx, kyq
S

(34)

5. Compute the product

Z “ pHpkx, kyqqFFTpηq (35)

6. Compute the backward Fourier transform

hpx, yq “ FFT´1pZq (36)

We used this filtering process to generate one rough surface whose properties are:
L “ 1, kl “ 4, kr “ 4, ks “ 64, H “ 0.8 and the root mean square of slopes is 0.001.
The surface size is 1024x1024. The choice of kl and kr different from 1 is justified
by the need to have a representative surface (see [31] for a detailed discussion
on this point). The spectrum of the surface is not as rich as the one of truly
rough surfaces. However, adhesion is very demanding in terms of discretization.
Since we do not aim at a comprehensive parametric study on the influence of wave
numbers on adhesive contact in this article, we chose a smaller spectrum but with
a sufficient discretization (1024x1024). In figure 5, we give a representation of the
rough surface.

4.2.2 Contact maps

We consider the following adhesion energy:

Ead “ ´γ

ż

S

exp

ˆ´g

ρ

˙

dS (37)

where γ is the surface energy and ρ the characteristic length of range of adhesive
effect. The adhesive force is therefore:

fadhpxq “ BEad

Bu “ γ

ρ
exp

ˆ´gpxq
ρ

˙

(38)
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Figure 5: Heights of the rough surface

This potential has been studied in [18] with a GFMD [2] method. Adhesion is
proportional to surface energy and the closer the surfaces, the larger the adhesion
effect. Moreover, with this model, the adhesion force can be very small but never
null.

In the first computation we set γ “ 0 and there will be no adhesion. For the
second computation, we chose γ “ 2.0 10´5EL3 and ρ “ 2.0 10´5L .

In Figure 6, we give the signed pressure maps obtained on the same surface for
the same mean load q0 “ 0.003E. On the first map, we observe only zero pressure
(in grey) and positive pressure (in black) since no adhesion is considered. On the
second map, we clearly see that the zone of negative pressure (in white) surrounds
the positive pressure clusters. In Figure 7, we give the associated contact maps
(contact is in black). One clearly sees that in presence of adhesion, the contact
area is bigger than without adhesion for the same mean value of pressure q0.

Uzawa and penalty algorithms diverge and cannot compute solution for this
problem. This can be explained by the exponential adhesive potential, which
strongly changes the functional to minimize even for a slightly negative gap. More-
over, the rough surface is a much more complicated geometry than the single

18



Figure 6: Pressures without and with adhesion. Grey is 0 pressure, black is positive
pressure and white is negative pressure

asperity case of Hertz contact.
Finally, with the hypothesis that stability issues have no influence on the global

true contact area, we give the repulsive contact area as a function of the load
for different surface energy γ in Figure 8. As expected, in absence of adhesion
(γ “ 0), the contact area depends linearly on the ratio q0

Eh1
rmsA0

, where A0 “ L2 is
the nominal area, where q0 is the mean value of the sum of adhesive and elastic
pressures and where h1

rms is the root mean square of the slopes of the surface.
Adhesion increases the contact area, which results in larger slope κ (estimated
using the origin tangent). This trend was also observed in [21].

5 Conclusion

In this paper, we proposed an efficient algorithm to compute the solution of an
adhesive normal contact problem solved with BEM on arbitrary rough surfaces.
This algorithm ensures the contact orthogonality and is easy to implement. We
validated it on the adhesive Hertzian case: the numerical results are in good agree-
ment with analytical solutions. Finally, we illustrate the algorithm’s robustness
by solving the adhesive normal contact between one flat solid and a rough surface
with an exponential adhesive law.

The main limitation of this method is that the two surfaces cannot be de-
formable simultaneously. Future work will consist in studying the stability of the
equilibrium solution and the consequences on the geometry of the contact map.
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Figure 7: Contact area without and with adhesion. Contact zone (in black) is
larger in case of adhesion than without.
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Algorithm 1: Developed algorithm

Initialize Rold “ 1, t “ 0 ; // Initialize t to 0

Initialize g uniform such that g0 “ 1

N

N
ř

i“1

gi ;

while ǫ ě ǫ0 do

Set gold “ g ;

Compute elastic pressure p “ FFT-1pK´1 FFTpg ` hqq ;

Compute total pressure q “ p ` Bf
Bu

;

Compute residual
BEp

Bu
“ q ; // Compute residual

Compute
¯BEp

Bu
“ 1

N

ř

I

BEp

Bui
;

Recenter q1 “ q ´
¯BEp

Bu
e ; // To avoid rigid body motion

Compute R “ }q1}2 “
ř

I

q12
i ;

Compute t “ q1 ` R
Rold

t ; // Compute search direction

Set Rold “ R ;

Compute r “ FFT-1pK´1 FFTptqq Compute r̄ “ 1

N

ř

I

ri ;

Recenter r1 “ r ´ r̄e ;

Compute τ “

ř

I

q1

iti

ř

I

r1

i
ti

; // Compute optimal value for this search direction

Set g “ g ´ τt ; // Update the unknown, we may have created negative gaps

Truncate all g negative ; // We get rid of negative gaps

Determine Ina the set of points where gi “ 0 and q1
i ă 0 ;

while Ina ‰ H do

Empty Ina and minimize P “
ř

Inc

q1
igi on Inc using a conjugate gradient alternatively, as

detailed in algorithm 2.

end

Computation of the current mean value of gap G “ 1

N

N
ř

i“1

gi ;

Enforce the external condition g “ g0
G
g ;

Compute the relative error for stopping criterion ǫ ;

end

Compute elastic pressure p “ FFT-1pK´1 FFTpg ` hqq ;

Compute total pressure q “ p ` Bf

Bu
;

Compute p0 “ ´min
iPI

qi ;

Recover total pressure q “ q ` p0e ;
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Algorithm 2: Internal loop

if it is the first time we enter the loop then

g “ g ´ τq1 for nodes in Ina

else

g “ g ´ αq1 for nodes in Ina

end

; // All nodes in Ina will enter Inc therefore Ina is empty (g=0 on Ina and α and τ are

positive and q <0 on Ina)

Computation of the current mean gap G “ 1

N

N
ř

i“1

gi ;

Enforce the mean gap value g “ g0
G
g ;

Set gold “ g ;

Compute elastic pressure p “ FFT-1pK´1 FFTpg ` hqq ;

Compute total pressure q “ p ` Bf

Bu
;

Determine Inc the set of points where g ą 0 ;

Compute q̄ “ 1

Nnc

ř

Inc

qi ;

Recenter q1 “ q ´ q̄e ; // Compute residual

if pi; jq P Inc then

t “ q “ BP

Bu
; // Search direction

else

t “ 0;

end

Compute r “ FFT-1pK´1 FFTptqq Compute r̄ “ 1

Nnc

ř

Inc

ri ;

Recenter r1 “ r ´ r̄e ;

Compute α “

ř

Inc

q1

iti

ř

Inc

r1

i
ti

; // Optimal coefficient in this direction

Set g “ g ´ αt ; // Evaluation of the unknown

Truncate all g negative ;
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Algorithm 3: Condensed algorithm for adhesion

Initialize Rold “ 1, δ “ 0, t “ 0 ;

Initialize g uniform such that g0 “ 1

N

N
ř

i“1

gi ;

while ǫ ě ǫ0 do

Set gold “ g ;

Compute elastic pressure p “ FFT-1pK´1 FFTpg ` hqq ;

Compute total pressure q “ p ` Bf

Bu
;

Compute q̄ “ 1

Nnc

ř

iPInc

qi ;

Recenter the pressure q1 “ q ´ q̄e ;

Compute R “ }q1}2 “
ř

I

q12
i ;

Compute t “ q1 ` δ R
Rold

t for nodes in Inc;

Set Rold “ R ;

Compute r “ FFT-1pK´1 FFTptqq ;

Compute r̄ “ 1

Nnc

ř

iPInc

ri ;

Recenter r1 “ r ´ r̄e ;

Compute τ “

ř

iPInc

q1

iti

ř

iPInc

r1

i
ti

;

Set g “ g ´ τt ;

Truncate all g negative ;

Determine Ina the set of points where gi “ 0 and qi ă 0 ;

if Ina “ H then

δ “ 1;

else

δ “ 0;

g “ g ´ τq for nodes in Ina

end

Computation of the current mean value of gap G “ 1

N

N
ř

i“1

gi ;

Enforce the external condition g “ g0
G
g ;

Compute the relative error for stopping criterion ǫ ;

end

Compute elastic pressure p “ FFT-1pK´1 FFTpg ` hqq ;

Compute total pressure q “ p ` Bf
Bu

;

Compute p0 “ ´min
iPI

qi ;

Recover pressure p “ p ` p0e ;

grid size 64x64 128x128 256x256 512x512 1024x1024 2048x2048
ηHertz 1.40 10´2 4.08 10´3 7.78 10´4 3.66 10´4 1.20 10´4 1.66 10´5

Table 1: Error in energy norm between computed and exact Hertz solution for
different grid sizes: 64x64 grid already gives satisfying results. The numerical
solution tends to the analytical solution when l tends to 0.
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method η θ minpgq
Penalty 10 2 10´4 -4 10´6

Uzawa 54 1.9 10´4 machine precision
Constrained gradient 1.3 10´7 1.5 10´4 machine precision

Table 2: Different relative error at the end of three algorithms: the constrained
gradient approach gives the best results.

grid size 64x64 128x128 256x256 512x512 1024x1024 2048x2048
ηJKR 36.35 14.06 5.47 1.70 0.5856 0.2876

Table 3: Error in energy norm between computed and exact JKR solution for
different grid sizes: Adhesive contact is more demanding in dicretization than
non-adhesive one.

grid size 64x64 128x128 256x256 512x512 1024x1024 2048x2048
ηMD 9.52 2.07 6.48 10´1 1.33 10´1 8.65 10´2 4.95 10´2

Table 4: Error in energy norm between computed and exact MD solution for
different grid sizes: Adhesive contact is more demanding in dicretization than
non-adhesive one.
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