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Abstract

Neural networks are used increasingly as statistical models. The performance of multilayer
perceptron (MLP) and that of linear regression (LR) were compared, with regard to the quality
of prediction and estimation and the robustness to deviations from underlying assumptions of
normality, homoscedasticity and independence of errors. Taking into account those deviations,
5ve designs were constructed, and, for each of them, 3000 data were simulated. The comparison
between connectionist and linear models was achieved by graphic means including prediction in-
tervals, as well as by classical criteria including goodness-of-5t and relative errors. The empirical
distribution of estimations and the stability of MLP and LR were studied by re-sampling methods.
MLP and linear regression had comparable performance and robustness. Despite the 7exibility
of connectionist models, their predictions were stable. The empirical variances of weight estima-
tions result from the distributed representation of the information among the processing elements.
This emphasizes the major role of variances of weight estimations in the interpretation of neural
networks. This needs, however, to be con5rmed by further studies. Therefore MLP could be
useful statistical models, as long as convergence conditions are respected.
c© 2002 Elsevier B.V. All rights reserved.
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1. Introduction

Neural networks are modeling tools for neurophysiology and arti5cial intelligence
(Reggia, 1993). They are also used as statistical models instead of classical approaches.
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In the medical 5eld, they are applied to an increasing range of epidemiological prob-
lems, using mostly multi-layer perceptron. Examples of applications of neural networks
to medical data include Baxt (1995); Bottaci et al. (1997); Cross et al. (1995); Fogel
et al. (1998); Guh et al. (1998); Lapeer et al. (1995); Ottenbacher et al. (2001); Sonke
et al. (2000).
Many epidemiological studies provide insuGcient information regarding the statis-

tical properties of the covariates studied, such as the normality of their distribution
patterns, or the existence of colinearity. In addition there is often no information about
the link function between variables, and the linearity has to be assumed. In recent epi-
demiological studies using neural networks, multi-layer perceptron (MLP) appears to
be a solution to those problems, as it has been proven that three-layer perceptron net-
works are theoretically universal approximators (Hornik et al., 1989). Moreover, some
works suggest that they can match or exceed the performance of classical statistical
methods regarding their goodness of 5t and their estimation and prediction capability.
Connectionist models are seen as 7exible methods, and used as a generalization of re-
gression methods (Mariani et al., 1997). But their frequent utilization as “black boxes”
is controversial (Schwarzer et al., 2000). Thus the use of connectionist models as a
particular class of statistical models is an ongoing problem (Flexer, 1996).

Neural networks are directed and weighted graphs, where nodes are processing ele-
ments (PEs) with an inner state called activation. Those PEs are usually arranged in
layers and are connected to many PEs in other layers via directed arcs. Associated
with each connection is a real-valued weight wij. Each PE processes the input vector
X it receives via these connections. Usually, this process consists in transformation of
this input vector by an activation function h(W ;X ), and then by a transfer function
g(h(W ;X )). The simplest PE possible has a linear activation function and an identity
transfer function. Its output is

yL = g(h(X )) = g(W TX ) =W TX:

After this process, the PE provides the continuous value yL, called local output value, to
other PEs via its outgoing weighted connections. In feed-forward models, connections
run forward from input to hidden PEs and from hidden PEs to output ones. Deciding
how the PEs are connected, how the PEs process their information and how the con-
nection weights are estimated all contribute to creating a neural network. Those models
depend on the number, the design and the connections of the PEs (architecture), and
also depend on the weights as well as their estimation methods (learning rules). In
other words, the architecture speci5es the model; weights between processing elements
are the parameters of the model and the learning rule is the estimation method.
Each PE analyzes one part of the problem, thus the information is distributed among

the processing elements. The output of the network, Y = fW (X ), is a combination of
local functions. This combination depends on the number of hidden PEs, and on the
diLerent classes of activation and transfer functions. Thus, complex overall behavior
could result from simple local behavior.
To study the statistical behavior of neural networks, it is necessary to compare them

to classical tools, by formal comparisons and simulations. During the last few years
several comparisons have been published, including logistical models (Schumacher
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et al., 1996; Vach et al., 1996), principal components extractions (Nicole, 2000), time
series analysis (Lisi and Schiavo, 1999) and autoregressive models (Tian et al., 1997),
Cox regressions (Xiang et al., 2000). The conditions for use and the robustness of con-
nectionist models are two frequently asked questions (Cheng and Titterington, 1994;
Capobianco, 2000). Our study is in keeping with those works and focuses on compar-
ison between MLP and linear regression.
The aim of this study is to provide a comparative evaluation of those two methods

for simulated data sets and variables. The quality of the models and the eLect of devi-
ations from underlying assumptions of normality, independence and homoscedasticity
are compared regarding their ability to predict and estimate.
The paper is organized as follows. The models are described in the following section.

The learning rules, and some procedures to improve them, are presented in Section 3.
In Section 4, the simulations are described. In Section 5 we report on the experimental
results obtained. Finally, the discussion section analyzes the comparisons and the esti-
mations, and attempts to discuss the conditions for use and interpretation of the MLP
as a statistical model.

2. Models

Linear regression, which is a well-known statistical model, was used for modeling
simulated data. Whereas connectionist models use heuristic and iterative algorithm, lin-
ear regression uses more formalized solutions (not iterative). The estimation of the
coeGcients of the linear equation has been formalized by Gauss using the least square
estimations, which are unbiased and have the least variance among all unbiased esti-
mators.
If Y = �X + 
, then a good estimator of the vector � of the coeGcients is given by

b= (X TX )−1X TY;

and its variance-covariance matrix is given by

V (b) = �2(X TX )−1:

It is proven that for one coeGcient bj, the Wald statistics, bj=v(bj), follows a student
distribution, if we assume the normal distribution of the covariates.
For prediction, we can use the equation Yp = X T

p B, where Yp is normally distributed

with mean X T
p �p and variance �

√
(X T

p (X TX )−1Xp).

So we know the distribution patterns of the coeGcients of the LR and the distribu-
tion of the predictions, which are well described elsewhere (e.g. Saporta, 1990). To
analyze the robustness of the model, the underlying assumptions (normality, indepen-
dence and homoscedasticity of the errors) were not always respected when simulating
the data (see Section 4). The coeGcients of regressions were estimated using the ordi-
nary least-square error estimator (OLSE) or the weighted least-square error estimator
(WLSE) for the heteroscedastic context of simulation. Statistical signi5cance was set
at 0.05. The linear models were performed using the statistical software SPSS 10.0.5
(SPSS Inc. 1999, Chicago IL).
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Fig. 1. Scheme of a feed-forward multi-layer perceptron.

For connectionist modeling, the architecture of the network as well as the algorithms
of minimization and optimization need to be speci5ed. Of the many connectionist mod-
els, such as Radial Basis Function networks or wavelet networks, the multi-layer per-
ceptron (MLP) is one that has been extremely useful in many applications and has
been extensively analyzed theoretically. In this article, we focused on the MLP model
that is the most commonly used connectionist model in the medical 5eld. But a further
step in this work will be to compare other neural network models to classical statisti-
cal models in order to obtain a more exhaustive approach. We performed a perceptron
model with one hidden layer, and a learning algorithm based on the delta-rule (see
Section 3). From the theoretical viewpoint, the approximation properties of this delta-
rule are shown in Gascuel (1997) and Hornik et al. (1989). The MLP with a single hid-
den layer, using squashing transfer functions (non-decreasing and bounded functions)
can approximate, to any desired degree of accuracy, any measurable function. These
theoretical results show the existence of MLP networks. The network was performed
using the connectionist software Neural Works Professional II/plus, (NeuralWare Inc.
1993, Pittsburgh PA). The starting architecture, shown in Fig. 1, was performed as
follows:

• An input layer with 5 PEs, for the 5 input covariates. Those 5rst neurons were
obviously only input buLers.

• A hidden layer consisting initially in 5 PEs, with linear activation functions (weighted
sums), logistical transfer functions, and learning capabilities.

• An output layer, consisting in a single PE, with a linear activation function (weighted
sum), an identity transfer function, and learning capability.

One extra PE, called Bias, was connected to the hidden and output layers. This neuron
has no input, and a constant output equal to 1. This constant is similar to the inter-
cept coeGcient in standard statistical models. The data are randomly presented to the
network. Thus, every output y is computed, for every input vector, as follows:

y =
5∑

j=0

wjkcj =
5∑

j=0

wjk

(
1 + exp

{
−

5∑
i=0

wijxi

})−1

;
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where wjk are the weights between each hidden PE cj and the single output PE k;
wij are the weights between an input PE xi and a hidden PE cj; x0 is the bias output
associated with the input layer; c0 is the bias output associated with the hidden layer;
(here, x0 = c0 = 1).

3. Learning rule

The delta-rule is a supervised learning rule used for minimization (Medler, 1998;
Vapnik and Bottou, 1993). This method is often eLective. It is a 5rst-order steepest-
descent-like method for non linear data that has been used extensively for the training
of neural networks (Bertsekas, 1996). The aim of this method is to 5nd the matrix W
of weights so that W minimizes the error function E(D; Y ). D is the desired output
D=fW (X ), and Y is the obtained output Y =fŴ (X ). This estimation of the weights
matrix is given by

Ŵ = argmin
W

(E(D; Y )); with E(D; Y ) =
1
2
‖D − Y‖22:

The error is used to adjust the weights in the network so that when the same input
vector X is presented again, the network produces a response slightly closer to the
desired response D. The weights are modi5ed at each iteration, for every input vector
X , as follows:

w(t + 1) = w(t)−Pw(t); with Pw(t) = �
@E
@w

:

This instantaneous gradient has convergence properties, and is easy to use. If we have
an activation function such as

h(X ) =W TX;

and a transfer function such as

g(X ) = (1 + exp{−W TX })−1;

then, for an input vector X , we have an easy solution:

�Xwij = ��XjyXi ;

where yXi is the local output for each PE i, � is a real value called learning rate.
For a given vector X , the �Xj coeGcient attached to an output PE j is written as

follows:

�Xj = (dXj − yXj)g
′
j(hXj);

and for a hidden PE i:

�Xi =
S∑

j=1

(�Xj × wij)g′j(hXj):

Back-propagating the error could produce defaults on generalization. Those defaults
are frequently due to learning problems. A local minimum on the surface of the
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error produces an estimation bias of the weight matrix. A bad speci5cation of the
architecture or bad choices in the learning parameters leads to learning defaults or
to over-learning (over-5tting). To optimize convergence and generalization we have
modi5ed the delta-rule, using 5ve heuristics (the algorithms for optimization are more
formally described elsewhere (e.g. Gallinari, 1997)). With the 5rst heuristic, called
the cumulative delta-rule, an accumulative period called epoch is de5ned. The errors
accumulate over the number of iterations set by the epoch. The weights are updated
after one epoch using the cumulative gradient. Thus, this learning rule depends less on
the size of the learning set, and improves the rapidity of convergence. The epoch size
has to be chosen between pattern and batch mode of learning: not too weak to avoid
oscillations of estimations, and not too strong to protect convergence.
The minimizations of the error function during the previous epochs are altered by the

new modi5cation of weights, at the current epoch. To keep one part of the successive
minimizations we used inertial correction. Two coeGcients are introduced: a learning
rate, and a tendency parameter called momentum. The learning rate � decreases by rate
! at each "th learning epoch. The choice of this learning rate is a frequently raised
problem. To modify weights according to a linear function of partial derivatives, the
error function is assumed to be locally linear. The learning rate quanti5es this “locality”.
When a high learning rate improves convergence, it increases the risk that the error
stays within a local minimum. So a second inertial correction is added. The momentum
# is a tendency term introduced into the backpropagation algorithm. One part of the
previous gradient is used to compute the current one. Thus, weights are modi5ed
according to the direction de5ned by all previous modi5cations. Weights are modi5ed
according to the following computation:

�Xwij(t) = �× �Xj × yXi(t) + #[�Xwij(t − 1)]:

Those learning parameters have to be chosen according to previous work and to expe-
rience.
Training with noise is an eLective approach for smoothing the estimator (Intrator,

1999). With the addition of a Gaussian noise, the output is provided by an input
space around the input vector. It does improve convergence by partially resolving
the problem of local minima on the error space. Thus, the network approximates a
smoothing function between input and output vectors (Gallinari, 1997).

With the basic learning algorithm, the error decreases continuously to a minimum
(minimizing the bias of the estimation). But after many learning iterations, the network
loses its capability of generalization (increasing the variance of the estimation). This is
known as the trade-oL between variance and bias (Intrator, 1999). An algorithm was
introduced to 5nd the appropriate number of learning iterations. The test set is used to
check, at speci5ed iterations, the capability of generalization during the learning phase.
Thus, 4 parameters have to be chosen: the maximum number of iterations, iterations at
which the model is to be tested, the criterion of decision (here the root mean square
error for the test sample), and the minimum number of “bad” test results, as de5ned
by the criterion, before learning stops.
When it has enough hidden processing elements, the network 5nds unbiased esti-

mations, but capabilities of prediction are not preserved (Fogelman SouliSe, 1997). In
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Repeat
 Prune list ←∅

       Learn and test the NN
       Performance_level ← global error made on the test set
       For i ←1 to the number of PEs

For Output i ←0 to 1
Learn and test the NN
If performance ≥ 0.95*Performance_level
Then add PEi to the prune list

Next Outputi
       Re-enable PEi

       Next i
       Sort the prune list into decreasing order based on performance
       Disable the first PE of the prune list
As long as a PE remains in the prune list.

Fig. 2. Pruning algorithm.

many linear models, the Fisher information matrices are always positive de5nite under
general conditions. In MLP, however, the Fisher information matrix can be singular
and, therefore, many statistical techniques based on asymptotic theory cannot be ap-
plied properly. Fukumizu has proven that the Fisher information matrix of a three-layer
perceptron is positive de5nite if and only if the MLP is reducible. That is if there is no
hidden unit that makes no contribution to the output and there is no pair of hidden units
that could be collapsed into a single unit without altering the performances (Fukumizu,
1996). That implies that if a Fisher information matrix of a MLP is singular, we should
search redundant hidden units and prune them until the MLP becomes irreducible. The
pruning algorithm approximates the error surface around the minimum, then analyzes
disturbances in the network when removing PEs. This heuristic prunes the PEs whose
removal does not entail much disturbance. The pruning algorithm has two steps: a
learning procedure up to minimization, and a pruning step to remove non-useful PEs.
Usefulness of a PE is de5ned by the variation of the global error E when the local
output is set to zero. Thus, the usefulness of the analyzed PE is computed with an ad-
ditional pass of the backpropagation algorithm. In addition, the same test is performed
with the output of the analyzed PE set to 1. Fig. 2 shows the pruning algorithm.

4. Simulation

We generated 5 models, with variations in the distribution of errors, and in co-
linearity. For each model, we simulated one set of 3 samples, with 1000 subjects
each.

• Designs 1, 2 and 5:

Y = $+ �1X1 + �2X2 + �3X3 + �4X4 + �5X5 + 
= $+ �TX + 
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Table 1
Parameter values

Parameters $ �1 �2 �3 �4 �5 % &

Values 1.17 −0:66 2.98 2.14 0 0.03 0.2 0.9

Table 2
Characteristics of the covariates X

Mean Variance Minimum Maximum

X1 8.882 7.046 0.638 17.454
X2 5.554 0.162 4.268 6.947
X3 6.922 5.376 −0:662 13.166
X4 10.409 0.0009 10.329 10.489
X5 8.361 10.945 −0:693 18.051

where errors were generated according to a Normal distribution (with a mean m=0,
and a variance v = 1 (design 1)), or to a Uniform distribution on [0,1] (design 5),
or to a Normal heteroscedastic distribution (design 2).

• Design 3, with a term of interaction between 2 covariates:

Y = $+ �TX + %X3X5 + 
;

where errors were generated according to a Normal distribution (m= 0; v= 1).
• Design 4, with autoregressive and mobile average parameters (AR3MA3):

Y = $+ �TX + AR3MA3:

CoeGcients of those designs, shown in Table 1, were generated according to a
Uniform distribution on [ − 5; 5], apart from �4. To study the ability of MLP and
linear regression for modeling non-explanatory covariates, �4 was set to 0 (thus, to
obtain a non-explanatory interpretation of the fourth covariate X4).
According to a Normal distribution, 5 covariates Xi were generated. The means (m)

and standard deviations (SD) were generated according to a Uniform distribution on
[− 12; 12] (absolute value for SD).
Errors were generated according to the speci5ed designs. Table 2 shows the charac-

teristics of the covariates X .
The variables Y were simulated for each design, using the 5 covariates, the error, and

for the AR3MA3 design, the auto-correlation term. Table 3 shows the characteristics
of the variables Y .
The procedure was divided into 3 steps: the learning step, the test step (those 2 steps

were associated here in one single procedure using the optimization algorithm), and
the prediction step. For each step, 3 samples, with 1000 subjects each, were simulated.
At the 5rst step, the network estimated weights, according to the learning sample (and
to the test sample for the optimization heuristic). An input vector (5 values) for each
subject was presented to the input layer. During the estimation of those weights, their
generalization capabilities were veri5ed with the test sample. When the results were
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Table 3
Characteristics of the variables Y

Design g(X ) Mean Variance Minimum Maximum

1 Y = $+ �TX + 
 26.932 31.019 10.349 43.665

 ∼ N[0; 1]

2 Y = $+ �TX + 
 26.98 35.105 10.093 47.086

 ∼ N[0; &2 × (f(X ))]

3 Y = $+ �TX + %X3X5 + 
 38.518 111.358 8.923 77.447

 ∼ N[0; 1]

4 Y = $+ �TX + AR3MA3 40.17 116.64 12.78 71.77

 ∼ N[0; 1]

5 Y = $+ �TX + 
 27.427 29.945 10.998 45.665

 ∼ U[0; 1]

not appropriate, the estimations were modi5ed. The algorithms for minimization and
optimization, associated in one single procedure, are described in Section 3. In sums,
the learning rule used is the modi5ed delta-rule, optimized by the methods mentioned.
A set of 1000 subjects was used for learning. Learning run with an epoch size of 57
input vectors, with a momentum # = 0:7, a learning rate � = 0:5 decreasing by rate
! = 0:5 every " = 10 000 epochs. Every 10 learning iterations, a sample of the test
set (1000 subjects) was used for testing. The learning phase stopped as soon as 10
consecutive tests presented a criterion worse than the minimum root mean square error
criterion. Otherwise, the learning phase continued until 500 000 epoch iterations had
been reached (this high number was chosen to avoid stopping the algorithm before
the best estimation was found). After this learning and testing algorithm, the pruning
phase found the minimum MLP (Sussman, 1992).

To estimate the linear model, we used the 5rst two sets of data (2000 subjects). The
third sample was used to evaluate the prediction capabilities of the MLP and of the
linear regression. We computed the criteria of comparison with the value predicted by
the MLP or by the regression model for each input vector.
The predictions made by the MLP and the linear regression were 5rst compared.

Then, both of them were compared with the desired true values. Those comparisons
were achieved graphically. For the MLP, we computed prediction intervals around each
predicted value, as described by Hwang and Ding (1997), after assuming normality of
distribution of errors.
Those computations were performed with the software Mathematica 2.2 (Wolfram

Research Inc. 1993, Champaign IL). The size of the prediction intervals and the re-
gression prediction membership of those intervals were analyzed graphically.
To compare prediction errors, we used a criterion based on relative errors, given by

C(RE) =
Np∑
i=1

[(
fŴ (Xn+i)− fW (Xn+i)

fW (Xn+i)

)2]
;

where fŴ (Xn+i) is the predicted value, fW (Xn+i) is the value to be predicted and Np

is the size of the prediction sample.
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We also used the standard goodness-of-5t criteria (Zucchini, 2000), after checking
that the distribution of errors was graphically Normal. Those criteria were computed
as follows:

• Log likelihood: L= ln(l),
• AkaUike criterion 1 : AIC =−2L+ 2p,

• Simpli5ed Kullback-Leibler criterion (see footnote 1): C(KL) =
AIC
2Np

,

• Schwarz criterion 2 : BIC = 2L− p lnNp,

where ‘ is the likelihood, and p the number of coeGcients in the linear regression or
the number of weights in the MLP.
Least-square error estimators used for linear regression have well described qualities,

whereas the quality of learning methods used by connectionist models is not that well
known. We studied the quality and the stability of estimations of the MLP. The same
models as those speci5ed by the prediction phase were used for this estimation study.
Thus, we used the pruned architecture, and the number of learning iterations previ-
ously determined. The learning parameters also remained the same. We used Bootstrap
method to re-sample the set of 3000 simulated subjects, except for the AR3MA3 de-
sign. We obtained 250 samples including 500 subjects each. For the fourth design
(AR3MA3), we generated new samples to protect the auto-correlated structure of the
data. The estimation process was repeated 250 times for each design, using a diLerent
sample each time. To initialize the weights in the MLP, a diLerent generating integer
was used for each of the 250 networks per design. Weight estimations are frequently
used to interpret the models (Duh et al., 1998). We studied the distribution of weights
in MLP to analyze the qualities of those methods of estimation, and the stability of es-
timations. We built empirical distributions of the weight estimations with the bootstrap
method.
To study the prediction stability of the models a subject was randomly chosen among

the 3000 simulated subjects per design (p=1=3000). To evaluate the prediction sta-
bility, this subject was used in the 250 MLP per design.
Because the linearity was not always respected in our simulations, we evaluated the

prediction stability of the linear regression, using the same 250 samples per design for
estimation and one subject per LR design for prediction. The prediction stability was
evaluated based on the mean, the variance and the error of prediction of each of the
250 models per design, for MLP and LR.

5. Results

With linear regression, whatever the design was, no coeGcient associated with the
covariate X4 was signi5cant, and the Wald statistic (statistic of the coeGcient test to

1 The smallest value, the best goodness of 5t.
2 The greatest value, the best goodness of 5t.
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Table 4
Linear regression: estimation of coeGcients and Wald statistics associated (Sample size: 2000 subjects sim-
ulated for each design)

g(X ) $ �1 �2 �3 �4 �5
Estimation Estimation Estimation Estimation Estimation Estimation
(statistic) (statistic) (statistic) (statistic) (statistic) (statistic)

Y = $+ �TX + 
 8.046 −0:671 3.044 2.146 −0:695 3:77× 10−2


 ∼ N[0; 1] (0.724) (−56:97) (39.14) (159.37) (−0:65) (3.99)

Y = $+ �TX + 
 14.32 −0:607 2.888 2.231 −1:314 2:97× 10−2


 ∼ N[0; &2 × (f(X ))] (0.632) (−25:325) (18.287) (80.637) (−0:605) (1.539)

Y = $+ �TX + %X3X5 + 
 −29:321 −0:695 2.983 3.847 1.839 1.397

 ∼ N[0; 1] (−1:47) (−32:925) (21.377) (159.156) (0.96) (82.365)

Y = $+ �TX + AR3MA3 −64:95 −0:943 2.81 2.028 8.089 −4:07× 10−2


 ∼ N[0; 1] (−0:62) (−8:486) (3.827) (15.951) (0.803) (−0:456)

Y = $+ �TX + 
 0.164 −0:66 2.98 2.14 7:36× 10−2 0.118

 ∼ U[0; 1] (0.256) (−971:89) (664.48) (2755.66) (1.19) (216.94)

Table 5
Optimum number of hidden PEs and associated number of iterations

Design 1 2 3 4 5

Number of hidden PEs 3 3 2 2 5
(total number of weights) (22) (22) (15) (15) (36)
Learning iterations 19 400 22 700 36 000 7900 51 600

zero) of the coeGcient associated with the covariate X3 was always the greatest. Only
the second design presented a non-signi5cant coeGcient associated with X5. Table 4
shows the results of the estimations.
For each design, the optimum architecture and optimum number of learning itera-

tions, shown in Table 5, were obtained by the optimized delta-rule used for modeling
the MLP. Thus, the design 5 (where the errors were Uniform) had the greatest number
of hidden processing elements, and learning iterations.
Scatter plots of the results for each design are presented in Figs. 3–7. Predictions

of the MLP are shown for each predicted value of the linear regression. Prediction
intervals around each prediction of the MLP or of the linear regression are represented
depending on the simulated predicting values.
Prediction intervals of the MLP seemed similar for each design, and linear regression

predictions and predicting values were all within the prediction intervals of the MLP.
For designs 1 and 5, where the underlying assumptions were acceptable, prediction

errors of the MLP were small and of the same size order as the prediction errors
of the linear regression. In design 2, where simulated errors were heteroscedastics,
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Fig. 3. Design 1, scatter plots of the 1000 predictions and their prediction intervals.

predictions of either the MLP or the linear regression were not so accurate (despite
the use of WLSE estimator for the linear regression). Predictions of those two models
(in the design 2) were of the same size order. In design 3, in spite of the interaction
between the 2 covariates X3 and X5, the 2 models (MLP and linear regression models)
were correctly and similarly predicting. But, in design 4, which included the AR3MA3
process, the predictions were far from the predicting values, for the MLP, as well as
the linear model. Again, those two models (MLP and linear regression models) were
similar regarding their predictions, but the prediction intervals of the linear regression
seemed to be smaller.
All the criteria used for the comparison of the 2 models were of the same size

order. Table 6 shows those criteria. It implied that the goodness-of-5t was similar for
those 2 models. Data were better 5tted by the linear regression than by the MLP for
designs 1, 2, and 5. The MLP was more suitable for design 4. The AkaUWke and the
Schwarz criteria showed contradictory results for design 3. Only the BIC was in favor
of the linear regression. But in fact, the design included a multiplicative interaction,
and so, some coeGcients were correlated with each other. More than the AIC, the BIC
depends on the number of coeGcients. In this design, the BIC associated to the MLP
was poor probably because of the interaction and the high number of weights. Some of
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Fig. 4. Design 2, scatter plots of the 1000 predictions and their prediction intervals.

those weights may have been generated only because of the presence of an interaction
factor and would have been unnecessary otherwise. The relative error criterion did not
present the same problem. For this design, it constituted the best criterion to analyze
the relative performances of each model. Thus, according to this criterion, design 3
was best 5tted by MLP.
Weight estimations of the MLP were studied by a re-sampling method. Box-plots of

their empirical distributions are shown in Figs. 8–12.
The connections are identi5ed by the names of the two PEs link. b represents the

bias PE, Xi an input PE, Ci a hidden PE and y the output PE.
The empirical distributions of the weights were more or less distant from a Normal

distribution, depending on the connections weighted. In fact, no a priori theoretical
distribution could be assumed. But, there were some similarities between designs 1, 2
and 5. Those 3 simulation designs were very close, being linear models with either a
Normal or an asymptotically Normal distribution of the errors. This could explain why
the weights between the same processing elements were similar in the 3 designs, with
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Fig. 5. Design 3, scatter plots of the 1000 predictions and their prediction intervals.

the exception of the weights attached to the fourth and the 5fth hidden PEs, which
were only presented in the 5fth MLP.
The value of a weight gives an indication of the importance of the connections

between processing elements. These values are used in that way to analyze the con-
nectionist model (Duh et al., 1998), and especially to interpret the importance of a
covariate. One could then expect that the empirical means of the weights would re7ect
this statement. But in our experience, after re-sampling, whatever the design was, those
means were poorly informative. For example, the means of the weights associated to
the covariate X3 could be positive or negative, in spite of a large positive simulated
coeGcient. Even though the covariate X4 was not an explicative variable (�4=0), some
empirical means of the weights attached to this covariate were not equal to 0. Thus,
those empirical means were not very contributive to the analysis of our MLP.
The empirical variances seemed to be more informative. Indeed, whatever the design

was, the weights attached to the covariate X3 had the largest variances. These were
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Fig. 6. Design 4, scatter plots of the 1000 predictions and their prediction intervals.

the only variances which were greater than 1, except for design 3, where the empirical
variances attached to the covariate X5 were also greater than 1. This could be explained
by the interaction term X3X5 included in this design. Furthermore, the linear regression
showed that Wald statistics of the estimated coeGcients attached to the covariate X3

in designs 1 to 5, and attached to the covariates X3 and X5 in design 3, were the
largest. Thus, we consider the variances of the weights to be strongly contributive for
the interpretation of the MLP results for epidemiological data, and this analysis will
be discussed further in Section 6.
The stability of the models was studied by the empirical distributions of the pre-

dictions and of the prediction errors. The results showed the reproducibility of the
estimation algorithms for MLP, and for LR the robustness to deviations from underly-
ing assumptions. Characteristics of those distributions are shown in Tables 7 and 8.

The predictions of the MLP were stable, whatever the design was, since their vari-
ances were null (or small for the fourth design), and since their ranges were small
(the largest range (1.32) was presented by the fourth design). In addition, prediction
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Fig. 7. Design 5, scatter plots of the 1000 predictions and their prediction intervals.

errors were on average very small and their variances were null or approaching 0.
Graphically, predictions and prediction errors were empirically normally distributed.
Except for design 4, the predictions of linear regression were stable, and the errors

were small. For the ARMA design (design 4), linear regression was not an adequate
model. The variance of the prediction was high (37.34), even if the mean of the
prediction errors is small (2.72).

6. Discussion

Our study shows that the use of multilayer perceptron is comparable, for epidemio-
logical data, to linear regression regarding the predictions, the goodness-of-5t and the
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Table 6
Goodness-of-5t criteria and relative errors for the 5 designs (optimum results are darkened)

Design g(X ) Model(p) L AIC c(kl) BIC c(re)

1 Y = $+ �TX + 
 MLP(22) −3129:49 6302.99 3.15 −6410:96 1.76

 ∼ N[0; 1] LR(6) −3133:79 6279.57 3.14 −6309:02 1.63

2 Y = $+ �TX + 
 MLP(22) −3176:65 6397.30 3.19 −6505:27 7.24

 ∼ N[0; &2 × (f(X ))] LR(6) −3176:53 6365.07 3.18 −6394:52 6.94

3 Y = $+ �TX + %X3X5 + 
 MLP(15) −3739:65 7509.3 3.76 −7582:92 3.53

 ∼ N[0; 1] LR(6) −3760:31 7532.61 3.77 −7562:06 4.45

4 Y = $+ �TX + AR3MA3 MLP(15) −4478:67 8987.34 4.49 −9060:96 136.78

 ∼ N[0; 1] LR(6) −4634:08 9280.16 4.64 −9309:61 139.73

5 Y = $+ �TX + 
 MLP(36) −3129:76 6331.52 3.17 −6508:20 0.2

 ∼ U[0; 1] LR(6) −3130:92 6273.83 3.14 −6303:28 0.01

L: log-likelihood; AIC: AkaUWke information criterion; BIC: Bayesian information criterion; c(kl): Simpli5ed
Kullback-Leibler criterion; c(re): relative errors criterion; MLP: multilayer perceptron; LR: linear regression;
p: number of coeGcients of the model.
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Fig. 8. Design 1: empirical distributions of the weight estimations (n = 250) for each connection.

eLect of deviations from underlying assumptions of normality, homoscedasticity and
independence of the errors. The 5ve designs show that the predictions of those two
models are very close. They are also close to the predicting values, except for the
fourth design, where the auto-correlation term alters both models. In addition, similar
qualities for both models were revealed by analogous goodness-of-5t and relative error
criteria.
In the analysis of epidemiological data, one must often make many assumptions about

the data, and must sometimes limit the analysis. By contrast from a practical point of
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Fig. 9. Design 2: empirical distributions of the weight estimations (n = 250) for each connection.
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Fig. 10. Design 3: empirical distributions of the weight estimations (n = 250).

view, neural networks are basically non-parametric, although their learning param-
eters and their weights parameterize them. Whereas the underlying assumptions of
normality, homoscedasticity and independence of the errors are required to use lin-
ear regression model, the connectionist model does not depend on these assumptions.
This model uses numerical and iterative estimation methods to control the convergence
and the generalization. Thus, the neural network is considered as a semi-parametric
model (Capobianco, 2000). In addition, the unspeci5ed interactions have an eLect
on the weight estimations. Ignoring colinearity between covariates does not aLect the
goodness-of-5t or the prediction capabilities of the MLP. The linear regression does
not have this capability and interaction terms have to be speci5ed before modeling.
Even though neural networks are 7exible tools, the user has to specify methods

and basic parameters, guided by his experience. But there is a range of possibilities



J. Gaudart et al. / Computational Statistics & Data Analysis 44 (2004) 547–570 565

x5
_c

2

x4
_c

2

x3
_c

2

x2
_c

2

x1
_c

2

b_
c2

x5
_c

1

x4
_c

1

x3
_c

1

x2
_c

1

x1
_c

1

b_
c1

c2
_y

c1
_yb_
y

5

4

3

2

1

0

-1

-2

-3

-4

Fig. 11. Design 4: empirical distributions of the weight estimations (n = 250).
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Fig. 12. Design 5: empirical distributions of the weight estimations (n = 250).

to construct such networks. We chose simple processing elements, with demonstrated
properties (Hornik et al., 1989). Similar results could be obtained with other transfer
functions (instead of the sigmoid functions) from the class of squashing functions
(non-decreasing and bounded functions), which has well known properties.
The complexity of the model is based on the architecture, which is determined

here by the number of hidden PEs. This architecture de5nes the class of computable
functions: it is the 5rst parameter used to control the network. To preserve conver-
gence properties, some restrictions have to be respected, particularly concerning the
Vapnik-Chervonenkis dimension (VC-dimension) (see Gascuel, 1997; Bottou, 1997;
Vapnik and Bottou, 1993). Karpinski and Mac Intyre (1995) showed that for a MLP
with sigmoid transfer functions, the consistency is valid if the number of hidden PEs,
C, is such that C¡O( 4

√
n), where n is the number of inputs, and O() the Landau
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Table 7
MLP: characteristics of the empirical distributions of the prediction and of the prediction error (250 predic-
tions of the same value using the 250 estimated MLP for each design)

Design Mean Variance Minimum Median Maximum

1 Prediction 0.23 0.00 0.20 0.23 0.26
Error 0.07 0.00 0.05 0.07 0.10

2 Prediction 0.12 0.00 0.06 0.12 0.16
Error 0.03 0.00 0.00 0.03 0.07

3 Prediction 0.73 0.00 0.70 0.73 0.77
Error 0.04 0.00 0.01 0.04 0.08

4 Prediction 0.79 0.11 0.04 0.84 1.36
Error 0.31 0.03 0.00 0.34 0.73

5 Prediction 0.14 0.00 0.11 0.14 0.18
Error 0.01 0.00 0.00 0.01 0.05

Table 8
Linear regressions: characteristics of the empirical distributions of the prediction and of the prediction error
(250 predictions of the same value using the 250 estimated LR for each design)

Design Mean Variance Minimum Median Maximum

1 Prediction 29.67 0.01 29.45 29.68 29.89
Error 1.01 0.01 0.79 1.02 1.23

2 Prediction 29.74 0.02 29.35 29.73 30.07
Error 0.35 0.02 −0:05 0.35 0.69

3 Prediction 42.15 0.02 41.78 42.14 42.45
Error 1.10 0.02 0.73 1.09 1.40

4 Prediction 42.58 37.31 35.40 46.31 49.08
Error 2.68 37.31 −4:50 6.41 9.18

5 Prediction 30.18 0.00 30.07 30.18 30.30
Error 0.03 0.00 −0:08 0.03 0.15

notation. This condition binds the number of hidden PEs to the size of the learning
set. In addition redundant hidden PEs imply that the Fisher information matrix of the
MLP will be singular (Fukumizu, 1996). Those conditions have to be respected, to
preserve the convergence of the model and the use of statistical properties.
Back-propagation of the gradient (the delta rule) as a learning method is often ef-

fective, and is supported by stochastic as well as deterministic convergence analyses
(Bertsekas, 1996). However, this method typically has a slow convergence rate. In ad-
dition, because the algorithm chooses iteratively the function that best 5ts the training
data, the 7exibility of the model could create a problem by 5tting the noise of the train-
ing data. This problem called over-learning leads to prediction defects. The presence
of local minima on the error function is another problem that limits the convergence
and thus, the prediction capabilities. With the modi5cations introduced in the learning
algorithm, we assume that the convergence occurred, and that the generalization capa-
bilities were suGcient to predict. Some other methods exist, they are all numerical and
iterative heuristics (Gallinari, 1997). However they have an in7uence on the quality of
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estimations and predictions, and on the interpretation possibilities of the model. Despite
this, those heuristics have to be systematically used to control the complexity and the
nature of the estimated solutions. Furthermore, the weakness of the delta-rule has to
be compared to that of other methods such as Levenberg-Marquardt algorithm or the
extended Kalman 5ltering (Bertsekas, 1996).
The non-reproducibility of the results and the multiplicity of models obtained by

heuristics are two frequently pointed out problems. But, our results show that the MLP,
built as described, gives reproducible predictions. The variances and the ranges of the
predictions are very small, in spite of the diLerences between the learning sets. Thus,
the prediction capabilities of this neural network are stable, whatever the deviation
from the linear model. In the same way, the predictions made during the estimation
analysis respect the Normality assumption of distributions. The work is based on a
single realization of the simulation. Although we used a re-sampling method to estimate
the stability of the MLP, replications of the simulations will need to be carried out to
analyze the stability.
Weight estimations are classically used to interpret the MLP (Duh et al., 1998). But

our results show that their empirical means are poorly informative. The interpretation
of a covariate cannot be grounded on the weight estimation of its connection to a
hidden PE, whereas coeGcients of linear regression are directly used to interpret the
importance of a covariate. In fact, connectionist model and linear regression should not
be interpreted in similar ways. A particularity of the neural networks is that, to link
input vectors to the output vectors, the information is distributed among the processing
elements (Hinton et al., 1986). This capacity of parallel distributed processing can be
compared to data analysis methods (Nicole, 2000). This distributed representation of
the information varies according to the learning data, and thus weight estimations vary
as well. The importance of empirical variances of weight estimations in our work is
the result of the variation of this distributed representation of the information, from
one learning set to another. Indeed, if, according to the learning set, the hidden PEs
are not used in the same way to process the learning data, then the information of a
covariate has an eLect on diLerent hidden PE. The weight estimations depend on the
hidden PE used to process the greatest part of the information. A connection between
an input PE and a hidden PE, considered as a strong connection after one learning
phase, might be considered as a weak one after another learning phase with a diLerent
learning set. Fig. 13 illustrates the variations of weight estimations.
This variation of the strength of a connection, or “rocking motion”, leads us to inter-

pret the variances of the weight estimations as indicators of the covariate importance
in the neural network. Moreover, the Wald statistics attached to the coeGcients of
the linear regression corroborate our interpretation. Even though the principle of the
distributed representation of the information in neural networks has been well studied
(Hinton et al., 1986), as far as we know, no other study has so far pointed out the
major role of variances of weight estimations in the interpretation of a neural network.
Further studies are required to con5rm our 5ndings.
Our study, using simulated data, provides a basis for considering neural networks

as a particular class of statistical models for the analysis of epidemiological data.
Moreover, they cannot be used as “black boxes” to obtain appropriate models
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Fig. 13. Representation of the variations of weight estimations between an input PE and a hidden PE, for 2
diLerent learning sets.

(Schwartz et al., 2000). The results show that MLP cannot replace linear regression
models. Nevertheless, if MLP are not the most appropriate model for the analysis of
epidemiological data, they are useful to take unspeci5ed colinearity or non-linear func-
tions into account. Due to the initialization of weights with small values, the MLP have
an initially linear behavior by the linearization of transfer functions. Step by step, dur-
ing the learning procedure, weights are modi5ed, leading to non-linear solutions. This
is how the MLP can model non-linear regression functions. They are sometimes seen
as simple representations of non-linear regression models, using diLerent algorithms for
numerical solutions (back-propagation of the gradient, Newton-Raphson, Gauss-Newton
or Extended Kalman Filter methods).
In fact, none of the neural networks outperformed linear regression when linear

regression is used optimally. MLP are useful when the real underlying regression func-
tion cannot be approached by classical methods. But the existence of such functions in
epidemiological applications is doubtful, and so is the practical interpretation of their
covariates. Whereas, neural networks are very useful for pattern recognition (Vach
et al., 1996).
The distributed representation pattern of the information is an interesting contribution

of neural networks to classical statistics. This representation is de5ned by the neural
network and not by the user a priori. A parallel could be made between this distribution
pattern of the information and the principal components extraction, where the hidden
PEs are compared to the principal components. So, using MLP seems to be comparable
to regression on principal components, linear or non-linear regression depending on the
transfer function.
The presented MLP is a robust model, but it is one of the numerous diLerent con-

nectionist models. The exploration and the systematic comparison of those models to
classical statistical models have to be continued, to improve their use as classifying,
predicting, or estimating models (Fogelman SouliSe, 1997).
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