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Stability and Sensitivity
Analysis of Hydrodynamic
Instabilities in Industrial
Swirled Injection Systems
The hydrodynamic instability in an industrial, two-staged, counter-rotative, swirled injec-
tor of highly complex geometry is under investigation. Large eddy simulations (LES)
show that the complicated and strongly nonparallel flow field in the injector is superim-
posed by a strong precessing vortex core (PVC). Mean flow fields of LES, validated by
experimental particle image velocimetry (PIV) measurements, are used as input for both
local and global linear stability analysis (LSA). It is shown that the origin of the instabil-
ity is located at the exit plane of the primary injector. Mode shapes of both global and
local LSA are compared to dynamic mode decomposition (DMD) based on LES snap-
shots, showing good agreement. The estimated frequencies for the instability are in good
agreement with both the experiment and the simulation. Furthermore, the adjoint mode
shapes retrieved by the global approach are used to find the best location for periodic
forcing in order to control the PVC. [DOI: 10.1115/1.4038283]

1 Introduction

Swirled fuel injection systems are often used in modern
combustion chambers. They provide enhanced mixing and fuel
atomization and—in case the swirl is large enough to support vor-
tex breakdown—flame anchoring in the central recirculation zone.
In many cases, these flows are superimposed by a coherent hydro-
dynamic instability of azimuthal wave number m¼ 1, the precess-
ing vortex core (PVC). Recent studies have shown that the PVC
can interact with thermoacoustic instabilities [1,2] and in doing so
may change the stability properties of a combustion system.
Nevertheless, the PVC can lead to an increase of turbulence and
therefore may improve mixing [3]. For these and other reasons,
the PVC has increasingly been in the focus of research during the
last years.

In recent years, linear stability analysis (LSA) of turbulent
flows has been established as a well suited method to analyze the
PVC. Two basically different methods to address LSA are the
local stability analysis and the global stability analysis. In the for-
mer, the flow field is assumed to be parallel or only weakly non-
parallel, and the analysis is performed sequentially on velocity
profiles extracted at one axial position. Using this method, Lessen
et al. [4] conducted one of the first analyses on swirling flows.
They investigated the impact of swirl on the stability of the Batch-
elor vortex, a model for a trailing line vortex behind an air plane
wing tip. The stability of weakly nonparallel flows was later on
addressed by Chomaz et al. [5] and Pier et al. [6], who postulated
frequency selection criteria for global modes in spatially develop-
ing flows. Gallaire et al. [7] showed that these criteria are capable
of reproducing the precession frequency of a PVC occurring in a
direct numerical simulation with reasonable accuracy. Further-
more, Oberleithner et al. [8] reproduced the frequency and the
three-dimensional mode shape of the PVC occurring in their
experiment using local stability analysis. Applying the same

approach, Oberleithner et al. [9] showed that the flame roll-up
caused by hydrodynamic instabilities correlates clearly with the
flame describing function of a laboratory combustor.

Because of its higher computational costs, the approach of
global stability analysis was for a long time out of scope until
Pierrehumbert et al. [10] used two and three-dimensional global
analysis to understand the instability mechanisms in a periodic
row of vortices in 1982. Since then, the method has increasingly
been used during the last decades. It is neither limited by the par-
allel flow assumption nor by any symmetry. Nowadays, applica-
tions range from academic test cases like cylinder wake flows [11]
to the hole tone configuration explaining the mystery of the
whizzing tea pot [12]. Adjoint methods based on global stability
analysis give valuable insight into the internal feedback of hydro-
dynamic instability mechanisms. Juniper and Pier [13], for exam-
ple, used structural sensitivity analysis to find the location of
highest sensitivity to changes in the internal feedback mechanism
of a confined co-flow wake and a cylinder wake, using both local
and global stability analysis. Recently, Tammisola and Juniper
[14] used global stability analysis on the mean flow in the interior
of a fuel injector.

Both local and global approaches have been used extensively
to understand the feedback mechanisms in the flow field of a PVC
and yielded information for its control. However, despite its
potential industrial relevance, most of the research conducted is
focused on academic swirlers with—compared to industrial
injection systems—strongly simplified geometries. This paper,
therefore, addresses the following questions: What kind of linear
stability approaches can be transferred from academical test cases
to real industrial swirled injection systems of complex geometries
and complicated mean flows and which information based on
these methods is useful to control the coherent structures?

The fact that in most industrial injection systems, the flow is
strongly nonparallel is supposed to be a major problem for the
local stability analysis. On the other hand, most global stability
codes use high order accurate discretization schemes to solve the
governing equations, which only work on structured meshes, mak-
ing an application to complex geometries difficult if not impossi-
ble. In this paper, the calculations using classical local stability



theory are compared to predictions based on a global stability
code using triangular finite elements for unstructured meshes. The
investigated geometry is an industrial, two-staged, counter-
rotative, fuel injection system. LSA is based on the mean flow
obtained from large eddy simulations (LES), which also provide
the mode shapes and frequencies of the PVC. The predicted wave
maker location, meaning the origin of the perturbation, and the
mode shapes are compared for the local and global approach.

Section 2 deals with the theory of both global and local LSA.
Section 3 explains the simulation setup and the LES performed.
Sections 4.1 and 4.2 show and discuss the results of global and
local stability analysis, respectively, and Sec. 5 summarizes the
results.

2 Linear Stability Analysis Theory
and Numerical Discretization

In order to receive the governing equations for LSA, the pres-
sure and velocity components in the Navier–Stokes equations are
decomposed using the triple decomposition

u ¼ u þ ~u þ u0 (1)

where u denotes the mean part, ~u, the coherent fluctuation,
and u0

, the stochastic fluctuation. After some rearrangements,
one arrives at the following set of equations for the coherent part
[15]:
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Here, ui is the velocity while x and t stand for the spatial coordi-
nate and time, respectively. The indices i and j are to be treated
according to the Einstein notation. The variable Re is the Reyn-
olds number

Re ¼ UD

�
(3)

where U and D are the arbitrary velocity and length scales used to
nondimensionalize the equations. The values used in the frame-
work of this paper are D¼ 4.2mm and U¼ 50 m/s. Due to the lin-
ear framework, the third term in Eq. (2b) vanishes. The fourth
term, however, describes the stochastic–coherent interaction and
can be of first-order in turbulent flows. As these terms are a priori
unknown, the set of equations has to be closed.

The approach of modeling the stochastic–coherent interaction
with an additional eddy viscosity is frequently used in LSA
[14,16]. This paper follows this strategy and derives the eddy vis-
cosity based on the Boussinesq approximation, which relates the
mean flow strain rates to the stochastic fluctuations. Since the
approach yields an eddy viscosity for every independent combina-
tion in the product of the stochastic velocity fluctuation compo-
nents, u0iu

0
j, their least mean square is used [17], yielding
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where K is the turbulent kinetic energy and d is the Kronecker
delta. Due to the spatial filtering of turbulence performed in LES,
the highest frequencies of the turbulent spectrum are not resolved.

This results in a slightly decreased eddy viscosity in comparison
with a fully resolved simulation or an experiment. In the frame-
work of this paper, it is assumed that the LES subgrid-scale
turbulent viscosity, �t, accounts for this difference. Adding the
molecular, �m, and the resolved eddy viscosity, �e, then leads to a
total viscosity of

�tot ¼ �m þ �e þ �t (5)

2.1 Global Stability Analysis. According to the terminology
suggested by Theofilis [18], TriGlobal stability analysis is per-
formed in a three-dimensional domain where all three directions
are inhomogeneous. BiGlobal stability analysis is also performed
in the three-dimensional domain, where one direction is assumed
to be homogeneous. The swirling flow considered in this work is
axisymmetric and a BiGlobal approach is sufficient. For conven-
ience, cylindrical coordinates are used to formulate the conserva-
tion equations. In order to arrive at the governing equations for
BiGlobal stability in axisymmetric flows, the following modal
approach is inserted into Eq. (2):

f~ur; ~uh; ~ux; ~pg
¼ fFðx; rÞ;Gðx; rÞ;Hðx; rÞ;Pðx; rÞg exp ðimhÿ ixtÞ (6)

In the BiGlobal approach, the eigenfunctions F, G, H, and P are
dependent on both the radial and axial coordinates. The azimuthal
wave number, m, accounts for the azimuthal periodicity, while x
is the complex-valued frequency. Its imaginary part, xi, corre-
sponds to the temporal growth rate and its real part, xr, stands for
the harmonic frequency in time. The resulting set of equations can
be formulated as an eigenvalue problem of x

AU ¼ xBU (7)

with the eigenvector

U ¼ ½Fðx; rÞ;Gðx; rÞ;Hðx; rÞ;Pðx; rÞ�T (8)

and the eigenvalue x. The eigenvalue problem is discretized using
FREEFEMþþ [19], an open source software tool solving differential
equations. It performs the finite element method on triangle-
shaped elements in two dimensions and on tetraeders in three-
dimensional domains. For the solution of the eigenvalue problem,
the software package ARPACK [20] is used. The shape functions
used to discretize the governing equations are of second-order for
the velocity components and of first-order for the pressure. The
code was successfully validated against the code of Paredes et al.
[21] on the configuration of Rukes et al. [16]. The conditions
applied at the domain boundaries are listed in Table 1. For every
pair of right eigenvalue and eigenvector, (x, U) there exists a pair
of left—or adjoint—eigenvalue and eigenvector, (x†, U†), where
x† is the complex conjugate of x. While the right eigenvector cor-
responds to the mode shape of the instability, the left eigenvector

Table 1 Boundary conditions for the perturbations F, G, H and
P for both local and global stability analysis; n is the normal
vector of the boundary

Walls Inlets/outlets Axis global Axis local

F¼ 0 F¼ 0 @F

@r
¼ 0

FþG¼ 0

G¼ 0 G¼ 0 @G

@r
¼ 0 2

@F

@r
þ @G

@r
¼ 0

H¼ 0 H¼ 0 H¼ 0 H¼ 0

@P

@n
¼ 0

P¼ 0 @P

@r
¼ 0

P¼ 0



shows the receptivity of the mode to periodic forcing. In this con-
text, Giannetti and Luchini [22] investigate the feedback mecha-
nism involving the corresponding left and right eigenvectors.
They define the structural sensitivity as the normalized product of
both eigenvectors

k x; rð Þ ¼
jjU† jjjjUjj
Ð

U
† � UdS

(9)

The global approach is especially interesting for complex geome-
tries since no parallel flow assumption is made like in the local
analysis. However, care has to be taken regarding the boundary
conditions. The boundaries have to be chosen far away from the
wave maker in order to not influence the mode shapes.

2.2 Local Stability Analysis. For the local analysis, a quasi-
parallel mean flow is assumed. Now, the perturbation is periodic
in axial and azimuthal direction, reading

f~ur; ~uh; ~ux ; ~pg ¼ fiFðrÞ;GðrÞ;HðrÞ;PðrÞg exp ðimhþ iaxÿ ixtÞ
(10)

where a is the axial wave number. Note that the eigenfunctions
unlike in Eq. (7) only depend on the radial coordinate. The real
part of a is the axial wave number and its imaginary part corre-
sponds to the negative of the spatial growth rate. When inserting
Eq. (10) in Eq. (2), the governing equations for the local stability
analysis yield a dispersion relation for a and x, which can be
described as an eigenvalue problem. For its solution, the Cheby-
shev collocation technique has proven to be a highly efficient dis-
cretization method [23] and is therefore used in the framework of
this paper. The boundary conditions applied are listed in Table 1.
The properties of the eigenvalue problem depend on the type of
analysis:

(1) Temporal analysis. The axial wave number, a, is fixed to a
real value and the eigenvalue problem is solved for a com-
plex x

AðarÞU ¼ xBðarÞU (11)

(2) Spatial analysis. The frequency, x, is fixed to a real value
and the eigenvalue problem is solved for a complex a. The

eigenvalue problem in the spatial analysis is quadratic in a.
One way to solve the problem is to add additional
unknowns and thereby linearize the problem. The general-
ized eigenvalue problem then becomes

AðxrÞU ¼ aBðxrÞU (12)

Unlike in a temporal analysis, where a perturbation
can only move in tþ-direction and never in t–-direction, a
perturbation in space can evolve in both x-directions. With-
out further information, it therefore is a priori unclear
whether the pair of a and U belongs to an aþ-branch or an
a–-branch.

(3) Spatiotemporal analysis: Here, both a and x are complex
valued and either Eq. (11) or Eq. (12) is solved.

Figures 1(a)–1(c) schematically show the evolution of a wave
packet in space and time for flows with different stability proper-
ties. The flow is called stable when all perturbations decay in time
in every Galilean reference frame (Fig. 1(a)). In convectively
unstable flows, perturbations grow in time but are convected away
from their source, leaving the base flow undisturbed for t ! 1.
Absolutely unstable flows give rise to oscillations, which contami-
nate the entire flow for t! 1.

To distinguish between convectively unstable and absolutely
unstable flows, a spatiotemporal analysis has to be performed in
order to examine the group velocity, which is defined as

c ¼ @x

@a
(13)

An absolutely unstable flow must give rise to an instability wave
with positive temporal growth rate and zero group velocity. A per-
turbation moving at zero group velocity is marked by a saddle
point of x in the complex a-plane

c a0ð Þ ¼
@x

@a
a0ð Þ ¼ 0 (14)

The related frequency at the saddle point is called the absolute fre-
quency, x0. If its imaginary part, x0,i, is larger than zero, then the
base flow profile is absolutely unstable. In a spatially developing
flow, a region of absolute instability is a necessary condition for a
global mode [24]. According to Chomaz et al. [5], the frequency

Fig. 1 Schematic representations of wave packets in flows with different stability properties:
(a) stable flow, (b) convectively unstable flow, and (c) absolutely unstable flow



of the global mode is defined by the value of the absolute fre-
quency at the saddle point in the complex X-plane

@x0

@X
Xsð Þ ¼ 0 (15)

and the frequency of the global mode is

xg ¼ x0ðXsÞ (16)

The origin of the global mode, the so-called wavemaker, is deter-
mined by the switch between the aþ- and a–-branches [25,26].

To summarize, the methodology to find and reconstruct the
global mode using local stability analysis consists of four steps. In
the first step, x0 and a0 are determined by finding the saddle point
in the complex a-plane. To do so, a temporal analysis is per-
formed at arbitrary axial positions in the flow for various fixed a
until a physical branch with positive temporal growth rate for a
finite range of a is found. Thereafter, the resulting curve is
extended to the complex a-plane by performing a spatiotemporal
analysis. Then, in the complex a-plane, the saddle point of the dis-
persion relation is found. In the second step, the saddle point is
tracked while sweeping through the mean flow in axial direction.
The flow is absolutely unstable in regions where the imaginary
part of the absolute frequency is larger zero. Then, the complex
frequency as a function of the axial position is fitted by Pad�e poly-
nomials and extended to the complex X-plane and the saddle point
Xs is found. According to Eq. (16), the corresponding frequency is
the global frequency. In the third step, a spatiotemporal analysis is
performed at the complex frequency of xg for all the axial posi-
tions of interest and the aþ and a– branches and the wave maker
location are identified. In the fourth step, the global mode shape
can be reconstructed by applying

fur; uh; ux; pg ¼ < fiF;G;H;Pg exp imhþ i

ðx

x0

ax dxÿ ixt

!!

(17)

where the F, G, H, and P are the normalized eigenfunctions. In
Eq. (17), a corresponds to the a– branch upstream of the wave
maker location, and to aþ downstream of the wave maker.

3 Experiment and Simulations

In this section, the experimental and numerical setups are out-
lined and the mean flows are discussed, which serve as the base
flow for the LSA.

3.1 Experimental Setup. Figure 2 shows details of the exper-
imental setup. The swirl injection system is inserted at the exit of
a plenum of diameter 82mm and length of 590mm and blows
into the atmosphere. The swirler consists of two passages: The
primary air stream flows in the inner region through eight tangen-
tial vanes, whereas the secondary flow enters the external region
through eight tangential vanes in counter-rotative flow direction
with respect to the primary stream.

Flow-field measurements are carried out using particle image
velocimetry (PIV) in order to validate the LES computations. A
20� 32mm2 region of interest is selected in a longitudinal plane.
Particular attention is paid to capture the velocity profiles as close
as possible to the dump plane: First, the laser sheet is thickened
to 1mm to reduce the out-of-plane displacements of the seeding
particles. Furthermore, based on a parametric study, the time
delay between the pulses is set to 4 ls.

In addition to PIV measurements, far-field pressure fluctuations
are measured with a microphone placed at x¼ 0 and r¼ 300mm (not
shown in Fig. 2). For the operating point of a mass flow rate of _m ¼
4:29 g=s at atmospheric conditions, the sound pressure spectrum in
Fig. 3 shows three distinct peaks at approximately f¼ 700Hz,
3150Hz, and 6300Hz. However, proper orthogonal decomposition of
the PIV snapshots did not reveal any coherent structures.

3.2 LES Setup. The LES are performed using the AVBP
code [27], which is specialized in solving the compressible
Navier–Stokes equations on unstructured grids (developed at
Centre Europ�een de Recherche et de Formation Avanc�ee en Cal-
cul Scientifique (CERFACS) and Institute Français du P�etrole-
�Energies nouvelles (IFPEN)). For discretization, the two-step
Taylor–Galerkin ‘C’ scheme [28] is used, which is third-order
accurate in space and time. Subgrid turbulence is modeled with
the sigma model [29]. The computational domain comprises the
last 90mm of the upstream plenum, the swirler, and a half sphere
modeling the atmosphere. In total, it is discretized with
10.86� 106 cells. The edge length of the finest cells is 45 lm. The
time-step is fixed to Dt¼ 3.3� 10ÿ8 s, which resembles approxi-
mately a maximal Courant–Friedrichs–Lewy number of 0.9. The
velocity profile at the inlet is imposed according to hot-wire
anemometry.

Fig. 2 Schematic sketch of the experiment: (a) primary vanes,
(b) secondary vanes, (c) center body, (d) primary injector exit
plane, and (e) dump plane

Fig. 3 Experimental sound pressure level and dynamic mode decomposition (DMD) spectrum
of pressure based on LES snapshots



In Fig. 4, the LES is validated against the experimental axial
and radial mean flow components downstream of the swirler.
The plot shows good agreement for both the axial and the radial
velocity components.

3.3 Mean Flow and Coherent Structures Based on LES.
The LES-based mean axial velocity and the mean flow stream
lines in axial and radial directions are shown in Fig. 5. Because of
the strong swirl in the primary injector, most of the fluid is trans-
ported close to the primary injector walls, while in the core axial
velocities are low and partially negative. At the edge of the center
body, a thin ring of high velocity occurs, which can be seen in the
axial component in Fig. 5(a). This causes strong shear layers in
this region. After a convergent and a parallel section, the primary
stage opens to the secondary stage. Directly downstream of the
injector, the streamlines are deflected perpendicular to the injector
axis. Therefore, the recirculation zone does not close, and gas
from the atmosphere is sucked in and deflected with the fluid from
the injector perpendicular to the swirler axis. Figure 5 demon-
strates that the flow is strongly nonparallel, especially outside of
the primary injector.

A DMD [30], a decomposition method relating a frequency to
every mode, is performed based on LES snapshots. The resulting
DMD spectrum is displayed in Fig. 3 by the dotted line. It shows
distinct peaks that are in good agreement with the experimental
pressure spectrum. The method shows that the peak at approxi-
mately 700Hz is related to an axisymmetric fluctuation, which
will not be further investigated in this paper. The second very

distinctive peak at f¼ 3030Hz in the DMD spectrum is related to
a PVC of azimuthal wave number m¼ 1. The PVC is accompa-
nied by several higher harmonics of which only the first one is
visible at f¼ 6060Hz in Fig. 3. The focus of this paper, however,
shall be on the dominating instability. The left column in Fig. 6
shows the DMD mode shapes of the PVC of azimuthal wave num-
ber m¼ 1. The fact that the maximum of the coherent structure is
close to the exit plane of the primary injector and that it decays
rapidly thereafter explains why PIV measurements could not cap-
ture the instability since visual access in the interior of the swirler
is not possible.

4 Results

As demonstrated above, the LES captures the mean flow and
the PVC dynamics sufficiently accurate. For this reason, the LSA
is based on the LES mean fields and the stability eigenmodes are
validated with the DMD modes extracted from the LES. In the
following, the results of the global and local approach will be
discussed.

4.1 Results From the Global Stability Analysis. Compared
to local stability analysis, the procedure of global stability analysis
is relatively straightforward since no frequency selection criteria,
complex mapping, or global reconstruction from local data is
necessary.

Figure 7 illustrates the global spectrum of the considered con-
figuration. It demonstrates that all modes are stable except one
single mode at xg � 1.89þ 0.01i, which is slightly unstable. The
fact that the growth rate is almost equal to zero is in line with the
expectations of LSA based on a temporally averaged flow. Since
the instability is at its limit cycle, it neither grows nor decays.
Global stability analysis overestimates the frequency of the PVC
by about 18%. Figure 6 compares the global mode shapes in the
third row to the corresponding DMD modes in the first row. The
predicted axial velocity and pressure fluctuations agree very well
with the DMD modes although the fluctuations decay to rapidly
upstream of their maximum amplitude. This is very likely due to
the low-order numerical discretization scheme used. Another
global stability code [21] with a high-order dispersion relation
conserving discretization schemes showed better results in this
region. Although, outside the primary injector the agreement of
the mode shapes is satisfactory for the radial and the azimuthal
velocities, they do not match close to the exit plane of the primary
injector.

Figure 6 shows the corresponding adjoint modes in the fourth
column indicating that the hydrodynamic instability is by far most
receptive to azimuthal forcing at the intersection between the
vanes and the primary injector. The radial and azimuthal veloc-
ities of the adjoint mode show a distinct peak in this region. The
maxima of the axial velocity and pressure are both located at the
exit plane of the primary injector. The adjoint modes show that at
first-order the most efficient and practical way to force or control
the PVC is to pulse directly the flow through the vanes periodi-
cally. By doing so, both the azimuthal and the radial velocity com-
ponents are excited at their most receptive positions. The
maximum of the adjoint mode’s axial velocity is far from any
wall, which makes an actuation by air injection practically diffi-
cult at this position. Finally, Fig. 8(a) shows that the structural
sensitivity, and therefore the location of strongest feedback, is
close to the exit plane of the primary injector.

4.2 Results From the Local Stability Analysis. The method-
ology laid out in Sec. 2 is followed during the local stability
analysis. The first step is related to finding the position of the sad-
dle point of the complex frequency, x, in the complex a-plane.
The real and imaginary parts of x as a function of the complex a
are exemplary shown in Fig. 9 for the exit plane of the primary
injector. The pair of frequency and wave number for which

Fig. 4 Comparison of experimental and LES mean profiles of
axial velocity, u x , and radial velocity, u r , for varying axial
positions

Fig. 5 Mean flow field inside the injector: (a) axial velocity and
(b) 2D line integral convolution



Fig. 7 Spectrum of global stability analysis

Fig. 8 Structural sensitivity, k: (a) global LSA and (b) local LSA

Fig. 6 PVC modes based on LES/DMD and LSA; right column: global LSA adjoint modes



Eq. (14) is satisfied for the 1D velocity profile under investigation
is x¼ 1.36þ 0.20i and a¼ 0.61ÿ 0.19i. Since the imaginary part
at the saddle point is positive, the flow is absolutely unstable at
this position. According to the second step of the methodology,
the saddle point has to be tracked in positive and negative
x-direction. The resulting curves of the complex absolute fre-
quency as a function of the axial position are shown in Fig. 10. In
this plot, the axial coordinate is indicated by the schematic of the
swirler in the background. The flow is absolutely unstable in the
region between x¼ÿ0.22l and x¼ 0l. The peak of the x0,i is close
to the exit plane of the primary injector. The graph is consequen-
tially extruded in the complex X-plane by the use of Pad�e polyno-
mials. The result is visualized in Fig. 11. The plot of the complex
frequency in the complex X-plane exposes a saddle point with the
complex frequency x¼ 1.33þ 0.16i. According to Eq. (16), this
is the frequency of the global mode. The error in comparison with

the result in the LES is 17% and for a strongly nonparallel flow,
reasonably accurate. The observation that the growth rates of the
local approach are higher than of the global stability analysis is in
line with the work of Juniper et al. [31], who investigated the
influence of confinement on the stability of wakes using both
methods. They found that local stability analysis tends to slightly
overestimate the growth rates.

In the third step, the wave maker location is found by detecting
the branch switching between the aþ and a– branches. Figure 12
shows that the branch switching takes place directly at the exit
plane of the primary injector. Starting from the base of the center
body, the growth rate of the a– branch is positive until the wave
maker position. From this point on, the aþ branch is followed,
which indicates that for values of x � ÿ0.16 l, the mode decays in
axial direction. Finally, after the global frequency and the wave
maker location are determined, the mode shapes of the global

Fig. 9 Real and imaginary part of the nondimensional frequency, x, in the complex a-plane
for the velocity profile at the exit of the primary injector

Fig. 10 Real and imaginary part of the absolute frequency, x0, over the axial coordinate, x



mode can be reproduced from a spatial analysis according to
Eq. (17). Since the flow outside of the primary injector is highly
nonparallel, the mode reconstruction is only performed within the
primary injector. Figure 6 compares the reconstructed global
modes in the second column to the DMD modes in the first col-
umn, which are based on the LES. The mode shapes show very
good agreement in the radial and azimuthal velocity component
and pressure. Some discrepancies can be seen in the axial compo-
nent, close to the exit plane of the primary injector. It is interest-
ing to note that the shear layers downstream of the central bluff
body in the primary injector are excited by the perturbation and
that this is captured by the local stability analysis, which is best
visible in the axial component. Figure 8(b) shows the structural
sensitivity based on the local stability analysis where the global
adjoint modes were reconstructed from the local analysis data
according to Ref. [13]. Like in the global analysis, the region of

highest structural sensitivity is located at the exit of the primary
injector.

5 Conclusion

The flow field in an industrial, swirled, two-staged fuel injec-
tion system of high geometrical complexity is investigated by
LES, as well as local and global LSA. The aim of this study is to
investigate the capability of local and global stability analysis to
predict the dominant coherent structures and to reveal their origin
and controllability based on adjoint methods.

Large eddy simulation is first compared to PIV measurements
showing good agreement regarding the mean fields. The DMD of
the LES data reveals a PVC of azimuthal wave number m¼ 1
dominating the flow dynamics inside the injector with its oscilla-
tion frequency matching the pressure oscillations measured in the

Fig. 11 Expansion of the absolute frequency, x0, into the complex x-plane

Fig. 12 a
1 and a

– as a function of the axial position



experiment. Linear hydrodynamic stability analysis is conducted
based on the LES mean fields. The results from a local quasi-
parallel stability analysis are compared to the results from a global
stability analysis. Both approaches show that the wave maker
region for the PVC is at the exit plane of the primary injector. The
mode shapes in the primary injector are reconstructed from local
LSA and compared to DMD modes derived from the LES snap-
shots. Despite the strong violation of the parallel flow assumption
of local stability analysis, the agreement between this approach
and DMD is satisfactory. Also, the estimated frequency is with an
error of approximately 17% compared to LES reasonably accu-
rate. The temporal growth rate is slightly overestimated by the
local approach. The global approach, which is not restricted by
the parallel flow assumption, is applied to the entire flow field
inside and outside the injector. Outside the injector, the mode
structure is very well reproduced, while inside the injector, the
radial and azimuthal velocity components show discrepancies.
The frequency estimated by the global approach is satisfactorily
reproduced with an error of approximately 18%. The growth rate
is close to zero, which is expected for a LSA based on a mean
flow. The frequencies of the PVC in the experiment, the LES, and
both in global and local stability analysis are concluded in Table 2
together with their corresponding errors. Furthermore, the global
adjoint modes show that in a linear framework, the perturbation is
most sensitive to azimuthal forcing at the vanes of the primary
injector. Based on these results, the best way to control the PVC is
to directly force the flow at the primary injector vanes.

Even though the flow field is already strongly nonparallel in the
primary injector, the local analysis still provides unexpectedly
well results in this region of the configuration. This leads to the
conclusion that local stability analysis is in general applicable to
hydrodynamic instabilities in complex geometries. On the other
hand, the results show also the limit of this approach. Outside of
the primary injector and especially in the free stream field, the
flow is nonparallel in such an extent that the approach fails. As
the global approach is not restricted by the nonparallel assump-
tion, this method can be used in all kinds of geometries and flow
fields. However, with the global approach, other difficulties
emerge. As mentioned in the introduction, some solvers count on
high-order accurate discretization schemes but by doing so are
restricted to Cartesian meshes. An application to complicated geo-
metries is therefore difficult or impossible. Using unstructured
grids on the other hand simplifies the meshing considerably; how-
ever, the advantage of high-order accuracy is not given. In order
to solve this problem, effort has to be paid on the improvement of
the discretization schemes for unstructured meshes. Furthermore,
a TriGlobal analysis might help to understand the discrepancies,
which occur for the radial and the azimuthal components between
the BiGlobal mode shapes and the LES.
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Nomenclature

c ¼ group velocity
D ¼ characteristic length scale
F ¼ eigenfunction of radial velocity
G ¼ eigenfunction of azimuthal velocity
H ¼ eigenfunction of axial velocity

i ¼
ffiffiffiffiffiffiffi

ÿ1
p

K ¼ turbulent kinetic energy
m ¼ azimuthal wave number
n ¼ normal vector
p ¼ pressure
r ¼ radial coordinate

Re ¼ Reynolds number
t ¼ time
u ¼ velocity
U ¼ characteristic velocity
x ¼ axial coordinate
X ¼ complex x-axis

Greek Symbols

a ¼ complex axial wave number
h ¼ azimuthal coordinate
k ¼ structural sensitivity
� ¼ viscosity
P ¼ eigenfunction of pressure
U ¼ eigenvector
x ¼ complex angular frequency

Subscripts

h�ie ¼ eddy
h�ig ¼ global mode
h�ii ¼ imaginary
h�im ¼ molecular
h�ir ¼ radial component
h�ir ¼ real
h�is ¼ saddle point
h�it ¼ turbulent

h�itot ¼ total
h�ix ¼ axial component
h�ih ¼ azimuthal component
h�i0 ¼ zero group velocity

Superscripts

h�i† ¼ adjoint
~h�i ¼ coherent fluctuation

h�i ¼ mean

h�i0 ¼ stochastic fluctuation
_h�i ¼ time derivative

Table 2 PVC frequency and growth rates from the experiment,
LES and global and local stability analysis; LES errors are
based on the experimental value, while LSA errors are with
respect to the LES. Errors of growth rates are calculated based
on the frequency of the oscillation.

Exp. Sim. Global Local

Nondim. frequency xr 1.66 1.60 1.89 1.33
Nondim. growth rate xi 0 0 0.01 0.16
Error �(xr) — ÿ3.2% þ18% ÿ17%
Error �(xi) — 0 þ0.6% þ10%
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