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NONDEGENERATE CRITICAL POINTS, MORSE-DARBOUX
LEMMA AND PROPAGATORS IN BV FORMALISM.

SERGUEI BARANNIKOV

Abstract. The notion of nondegenerate critical point in the BV formalism is
studied. The analogs of the Morse and Darboux theorems in the BV formalism
are proven. The theorem on the normal form of an arbitrary quadratic function
on odd symplectic space is proven. This can be viewed as an analog of Jordan
type decomposition for a pair of a symmetric pairing on vector space and an
anti-symmetric pairing on the dual space. The last result was used for the
construction of propagators in the BV formalism in the equivariant setting,
see [2, 3, 4]

1. Morse and Darboux Theorems .

1.1. Nondegenerate critical point of action functional. Let M be a smooth

real supervariety with an odd symplectic structure. Let {·, ·} denotes the corre-

sponding odd bracket on functions on M . Let f be an even function on M , which

satisfies the classical BV master equation

(1.1) {f, f} = 0.

Locally the algebra of functions on M with the odd bracket is isomorphic to

the multi-vector algebra on Rn

equipped with Schouten’s bracket R
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, see [1, 5]. The function f has a critical point at p if its development

near p in the local coordinates x

i
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j

has no linear terms
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Then the quadratic term f
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satisfies also�
f

(2)

, f

(2)

 
= 0. And therefore defines the differential d

lin

= {f
(2)

, ·} acting on the

cotangent space at p.

Definition 1. The critical point of the solution f to (1.1) is non-degenerate if the

cohomology of the differential d

lin

= {f
(2)

, ·} acting on the cotangents space at this

point are trivial:

ker{f
(2)

, ·} = im{f
(2)

, ·}

Example 2. An example of such a situation is a function f = f(x) on Rn

con-

sidered as a multi-vector. The equation {f, f} = 0 is satisfied because in this case

f does not depend on ⇠

j

’s. A critical point p of such solution is nondegenerate if

and only if the matrix

@

2

f

@x

i
@x

j is nondegenerate at this point, which corresponds to

a Morse critical point.
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Example 3. Another example of a solution is a Poisson bivector

� =
X

j

1

j
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j
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2(x)⇠
j

1
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2

.

A critical point of this solution is nondegenerate if and only if the matrix �

j

1

j

2

is

nondegenerate, i.e. � defines locally a symplectic structure.

1.2. Canonical form.

Theorem 4. For any solution (1.1) with a non-degenerate critical point, there

exists a change of local coordinates x

i

, ⇠

j

on M , preserving the odd symplectic

structure, after which f is quadratic in the new coordinates.
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Proof. Let us construct step-by-step a local change of coordinates, preserving the

odd symplectic structure. Suppose that f has an expansion
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and k > 2. Then
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= 0 where f
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the term of the degreek. The cohomology of the differential {f
(2)

, ·} are trivial on

polynomials of degree k, since they are trivial on linear functions. Then there exists

a polynomial h

k

of degree k, such that {f
(2)

, h

k

} = f

(k)

. Let
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be the hamiltonian vector field of the hamiltonian h

k

, and let '

t

k

: x ! x+ tv

k

(x)+
. . . be the one-parameter group of diffeomorphisms generated by the vector field

v

k

(x). Then the change of variables in the form x = '

1

k

(x) preserves the odd

symplectic structure and reduces the solution f to

f = const+ f
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ik
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In the two previous examples this result is equivalent to the Morse’s theorem

and to the Darboux’s theorem correspondingly. This result is interesting because it

makes possible to see the analogy in certain results between the Morse theory and

the symplectic geometry. Also it is possible to develop analogs of some theorems

from the Morse theory and from the symplectic geometry in a new situation of the

other case of solutions with nondenerated critical points f = h(x) + � where � is a

Poisson bivector and h(x) is a Casimir function of �, nondegenerated in transverse

directions to the symplectic leaves of the Poisson bivector �.

2. Propagators in BV formalism.

Let g denotes an odd non-degenerate symmetric pairing g : V ⌦2 ! ⇧k on some

Z/2Z-graded vector space V . Notice that this is the same as the odd symplectic

structure on the Z/2Z-graded vector space ⇧V .
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Theorem 5. Any odd anti-self-adjoint operator I over algebraically closed field k,

char (k) 6= 2,
g(Ix, y) + (�1)xg(x, Iy) = 0

can be reduced by linear transformation preserving the odd scalar product g to a

sum consisting of the following blocks:

1
k

- Z/2Z�graded subspace spanned by 2k elements v, Iv, . . . , I

2k�1

v with v =
k mod 2, I2kv = 0,

g(Imv, I

m

0
v) = �

m+m

0
,2k�1

(�1)mv+

1

2

m(m+1)

,

2
k

- Z/2Z�graded subspace spanned by 2k elements v, u, Iv, Iu . . . , I

k�1

v, I

k�1

u

with v + ū = k mod 2, Iku = I

k

v = 0, g(Imv, I

m

0
v) = 0, g(Imu, I

m

0
u) = 0,

g(Imv, I

m

0
u) = �

m+m

0
,k�1

(�1)mv+

1

2

m(m+1)

,

3 - Z/2Z�graded subspace on which I is invertible.

Proof. For any n  n

0 ker In ✓ ker In
0
. There exists n

max

such that for any

n > n

max

ker In = ker Inmax

, since dimV < 1. The subspace U = ker Inmax

is

I�invariant and I is invertible on the quotient V/U . Therefore for any v 2 V there

exists v

0
such that I

n

max

v

0 = v mod U . If the restriction g|
U

is degenerate, so that

there exists u 2 U such that g(u, u0) = 0 for any u

0 2 U , then, since g is symmetric,

g(u, Inmax

v

0) = g(Inmax

u, v

0) = 0

for any v

0 2 V . This implies that g(u, v) = 0 for any v 2 V . Therefore such u

does not exist and the restriction g|
U

is nondegenerate. Therefore U

? \ U = {0}
and V is a direct sum of the I�invariant subspaces V = U � U

?
. In particular,

U

? ' V/U and I is invertible on U

?
. This is the subspace of type 3.

Let n be the smallest number, such that there exists an element v 2 ker In

which is not orthogonal to ker I: g(v, ·)|
ker I

6= 0. It can be assumed without

loss of generality that v is of certain parity v̄. For any k  n, I

k

v 2 ker In�k

,

I

k

v /2 ker In�k�1

and the elements I

k

v k = 0, . . . , n� 1 are linearly independent.

Consider first the case g(v, In�1

v) 6= 0. Since k is algebraically closed, v can be

normalized so that

(2.1) g(v, In�1

v) = 1.

It follows from the proposition 6 that if v is even then n = 4k0, and if v is odd

then n = 4k0 � 2, k0 2 N . For all m +m

0 � n: g(Imv, I

m

0
v) = g(Im+m

0
v, v) = 0.

Also g(Imv, I

m

0
v) = 0 when m+m

0
is even, for the parity reason. Assume that v is

even, then n = 4k0,I2lv is even for any l 2 N and g(v, I4l+1

v) = 0 for any l by the

loc.cit. Let l < k

0
be the biggest number such that g(v, I4l�1

v) = a, a 6= 0. Then

ev = v � 1

2

aI

4k

0�4l

v still has g(ev, I4l0�1ev) = 0 for any l < l

0
< k

0
, g(ev, I4k0�1ev) = 1

and in addition satisfies

g(ev, I4l�1ev) = g(v � 1

2
aI

4k

0�4l

v, I

4l�1

v � 1

2
aI

4k

0�1

v) = 0.

In this way v can be chosen so that g(v, Imv) = 0 for all m unless m = n � 1.
Similarly, if v is odd, then n = 4k0 � 2, g(v, I4k

0�3

v) = 1,I2l�1

v is even and

g(v, I4l�1

v) = 0 for any l 2 N. Similarly, let l < k

0
be the biggest number such that

g(v, I4l�3

v) = a, a 6= 0. Then ev = v � 1

2

aI

4k

0�4l

v still has g(ev, I4l0�3ev) = 0 for any

l < l

0
< k

0
, g(ev, I4k0�3ev) = 1 and satisfies in addition g(ev, I4l�3ev) = 0. In this way

v can again be chosen so that g(v, Imv) = 0 unless m = n � 1. In particular, we
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see that the restriction of g to the subspace Ũ spanned by I

k

v, k = 0, . . . , n� 1 is

nondegenerate in the case (2.1). It follows, in particular, that U is the direct sum

of the I�invariant subspaces U = Ũ � Ũ

?
.

Consider next the case g(v, In�1

v) = 0, and let us denote u

0 2 ker I the element

of parity v + 1 such that g(v, u0) = 1. Then since u

0
is orthogonal to all elements

from ker In�1

, therefore u

0
is in the image of the self-adjoint operator I

n�1

, and

there exists u such that I

n�1

u = u

0
. Then

(2.2) (�1)vk+
1

2

k(k+1)

g(Ikv, In�1�k

u) = g(v, In�1

u) = 1.

We can assume also that g(u, In�1

u) = 0, since otherwise this reduces to the

previous case. I claim that v and u can be chosen so that except (2.2) all other

pairings g(Ikv, Imu), g(Ikv, Imv) and g(Iku, Imu) are zero. Let g(v, I l
0
u) = 0,

g(v, I l
0
v) = 0, g(u, I l

0
u) = 0 holds for alll

0 2 [l + 1, . . . , n� 1]. Let g(v, I lu) = a,

g(v, I lv) = b, g(u, I lu) = c. Put ev = v� 1

2

bI

n�l�1

u, ũ = u� 1

2

cI

n�l�1

v�aI

n�l�1

u.

Then, since n� 1 > l, and u, v 2 ker In:

g(v � 1

2
bI

n�l�1

u, I

l

u� 1

2
cI

n�1

v � aI

n�1

u) = g(v, I lu)� ag(v, In�1

u) = 0.

Also if b 6= 0 then by the proposition 6, g(In�l�1

u, I

l

v) = g(In�1

u, v) = 1, and

therefore g(ṽ, I lṽ) = 0,since

g(v�1

2
bI

n�l�1

u, I

l(v�1

2
bI

n�l�1

u)) = g(v, I lv)�1

2
bg(v, In�1

u)�1

2
bg(In�l�1

u, I

l

v) = 0.

Similarly, g(ũ, I lũ) = 0. It follows that v and u can be chosen in this way so

that all pairings between I

k

u, I

k

0
v, except (2.2), are zero. Therefore the elements

v, u, Iv, Iu . . . , I

k�1

v, I

k�1

u span the subspace W of type 2
k

, the restricion of g to

W is nondegenerate, and U is again the direct sum of the I�invariant subspaces

U = W �W

?
where W

?
is the othogonal complement to U

0
.

Continuing in this way one gets the decomposition of the space U into direct

sum of subspaces of type 1
k

and 2
k

, and the subspace U

?
is the subspace of type

3. ⇤

Proposition 6. Let g(v, I lv) 6= 0 where I is an odd anti-selfadjoint operator and

v is an element of parity v̄. Then if v̄ = 0, then l = 4k̃ � 1, and ifv̄ = 1, then

l = 4k̃ � 3, k̃ 2 N. It follows, in particular, that in both casesg(u, I lv) = g(I lu, v)
for any u.

Proof. If ↵ is even then

g(I↵,↵) = (�1)↵+1

g(↵, I↵) = �g(↵, I↵) = �g(I↵,↵) = 0

vanishes. Since g(v, I lv) 6= 0, l = 2k � 1, k 2 N. If g(v, I2k�1

v) 6= 0 then

g(Ikv, Ik�1

v) 6= 0, and therefore the element I

k�1

v is odd. It follows that if v

is even then k = 2k̃, l = 4k̃ � 1, and if v is odd then l = 4k̃ � 3, k̃ 2 N. For any u,

v: g(I2u, v) = �g(u, I2v). Therefore for v even

g(u, I4k
0
+3

v) = �g(I4k
0
+2

u, Iv) = g(I4k
0
+3

u, v).

Similarly, for v odd

g(u, I4k
0
+1

v) = g(I4k
0
u, Iv) = (�1)v̄+1

g(I4k
0
+1

u, v)

⇤
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Let I be an odd anti-selfadjoint operator I in the canonical form of the direct

sum of blocks of types 1
k

, 2
k

and 3.

Proposition 7. There exists an odd operator Ĩ, such that

(2.3)

h
I, Ĩ

i
= 1

if and only if the decomposition of the operator I into blocks by the theorem 5 has

no blocks of type 2
2n�1

, n 2 N. In this case the operator Ĩ can be chosen to be

self-adjoint g(Ĩx, y) = (�1)xg(x, Ĩy).

Proof. Let us put for the elements of blocks of type 1
k

:

Ĩ(I2l+1

v) = I

2l

v, Ĩ(I2lv) = 0, l = 0, . . . , k � 1,

for the elements of blocks of type 2
2k

:

Ĩ(I2l�1

v) = I

2l

v, Ĩ(I2l�1

u) = I

2l

u, Ĩ(I2lv) = Ĩ(I2lu) = 0, l = 0, . . . , k � 1,

define also Ĩ on block of type 3:

Ĩ =
1

2
I

�1

.

Then

h
Ĩ , I

i
= 1 and also g(Ĩx, y) = (�1)xg(x, Ĩy). ⇤

Assume now that such operator Ĩ exists on a sum V = W�W

0
of two I�invariant

subspaces, where W is a block of type 2
2k�1

. Let Ĩ

1

be the block-diagonal com-

ponent of Ĩ acting on W , Ĩ =

✓
Ĩ

1

Ĩ

3

Ĩ

2

Ĩ

4

◆
. Then

h
Ĩ

1

, I

i
= 1on W , so it is enough

to consider the case V = W . Since W is again the sum of two I�invariant sub-

spaces, it is enough to check that the operator satisfying the (2.3) cannot exist

on the I�invariant subspace spanned by v, Iv, . . . , I

2k�2

v. Since I

�
I

2k�2

v

�
= 0,

then Ĩ

�
I

2k�2

v

�
= I

2k�3

v, and therefore Ĩ

�
I

2k�3

v

�
= a

0

I

2k�2

v. It follows that

Ĩ

�
I

2k�4

v

�
= I

2k�5

v � a

0

I

2k�3

v and therefore Ĩ

�
I

2k�5

v

�
= a

0

I

2k�4

v + a

1

I

2k�2

v,

etc. Ĩ (Iv) = a

0

I

2

v +
P

j�1

a

j

I

2(j+1)

v. It follows that

h
I, Ĩ

i
v 2 Image (I) and

therefore

h
I, Ĩ

i
v 6= v. Such an odd anti-self-adjoint operator I satisfying (2.3) is

called homotopy invertible.

This notion extends the notion of “contractible differential” to the case when

I

2 6= 0.

2.1. Jourdan blocks decomposition for the pair of quadratic forms. The

odd non-degenerate symmetric pairing g is uniquely determined by the linear iso-

morphism g : V _
0

' ⇧V

1

. The components of the anti-self-adjoint operator I are

then the linear maps I

10

2 Hom

k

(V
0

, V

_
0

), I

01

2 Hom

k

(V _
0

, V

0

), I

10

is an anti-

symmetric pairing on V

0

and I

01

is a symmetric pairing on V

_
0

.

Proposition 8. The anti-self-adjoint operators I on V are in one-to-one corre-

spondence with pairs (h, h0) where h is an anti-symmetric quadratic form on V

0

and h

0
is a symmetric quadratic form on V

_
0

. The decomposition of I from the

theorem 5 is equivalent to an analog of the “Jordan blocks” decomposition for such

pairs.

Proof. Follows from the theorem5, see also [6] for similar results. ⇤
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2.2. Nondegeneracy of g(Ix, x) on (⇧V )
0

) I is homotopy invertible. The

odd anti-self-adjoint operator I, or the pair (h, h0) where h is an anti-symmetric

quadratic form on V

0

and h

0
is a symmetric quadratic form on V

_
0

, is the same as

an even quadratic function on ⇧V . The correspondence is given by

I $ g(Ix, x), x 2 ⇧V.

Proposition 9. Let the restriction of the quadratic function g(Ix, x) on (⇧V )
0

is

a nondegenerate quadratic form. Then the decomposition of I has no blocks of type

2
2n�1

and the operator

e
I defined in the proposition 7 satisfies.

h
I, Ĩ

i
= 1.

Proof. Notice that v̄ + ū = 1 for the block of type 2
2n�1

, and therefore one of the

elements I

k�1

v, I

k�1

u from the kernel of I is alwas odd and then the quadratic

function g(Ix, x) on (⇧V )
0

is degenerate. ⇤
The propositions 7, 9 allow to construct the propagators, in particular in the

equivariant setting when the quadratic term of the action functional does not nec-

essarily satisfy

�
S

(2)

, S

(2)

 
= 0. This is used for the construction of cohomology

classes in the compactified modulis spaces of curves in [4].
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