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To model momentum exchange in nonlinear wave-particle interaction, as in amplification de-
vices like traveling-wave tubes, we use an N -body self-consistent hamiltonian description based on
Kuznetsov’s discrete model, and we provide new formulations for the electromagnetic power and
field momentum in media. This approach leads to fast and accurate numerical simulations in time
domain and in one-dimensional space.
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The electromagnetic power and its density are major
characteristics of amplifying devices and there is an in-
creasing need to monitor them accurately in nonlinear
regimes. While this power is generally computed using
harmonic models, we undertake to compute it in posi-
tion and time. To model the wave-particle interaction,
we choose the particle description (a.k.a. discrete particle
or N -body description), combined with a self-consistent
hamiltonian [1–3], because nonlinear regimes are well ad-
dressed by considering the evolution of N nearly resonant
charged particles interacting with the waves. Indeed, to
predict turbulences and instabilities (due in particular to
the chaotic dynamics of electrons) of the wave-particle
system, the N -body description is the most intuitive ap-
proach. But it is also the most complex one in electrody-
namics since the number of degrees of freedom for fields
and particles involved is absolutely enormous. We pro-
pose a solution to this problem.

The interaction between an electron beam and elec-
tromagnetic waves is one of the most fundamental pro-
cesses in the physics of hot and cold, natural, indus-
trial and laboratory plasmas. This process is also at the
heart of state-of-the-art wave amplifiers like vacuum elec-
tronic tubes (traveling-wave tubes (TWTs), klystrons,
etc.), free electron lasers or particle accelerators. The
key mechanism in this interaction is the exchange of
momentum, as, e.g., in the Landau effect [4, 5], when
the phase velocity of the wave is close to the particles
speed [6, 7]. Nowadays, the large power and broad band
spectrum used in those electronic devices lead to criti-
cal instabilities and are difficult to simulate. For exam-
ple, spurious frequencies are generated very far from the

drive frequency in the nonlinear regime because of drive-
induced oscillations.

To follow particle motions and wave propagation in
this interaction, we need better tools to study saturated
nonlinear regimes, where electron motion perturbations
become significant. Currently, two options are available
to model such system, each with typical drawbacks. The
first option is kinetic models in time domain such as
particle-in-cell (PIC) algorithms based on Vlasov equa-
tions (like e.g. cst-particle and mafia) [8, 9]. But
the resulting codes are extremely slow due to their large
number of degrees of freedom. Therefore, they are not
suitable for design activities and lead industry to rely on
the second option : specialized algorithms in frequency
domain. Those specialized models (like e.g. mvtrad,
bwis and christine) [10–12] are industrial standards
because they are fast in their definition domains, but,
based on our experiences, they are generally not rigor-
ous to predict oscillation phenomena (including reflec-
tions and backward harmonic excitations) due to their
nature. Besides, they are only partially consistent with
Maxwell equations [13].

We propose a third option, using a many-body descrip-
tion to design a specialized model in time domain. By
definition, this approach may involve a priori far more
degrees of freedom than grid-based or spectral discreti-
sations of the kinetic one. But a field decomposition pro-
vided by the Kuznetsov discrete model [14] allows us to
drastically reduce the number of simulation parameters,
for fields and particles as well.

The main purpose of this letter is to investigate the
electromagnetic power distribution (eq. (28) below) in
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the Kuznetsov discretization. Indeed, an important fea-
ture of traveling-wave tubes (TWTs) is the interaction
efficiency (ratio between output power of the wave and
electric power used by the device). Combining this model
with the hamiltonian formalism [15] leads to a better re-
spect of conservation properties in the model, including
Poincaré-Cartan invariants [16], thanks to adapted sym-
plectic algorithms [17, 18], allowing one to increase the
numerical time step without incurring too much error on
results. With the hamiltonian formalism, we compute
the momentum balance (eq. (15)) in the wave-electrons
interaction for a periodic structure, including the elec-
tromagnetic field momentum (eq. (22)) and its volume
density (eq. (23)), from which we design a numerical in-
tegrator. Finally, simulations for a typical TWT will be
run in one space dimension (1D), to be compared with a
frequency algorithm to assess the accuracy of our time-
domain approach.

This letter rests on ref. [15], which presents the con-
struction of an electromagnetic hamiltonian, starting
with the Kuznetsov discrete model [14, 19, 20]. Given
the waveguide structure with period d along the z-axis,
with period (cell) index n, this model provides an exact
discretized decomposition of the radiofrequency (RF),
divergence-free electromagnetic fields in the cell-based
representation

E(r, t) =
∑
s,n

Vsn(t)Es−n(r) , (1)

H(r, t) = i
∑
s,n

Isn(t)Hs
−n(r) , (2)

where s ∈ N labels modes of propagation1. With
the z-axis unit vector ez, time-independent basis fields
Es−n(r) = Es0(r− ndez), Hs

−n(r) = Hs
0(r− ndez) are ob-

tained (−n is a technical convention [15]) using Gel’fand
transform (4), and depend only on the waveguide geome-
try. They do not obey orthogonality conditions in a sim-
ple cell ; they decay (with oscillations) as |n− z/d| → ∞,
but do not plainly vanish for |n− z/d| > 1/2. Thus, to-
tal fields (1) and (2) at z essentially depend on nearby
cells, allowing us to investigate finite structures. The i
factor in (2) is a convenient choice, for which Vsn and
Isn are real-valued. In presence of electric sources, time-
dependent coefficients Vsn and Isn do not coincide, oth-
erwise the system will violate Maxwell equations. Note
that it is possible to use a linearised version of the dis-
crete model [21, 22].

An advantage of this decomposition is that, for each
mode of propagation (each “band” s in the dispersion
diagram), there are 2nmax different time variables Vsn and

1 Label s is discrete-valued as it indexes eigenvalues Ωsβ (i.e. dis-

persion relations associated to field propagation) of the self-
adjoint Helmholtz equation (6)-(7).

Isn (viz. nmax degrees of freedom) for fields in a wave-
guide of nmax periods. For example, space traveling-wave
tubes are helical structure with nmax ' 300 periods. In
comparison, finite difference techniques used in particle-
in-cell codes necessitate millions of degrees of freedom to
reach the same accuracy. Besides, this decomposition is
exact regardless of the structure geometry provided it is
periodic along the propagation direction.

Since terms Vsn and Isn will be obtained from the hami-
tonian dynamics, we must express the electromagnetic
power using the discrete model. This is done below.

In the Kuznetsov discrete model, the n-based repre-
sentation derives from a β-based representation2 using
Gel’fand transform [23]

Gβ(r, t)
def
=
∑
n∈Z

Gn(r, t) einβd , (3)

with wavenumber β ∈ [−π/d, π/d], and its inverse

Gn(r, t)
def
= (2π)−1

∫ π

−π
Gβ(r, t) e−inβd d(βd) , (4)

for an arbitrary function G. Those transforms allow to
rewrite the electric field (1) as

E(r, t) = (2π)−1
∑
s

∫ π

−π
Vsβ(t)Esβ(r) d(βd) , (5)

and similarly for the magnetic field with Isβ(t) and iHs
β(r),

where coefficients Vsβ , I
s
β , eigenfunctions Esβ ,H

s
β and fre-

quency Ωsβ (used below) are β-based representations of
respectively Vsn, I

s
n,E

s
n,H

s
n and Ωsn (used below). Ex-

plicit 1D projections of eigenfield Esβ are expressed by
(31). These (propagating) modes are eigenvectors of the
Helmholtz equation [14, 15, 19], with real eigenvalues Ωsβ ,

rotEsβ(r) = −iµ0ΩsβH
s
β(r) , (6)

rotHs
β(r) = iε0ΩsβE

s
β(r) , (7)

for solenoidal eigenfields meeting the boundary condi-
tions on the waveguide wall (e.g. perfect metal cylindri-
cal or rectangular cavities) and the Floquet condition
E(r + ndez) = e−inβdE(r) in the z direction, so that
the propagation constant β is the wavenumber associ-
ated with Bloch’s theorem.

We normalize these eigenfields to

Ns
βδ
s
s′ =

∫
V0
ε0E

s
β · E

s′∗
β d3r =

∫
V0
µ0H

s
β ·H

s′∗
β d3r , (8)

2 In contrast with refs [15, 19], we let the phase per pitch, βd,
range over [−π, π] instead of [0, 2π], to enhance symmetry in
calculations.
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corresponding to the electric or magnetic energies stored
in one period over the cell volume V0. For later conve-
nience, this normalisation is chosen3 equal to the eigen-
values Ωsβ . The Kronecker symbol δss′ , expressing orthog-
onality of modes s 6= s′, follows from the nondegeneracy
of eigenvalues (Ωsβ 6= Ωs

′

β ), which furthermore forces the

integral
∫
V0(Esβ ∧Hs′∗

β

)
· ez d3r to vanish.

Derivating (8) with respect to β, and using derivatives
of Helmholtz eqs (6) and (7) and the derivative of the
Floquet condition, yield the group velocity vsg β = ∂βΩsβ
of the electromagnetic wave along the z-axis,

vsg β =
d

Ωsβ

∫
S
<
(
Esβ ∧Hs∗

β

)
· ez d2r , (9)

where S is the transverse section of the waveguide.

Now, we recall the hamiltonian approach [15]. The
Poynting energy Hem = 1

2

∫
VZ(ε0|E|2 + µ0|H|2) d3r over

the system volume VZ, with normalisation (8) and the
Parseval relation, yields the hamiltonian for radiative
fields

Hem =
1

2

∑
s

∑
n1,n2

(
Vsn1

Ωsn1−n2
Vsn2

+ Isn1
Ωsn1−n2

Isn2

)
.

(10)
The normalisation (8) ensures that Vsn and Isn are
canonical variables4, satisfying the Poisson brackets
{Vsn1

,Vs
′

n2
} = {Isn1

, Is
′

n2
} = 0 and {Vsn1

, Is
′

n2
} = δn1

n2
δss′ , with

generalized coordinates Isn and conjugate momenta Vsn.
The Fourier transform of Ωsβ , denoted Ωsn1−n2

, appears
in (10) as the coupling coefficient between “RF oscil-
lators” (or coupled cavities) at cells n1 and n2. For
coupled-cavity traveling-wave tubes, the actual disper-
sion relation is well described as a nearest-neighbour os-
cillator coupling, viz. with Ωn = 0 for |n| ≥ 2 [19],
whereas for helix traveling-wave tubes the coupling is
longer-ranged (typically, |Ωn| > 0 for |n| ≤ 7) [13, 24].
For the simulation below, we truncate coupling terms
after 5 periods. This difference in the coupling coeffi-
cients reflects the properties of the underlying basis fields,
which in turn reflect the actual geometry of the slow wave
structure.

3 As in [15], we choose Ns
β = Ωsβ which has the dimension of a

pulsation, and then Vsn, I
s
n are homogenous to the square root

of an action. In [19], the normalisation has the dimension of an
energy and Vsn and Isn become dimensionless.

4 Instead of these “cartesian” variables for oscillators, one can use
the angle-action approach by considering

√
2Csn(t) = Vsn(t) +

iIsn(t) ∈ C, where canonical actions are CsnC
s∗
n , with conjugate

angles θsn = ArgCsn. Then the electromagnetic hamiltonian (10)
becomes

Hem =
∑
s

∑
n1,n2

Csn1
Cs∗n2

Ωsn1−n2
. (11)

The coupling with particles involves the longitudinal
N -body dynamics [3, 15]. We consider a beam of N elec-
trons with mass m and charge −|e|, labelled k, with posi-
tions zk and canonical momenta pk. The magnetic poten-
tial of the wave is rewritten with the cell-based represen-
tation (2) as A(r, t) = i

∑
sn I

s
n(t)As−n(r) (with Coulomb

gauge divA = 0), where the basis magnetic potential
Asn is imaginary-valued5 like Hs

n. The electrons ballis-
tic motion and their coupling with fields is given in one
dimension by the relativistic hamiltonian

Hel =

N∑
k=1

mc2
([

1− ż2
k

c2
]−1/2 − 1

)
=

N∑
k=1

mc2(γk − 1) ,

(12)
with the Lorentz factor

γk =

[
1 +

(
pk + |e|

∑
s,n

iIsnA
s
−n(zk)

)2/
(mc)2

]1/2

. (13)

The Coulomb interaction in the beam (possibly taking
into account the waveguide wall boundary conditions)
is incorporated through a scalar potential φ. Then the
Poynting energy splits into an RF contribution (10), and
a space charge energy

Hsc = −1

2

N∑
k=1

∑
k′ 6=k

|e|φ(zk − zk′) , (14)

with the coulombian field Esc,z = −∂zφ involving all
charged particles of the system to interact with each
other. The sum of (10), (12) and (14) is the total self-
consistent hamiltonian for wave-particle dynamics along
the z-axis.

In this formulation, the system total momentum (from
Noether’s theorem) is the sum of electron (canonical) and
field momenta

Pwp,z =

N∑
k=1

pk +
∑
s

∑
n1,n2

Vsn1
Isn2

Bsn1−n2
, (15)

with the inverse Fourier transform of iβ

Bsn = −Bs−n = (2π)−1

∫ π

−π
iβ e−inβd d(βd) (16)

=
(−1)n+1

nd
∀n 6= 0 , (17)

and Bs0 = 0. The Legendre transform of the total hamil-
tonian is the lagrangian, for which Noether’s theorem

5 In ref. [15], we write Fsn = −iAs
n. Note typos in ref. [15] : its

equation (15) misses a minus sign in e−inβd, and a c2 factor
is missing in the second member of the second equation of its
equation (26).
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shows (15) to be conserved during the wave-electron mo-
mentum exchange. However, applying Noether’s theorem
is not trivial, as the waveguide geometry is not invari-
ant under infinitesimal translations, but the lagrangian
is invariant under zk 7→ zk + ε, Iβ 7→ e−iβεIβ . Of course,
the hamiltonian, being time-independent, is also the con-
served total energy, though the energy does not split into
a mere sum of individual, single-particle and single-mode
contributions. Note that the wave-particle interaction is
based on momentum exchange [3, 6], as implied by (15).
The conservation of this momentum is essential to ensure
that simulations are consistent.

Besides, we define the refractive kernel

Ksβ =
vsg β Ωsβ
c2

=
β

nsφ β n
s
g β

, (18)

with nsφ β = c/vsφ β the phase refractive index, nsg β =
c/vsg β the group refractive index, vsφ β = Ωsβ/β the
phase velocity and vsg β the group velocity. The n-based
representation of (18) from the group velocity vsg β =

i
∑
n ndΩsn einβd is

Ksn = −Ks−n = (2π)−1<
[ ∫ π

−π
iKsβ e−inβd d(βd)

]
(19)

= c−2d
∑
n2

(n2 − n) Ωsn−n2
Ωsn2

. (20)

This model is valid for any kind of waveform, but it
simplifies in the monochromatic (a.k.a. continuous wave-
form, CW) regime, where the field is a sinusoidal wave
with a single pulsation ω = 2πF , of prime interest to
applications. In this regime, phase and group velocities
(and respective indices) can be considered as constant.
This lead to the monochromatic approximation

Bsn ≈ nsφ n
s
gK

s
n , (21)

and the total field momentum (second term of (15)) is
rewritten as

Pw,z(t) ≈
∑
s

∑
n1,n2

Vsn1
Isn2

nsφ n
s
g K

s
n1−n2

, (22)

for sinusoidal fields. Note that, if we take the volume den-
sity of the Minkowski momentum in a dispersive waveg-
uide6

gw(r, t) = nφ ng c
−2 E(r, t) ∧H(r, t) +∇u(r, t) , (23)

where u is any function vanishing at boundaries, then the
corresponding field momentum Pw,z(t) =

∫
VZ gw d3r is

directly equal to (22), obtained from Noether’s theorem.

6 *In the published version, it is wrongly defined as the electro-
magnetic field momentum density in a medium.*

The difference with the Abraham density of momentum
c−2 E ∧H is manifest [25].

The power of the RF electromagnetic wave is a key
feature of vacuum electron devices. The fields repre-
sentation (1)-(2) provides an expression for the power
from the flux of the Poynting vector [26], Pz(z, t) =∫
S(E ∧H) · ez dS,

Pz(z, t) =
∑
s,s′

∑
n1,n2

Vsn1
(t) Is

′

n2
(t)Ks,s

′

n1,n2
(z) , (24)

with

Ks,s
′

n1,n2
(z) =

∫
S

(
Es−n1

(r) ∧ iHs′

−n2
(r)
)
· ez dS . (25)

The contribution of cell n to the electromagnetic field
power propagation is the average flux (24) over the cell
pitch

Pz,n(t) =
∑
s,s′

∑
n1,n2

Vsn1
Is

′

n2

1

d

∫ (n+ 1
2 )d

(n− 1
2 )d

Ks,s
′

n1,n2
(z) dz .

(26)

These time-domain expressions are well suited for ob-
serving, for example, wave oscillations and transient re-
flections on the power, which would be impossible with
frequency models. To obtain the contribution of each
cell, we expand (26) by considering the z-dependence in
Ks,s

′

n1,n2
. First, we note that, in β-representation, (26) in-

volves two wave numbers β1 and β2 (from the Fourier
transform on n1 and n2). In contrast with the second
term in (15), we cannot impose β1 = β2 by invoking de-
structive interference between different wavenumbers, be-
cause we consider a single cell (n−1/2)d < z < (n+1/2)d,
not the full line −∞ < z <∞.

To compute Ks,s
′

n1,n2
, we need the z-dependence of

the basis fields Esn1
,Hs′

n2
, or equivalently of eigenfields

Esβ1
,Hs′

β2
. The main difficulty in (26) lies in the eigen-

mode cross-term (25). For β1 = β2, it relates directly
with the group velocity (9). As a rule of thumb, because
(β1−β2)d is not very large in monochromatic regime, the
simple approximation∫ (n+ 1

2 )d

(n− 1
2 )d

Ks,s
′

n1,n2
(z) dz ≈ c2Ksn1−n2

1

2
(δnn1

+ δnn2
) δs

′

s (27)

yields the estimated power in cell n

Pz,n(t) ≈ c2

d

∑
s

∑
n2

1

2
(Vsn I

s
n2
− Vsn2

Isn)Ksn−n2
, (28)

which is time dependent, and where the geometric kernel
Ksn depends on the dispersion relation Ωsβ (see eq. (20))
and not on transverse components of the field as (25).
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Figure 1. (Colour online) Spatial amplification of the electro-
magnetic power inside a model traveling-wave tube (no taper
nor attenuations) for the fundamental mode (F = 12 GHz)
and its second harmonic from 1D time-domain simulation di-
moha and frequency-domain algorithm mvtrad. Continuous
blue (resp. dashed cyan) curve : instantaneous power (28)
at tfinal = 6 ns (resp. at tfinal + 1/(3F )). Thick red curve :

power from (29), using for Ẽz the time Fourier transform of
the electric field (1) (i.e. field envelope). Black dashed curve :
its second harmonic. Black (resp. green) dots : fundamental
(resp. second harmonic) power from mvtrad.

To build an evolution algorithm from this formulation,
we need the basis fields Esn for (1). In this letter, we
consider only one mode of propagation (we omit super-
script s = 0) and the thin beam approximation (ax-
ial 1D beam). This system is classically described by
means of an equivalent circuit model [22, 27, 28] with a
telegraph equation for the RF field, coupled with the
beam. In the harmonic regime, the RF field evolves
as Ez(r, t) = Ẽz(r)eiωt and generates locally the (time-
averaged) power crossing section S at abscissa z,

〈Pz〉 =
|Ẽz(r = 0)|2

2β2 Zc β
, (29)

with the wave impedance (a.k.a. circuit impedance) Zc β .
As the angular frequency ω selects a single wavenumber
β, the electric field on axis must also read Vβ(t)Eβ,z(z),
with eigenfield component Eβ,z(z) and amplitude Vβ(t) =

Ṽβ eiωt. And since the impedance Zc β is defined regard-
less of any beam, (29) holds also without beam (“cold”
regime of the device), with evolution equations reducing
to Ṽβ = i Ĩβ . Then the time-averaged flux of the Poynting
vector (24) reduces to

〈Pz〉 =
1

2
Ṽ∗β ĩIβ

vg β Ωβ
d

. (30)

Finally, the longitudinal component of the electric field

on axis is proportional to e−iβz. So the electric eigenfield
shape function is7

Ez,β(z) = e−iβz

√
vg β Ωβ
d

β2 Zc β . (31)

The basis fields Esn in 1D are given by the transform (4)
of (31), and are similar to cardinal sine functions. In
[15], we also have iAsβ = Esβ/Ω

s
β , providing the magnetic

potential eigenfield Asn. Note that (31) involves only ex-
perimentally known values. To obtain the actual electric
field in our time-domain modeling, for arbitrary waves
and in presence of a beam, we only need to find coeffi-
cients Vn(t).

To benchmark our model, we run a one-dimensional
numerical simulation with only the principal mode of
propagation (s = 0). The three hamiltonian terms
(10), (12) and (14) generate simple evolution equations
amenable to explicit discrete-time symplectic maps [16–
18] for In, Vn, zk and pk, providing a symplectic inte-
grator. Physical model inputs are the dispersion relation
Ωβ and impedance Zc β , which can be obtained experi-
mentally or from a Helmholtz solver (given the structure
geometry). For later comparisons, we take the dispersion
relation used in [22] for a generic traveling-wave tube.
These data yield the cell-based representation coefficients
Ωn and Kn, and field shape function En(z).

We simulate the beam as a line of N macro-electrons
spaced from each other by δzpar = 1 · 10−5 m, with
identical initial speed żini = 4.56 · 107 m/s and charge
Q = 103 270 e fixed by cathode potential and current
values. The on-axis space-charge field in one dimension
is obtained using Rowe’s approximation [20]. Fields are
discretized on a grid with mesh δzfield. Time-sinusoidal
waves are excited at the first cell by adding a forcing term
2πFU sin(2πFt) to V̇1 in the integrator, with frequency
F = 12 GHz, and appropriate amplitude U to ensure8

Pz(z = 0) = 1 mW. Note that generation of second
harmonic occurs in TWTs. To represent the waveguide
beginning and end on the z-axis, we broke conservation
properties by appending long attenuators on either side
to damp Vn′(n′ < 0 or n′ > nend) at a small rate in
space.

The comparison is performed versus algorithm mv-
trad [10] (property of Thales Electron Devices), an in-
dustrial code in frequency domain (or so-called enve-
lope model), well-used and robust to simulate industrial

7 Note a difference by a
√

2 factor in [20] due to missing the 1/2
prefactor in the harmonic regime (the usual factor for average
power using peak amplitudes) in front of (30). Numerical com-
parisons with experimental data validate our relation without
the
√

2 factor.
8 To characterize the gain, in Fig. 1 we plot the power logarith-

mic ratio 10 log10(Pz(z)/Pz(0)), which defines the dBm scale in
electronics.
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traveling-wave tubes (TWTs). It was specifically de-
signed to investigate saturation regimes (including first
trapping oscillations in nonlinear regimes) for sinusoidal
waves, thus we operate it in a working regime where it
has been properly validated. But because of its concep-
tion from the frequency domain, mvtrad cannot sim-
ulate oscillation with drive nor predict reflections and
spurious oscillation phenomena (a main cause of insta-
bility in TWTs). Time-domain models will not suffer
from those limitations.

Since the aim of this paper is mostly to present the-
oretical tools for wave-particle simulations rather than
to design a complete algorithm for scientific and indus-
trial purposes, we focus on a single numerical compar-
ison. Benchmarking with simulations and experimental
data over wide ranges will be done in a separate work,
with our algorithm modified to account for current TWT
defects (such as losses and attenuations or tapering) : in
the present letter, we focus on the fundamental physical
process of momentum exchange.

Fig. 1 presents a comparison between the electromag-
netic power computed with our approach (dimoha for
HAmiltonian DIscrete MOdel) and mvtrad. Initial pa-
rameters (like cathode current and potential, coupling
impedances, phase velocity, tube length) are set to en-
sure that the amplification leads the power to saturation
before the end of the tube, and space charge effects are
taken into account. Our instantaneous power (28) at a
time tfinal = 6 ns is plotted (continuous thin blue curve).
The cyan curve is also the instantaneous power (28), but
at the time tfinal+1/(3F ), and demonstrates that (28) fol-
lows the wave propagation with time. The thick red curve
is the power from (29), where we take the time Fourier
transform over one time-period of the electric field (1),
and the black dashed curve is its second harmonic.

Fig. 2 shows the electron velocity ratio żk(tmax)/żini

and exhibits nonlinear effects (trapping) occurring ap-
proximately after z = 60 mm (some particles crossed the
separatrix centered on vph [3, 29]). The power saturation
occurs at z = 90 mm, when trapped particles start to re-
gain momentum at the wave expense in agreement with
the conservation law (15).

Agreement, in Fig. 1, between the frequency aspect of
the discrete model, viz. time-averaged power (29), and
mvtrad (black dots) is excellent for the fundamental
mode (actually, the discrepancy hardly catches the eye).
Oscillations for the instantaneous time power (28) oc-
cur in nonlinear regime. Since electrons are bunched
with a period near 1/F (visible in Fig. 2), large oscilla-
tions of instantaneous time power (28) occur in nonlinear
regime, when the modulation of electrons velocities be-
comes important. Time average of instantaneous power
(28) over the wave period is not shown because it is in-
distinguishable from the power (29) (red curve) from the
field envelope. Small variations between our approach
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Figure 2. Ratio of the speed of electron żk(tmax)/żini for the
simulation of Fig. 1, at tmax = 6 ns. The beam at z = 0 is
mono-kinetic and starts slowly to oscillate with a period near
1/F . Dashed line : phase velocity vph/żini.
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Figure 3. (Colour online) Wave-particle momentum conser-
vation per cell for the simulation of Fig. 1. Continuous black
curve : time average over one wave period 1/F of canonical
momentum lost (32). Dashed blue curve : time average of
field momentum (33).

and mvtrad (green circles), such as a bias in saturation
power, appear for the power’s second harmonic. But sec-
ond harmonic experimental measurements are difficult to
perform accurately. Both our model and mvtrad remain
within experimental uncertainty.

To assess momentum conservation (15) by our algo-
rithm, we compare, in the cell representation, the canon-
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ical momentum9

−Pp,n = −
∑
k′(n)

(
pk′(t)− pini

)
, (32)

lost by particles k′(n) : |zk′ − nd| < d/2 inside the cell n
and the estimated wave momentum in cell n

Pw,n ≈
∑
n2

1

2
(Vn In2

− Vn2
In) nφ ng Kn−n2

, (33)

for the dominant propagating mode. Part of the calcula-
tion is the same as for the power per cell, using approxi-
mation (27). Note that application of Noether’s theorem
requires a translation invariant system. Since the system
we simulate is open, we can expect small discrepancies.
Momentum provided by the field excitation at cell 1 is
neglected since the amplification (up to 50 dBm) is large
enough. Fig. 3 displays the time average over one wave
period 1/F of canonical10 (32) and field (33) momenta11.
The agrement is excellent. An almost identical result is
obtained when replacing nφngKn by Bn in (33) (indistin-
guishable on Fig. 3).

In this work, starting from a total hamiltonian describ-
ing the coupling between an electron beam and the radia-
tive fields propagating in a periodic waveguide, and using
a field discretization, we constructed the conserved mo-
mentum of the system, and the instantaneous and time-
averaged electromagnetic power. We built a time-domain
algorithm which is much faster than industrial PIC codes
(running in the scale of seconds) and as accurate as a
frequency-domain algorithm in tested regimes.

But this approach goes further than frequency models,
as it enables to address situations in nonlinear regimes
with trapped and chaotic particles interacting with fields,
which is of interest to a broader community of physi-
cists and engineers [30]. While the N -body description
was, for a long time, deemed impossible for microscopic
plasma physics (until recently [31]), this letter proves
that this description can be useful, even for industrial
devices like TWTs. Moreover, the total hamiltonian we
propose is intuitive and easy to understand with our ap-
proach.

Oscillations, reflections and multitone operation are
currently investigated in addition with the electromag-
netic field momentum in media. We are also working
on two- and three-dimensional versions of the model to
provide a complete electron velocity and position distri-
bution (e.g. to improve the conception of collectors at the

9 *Note a typo in the published version: p′k should read pk′ .*
10 *In the published version: mechanical should read canonical.*
11 The scale 10−18 N·s results from the tiny electron mass and from

field momentum being proportional to c−2 (see (20)).

end). To validate our approach, comparison with experi-
mental TWTs will be performed (see [24] for preliminary
results), after taking into account losses and tube defects.

The authors gratefully acknowledge fruitful comments
from D. Escande and constructive questions from anony-
mous reviewers.
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