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The electromagnetic power and its density are major characteristics of amplifying devices and

there is an increasing need to monitor them accurately in nonlinear regimes. While this power is

generally computed using harmonic models, we undertake to compute it in position and time. To

model the wave-particle interaction, we choose the particle description (a.k.a. discrete particle or

N -body description), combined with a self-consistent hamiltonian [1–3], because nonlinear regimes

are well addressed by considering the evolution of N nearly resonant charged particles interacting

with the waves. Indeed, to predict turbulences and instabilities (due in particular to the chaotic

dynamics of electrons) of the wave-particle system, the N -body description is the most intuitive

approach. But it is also the most complex one in electrodynamics since the number of degrees

of freedom for fields and particles involved is absolutely enormous. We propose a solution to this

problem.

The interaction between an electron beam and electromagnetic waves is one of the most fun-

damental processes in the physics of hot and cold, natural, industrial and laboratory plasmas.

This process is also at the heart of state-of-the-art wave amplifiers like vacuum electronic tubes

(traveling-wave tubes (TWTs), klystrons, etc.), free electron lasers or particle accelerators. The

key mechanism in this interaction is the exchange of momentum, as e.g. in the Landau effect [4, 5],

when the phase velocity of the wave is close to the particles speed [6, 7]. Nowadays, the large

power and broad band spectrum used in those electronic devices lead to critical instabilities and

are difficult to simulate. For example, spurious frequencies are generated very far from the drive

frequency in the nonlinear regime because of drive-induced oscillations.

To follow particle motions and wave propagation in this interaction, we need better tools to study

saturated nonlinear regimes, where electron motion perturbations become significant. Currently,

two options are available to model such system, each with typical drawbacks. The first option is

kinetic models in time domain such as particle-in-cell (PIC) algorithms based on Vlasov equations

(like e.g. cst-particle and mafia) [8, 9]. But the resulting codes are extremely slow due to

their large number of degrees of freedom. Therefore, they are not suitable for design activities

and lead industry to rely on the second option : specialized algorithms in frequency domain.

Those specialized models (like e.g. mvtrad, bwis and christine) [10–12] are industrial standards

because they are fast and rigorous in their definition domains, but they are generally not suited for

nonlinear regimes (instability saturations) and have difficulties at predicting oscillation phenomena

due to their nature. Besides, they are not always fully consistent with Maxwell equations [13].

We propose a third option, using a many-body description to design a specialized model in
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time domain. By definition, this approach may involve a priori far more degrees of freedom than

grid-based or spectral discretisations of the kinetic one. But a field decomposition provided by the

Kuznetsov discrete model [14] allows us to drastically reduce the number of simulation parameters,

for fields and particles as well.

The main purpose of this letter is to investigate the electromagnetic power distribution (see

eq. (24) below) in the Kuznetsov discretization. Indeed, an important feature of traveling-wave

tubes (TWTs) is the interaction efficiency (ratio between output power of the wave and electric

power used by the device). Combining this model with the hamiltonian formalism [15] leads to a

better respect of conservation properties in the model, including Poincaré-Cartan invariants [16],

thanks to adapted symplectic algorithms [17, 18], allowing one to increase the numerical time step

without incurring too much error on results. With the hamiltonian formalism, we compute the

momentum balance (see eq. (14) below) in the wave-electrons interaction for a periodic structure,

and design a numerical integrator. Finally, simulations for a typical TWT will be run in one

space dimension (1D), to be compared with a frequency algorithm to assess the accuracy of our

time-domain approach.

This letter rests on ref. [15], which presents the construction of an electromagnetic hamiltonian,

starting with the Kuznetsov discrete model [14, 19, 20]. Given the waveguide structure with

period d along the z-axis, with period (cell) index n, this model provides an exact discretized

decomposition of the radiofrequency (RF), divergence-free electromagnetic fields in the cell-based

representation,

E(r, t) =
∑
s,n

Vsn(t)Es−n(r) , (1)

H(r, t) = i
∑
s,n

Isn(t)Hs
−n(r) , (2)

where basis fields Esn, Hs
n are obtained (see [15]) from Gel’fand transforms [21], and where s ∈

N is the label for modes of propagation. Those basis fields depend only on the geometry of

the waveguide. They do not obey orthogonality conditions in a simple cell ; they decay (with

oscillations) as |n− z/d| → ∞, but do not plainly vanish for |n− z/d| > 1/2. The i factor in

(2) is a convenient choice, for which Vsn, and Isn are real-valued. In presence of electric sources,

time-dependent coefficients Vsn and Isn do not coincide, otherwise the system will violate Maxwell

equations. Note that it is possible to use a linearised version of the discrete model [22, 23].

An advantage of this decomposition is that, for each mode of propagation, there are 2nmax

different time variables (viz. nmax degrees of freedom) for fields in a waveguide of nmax periods. In
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comparison, finite difference techniques used in particle-in-cell codes necessitate millions of degrees

of freedom to reach the same accuracy. Besides, this decomposition is exact regardless of the

structure geometry provided it is periodic along the propagation direction.

Since terms Vsn and Isn will be obtained from the hamitonian dynamics, we must express the

electromagnetic power using the discrete model. This is done below.

In the Kuznetsov discrete model, the n-based representation derives from a β-based represen-

tation1

E(r, t) = (2π)−1
∑
s

∫ π

−π
Vsβ(t)Esβ(r) d(βd) , (3)

and similarly for the magnetic field with Isβ(t) and iHs
β(r), where Vsβ, I

s
β, Esβ,H

s
β are Fourier trans-

forms of Vsn, I
s
n,E

s
n and Hs

n. These (propagating) modes are eigenvectors of the Helmholtz equation

[14, 15, 19], with eigenvalues Ωs
β,

rotEsβ(r) = −iµ0Ωs
βH

s
β(r) , (4)

rotHs
β(r) = iε0Ωs

βE
s
β(r) , (5)

for solenoidal eigenfields meeting the boundary conditions on the waveguide wall and the Flo-

quet condition E(r + ndez) = e−inβdE(r), so that the propagation constant β is the wavenumber

associated with Bloch’s theorem.

We normalize these eigenfields to

N s
βδ
s
s′ =

∫
V0
ε0E

s
β · Es

′∗
β d3r =

∫
V0
µ0H

s
β ·Hs′∗

β d3r , (6)

corresponding to the electric or magnetic energies stored in one period over the cell-volume V0.

For later convenience, this normalisation is chosen2 equal to the eigenvalues Ωs
β. The Kronecker

symbol δss′ , expressing orthogonality of modes s 6= s′, follows from the nondegeneracy of eigenvalues

(Ωs
β 6= Ωs′

β ), which furthermore forces the integral
∫
V0(Esβ ∧Hs′∗

β

)
· ez d3r to vanish, where ez is the

z-axis unit vector.

Derivating (6) with respect to β, and using derivatives of Helmholtz eqs (4) and (5) and the

derivative of the Floquet condition, yield the group velocity vsg β = ∂βΩs
β of the electromagnetic

wave along the z-axis,

vsg β =
d

Ωs
β

∫
S
<
(
Esβ ∧Hs∗

β

)
· ez d2r , (7)

1 In contrast with refs [15, 19], we let the phase per pitch, βd, range over [−π, π] instead of [0, 2π], to enhance

symmetry in calculations.
2 As in [15], we choose Ns

β = Ωsβ which has the dimension of a pulsation, and then Vsn, I
s
n are homogenous to

the square root of an action. In [19], the normalisation has the dimension of an energy and Vsn and Isn become

dimensionless.
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where S is the transverse section of the waveguide.

Now, we recall the hamiltonian approach [15]. The Poynting energy Hem = 1
2

∫
VZ(ε0|E|2 +

µ0|H|2) d3r over the system volume VZ, with normalisation (6) and the Parseval relation, yields

the hamiltonian for radiative fields

Hem =
1

2

∑
s

∑
n1,n2

(
Vsn1

Ωs
n1−n2

Vsn2
+ Isn1

Ωs
n1−n2

Isn2

)
. (8)

The normalisation (6) ensures that Vsn and Isn are canonical variables3, satisfying the Poisson

brackets {Vsn1
,Vs

′
n2
} = {Isn1

, Is
′
n2
} = 0 and {Vsn1

, Is
′
n2
} = δn1

n2
δss′ , with generalized coordinates Isn and

conjugate momenta Vsn.

The Fourier transform of Ωs
β, denoted Ωs

n1−n2
, appears in (8) as the coupling coefficient between

“RF oscillators” (or coupled cavities) at cells n1 and n2. For coupled-cavity traveling-wave tubes,

the actual dispersion relation is well described as a nearest-neighbour oscillator coupling, viz. with

Ωn = 0 for |n| ≥ 2 [19], whereas for helix traveling-wave tubes the coupling is longer-ranged

(typically, Ωn > 0 for |n| ≤ 7) [13, 24]. This difference in the coupling coefficients reflects the

properties of the underlying basis fields, which in turn reflect the actual geometry of the slow wave

structure.

The coupling with particles involves the longitudinal N -body dynamics [3, 15]. We consider

a beam of N electrons with mass m and charge −|e|, labelled k, with positions zk and canonical

momenta pk. The magnetic potential of the wave is rewritten with the cell-based representation (2)

as A(r, t) = i
∑
sn

Isn(t)As−n(r) (with Coulomb gauge divA = 0), where the basis magnetic potential

Asn is imaginary-valued4 like Hs
n. The electrons ballistic motion and their coupling with fields is

given in one dimension by the relativistic hamiltonian5

Hel =
N∑
k=1

mc2
([

1−
ż2
k

c2

]−1/2 − 1
)

=

N∑
k=1

mc2(γk − 1) , (11)

with the Lorentz factor

γk =

[
1 +

(
pk + |e|

∑
s,n

iIsnA
s
−n(zk)

)2/
(mc)2

]1/2

. (12)

3 Instead of these “cartesian” variables for oscillators, one can use the angle-action approach by considering
√

2Csn(t) = Vsn(t) + iIsn(t) ∈ C, where canonical actions are CsnC
s∗
n , with conjugate angles θsn = ArgCsn. Then

the electromagnetic hamiltonian (8) becomes

Hem =
∑
s

∑
n1,n2

Csn1
Cs∗n2

Ωsn1−n2
. (9)

4 In ref. [15], we write Fsn = −iAs
n. Note typos in ref. [15] : its eq. (15) misses a minus sign in e−inβd, and a c2 factor

is missing in the second member of the second equation of its eq. (26).
5 The non-relativistic version of (11) is

Hel =

N∑
k=1

mż2k
2

+ |e|
∑
s,n

N∑
k=1

żkI
s
n(t)iAs−n(zk) . (10)
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The Coulomb interaction in the beam (possibly taking into account the waveguide wall boundary

conditions) is incorporated through a scalar potential φ. Then the Poynting energy splits into an

RF contribution (8), and a space charge energy

Hsc = −1

2

N∑
k=1

∑
k′ 6=k
|e|φ(zk − zk′) , (13)

with the coulombian field Esc,z = −∂zφ involving all charged particles of the system to interact with

each other. The sum of (8), (11) and (13) is the total self-consistent hamiltonian for wave-particle

dynamics along the z-axis.

In this formulation, the system total momentum is the sum of electron (mechanical) and field

(Poynting, a.k.a. Abraham) momenta

Pwp,z =

N∑
k=1

γkmżk +
∑
s

∑
n1,n2

Vsn1
Isn2

Ksn1−n2
, (14)

where the geometric kernel Ksn is constructed from

Ksβ = c−2 vsg β Ωs
β , (15)

and the group velocity vsg β = i
∑

n ndΩs
n einβd. We introduce the modified (by the i factor) inverse

Fourier transform of (15)

Ksn = (2π)−1<
[ ∫ π

−π
iKsβ e−inβd d(βd)

]
(16)

= c−2d
∑
n2

(n2 − n) Ωs
n−n2

Ωs
n2
, (17)

where Ksn = −Ks−n.

The Legendre transform of the total hamiltonian is the lagrangian, for which Noether’s theorem

shows (14) to be conserved during the wave-electron momentum exchange. However, applying

Noether’s theorem is not trivial, as the waveguide geometry is not invariant under infinitesimal

translations, but the lagrangian is invariant under zk 7→ zk + ε, Iβ 7→ e−iβεIβ. Of course, the

hamiltonian, being time-independent, is also the conserved total energy, though the energy does

not split into a mere sum of individual, single-particle and single-mode contributions. Note that

the wave-particle interaction is based on momentum exchange [3, 6], as implied by (14). The

conservation of this momentum is essential to ensure that simulations are consistent.

The power of the RF electromagnetic wave is a key feature of vacuum electron devices. The

fields representation (1)-(2) provides an expression for the power, obtained from the flux of the
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Poynting vector, Pz(z, t) =
∫
S(E ∧H) · ez dS,

Pz(z, t) =
∑
s,s′

∑
n1,n2

Vsn1
(t) Is

′
n2

(t)Ks,s
′

n1,n2
(z) , (18)

with

Ks,s
′

n1,n2
(z) =

∫
S

(
Es−n1

(r) ∧ iHs′
−n2

(r)
)
· ez dS . (19)

With this representation, the longitudinal total electromagnetic power Ptot,z(t) =
∫∞
−∞Pz(z, t) dz

reads

Ptot,z(t) = (2π)−1
∑
s

∫ π

−π
Vsβ(t) iIsβ(t)Ksβ c

2 d(βd) , (20)

This yields the cell-based representation of the total electromagnetic power

Ptot,z(t) = c2
∑
s

∑
n1,n2

Vsn1
(t) Isn2

(t)Ksn1−n2
, (21)

which depends only on time.

The contribution of cell n to the electromagnetic field power (18) is

Pz,n(t) =
∑
s,s′

∑
n1,n2

Vsn1
Is
′
n2

∫ (n+ 1
2

)d

(n− 1
2

)d
Ks,s

′
n1,n2

(z) dz . (22)

These time-domain expressions are suited for observing, for example, wave oscillations and transient

reflections on the power, which is impossible from frequency models. To obtain the contribution

of each cell, we expand (22) by considering the z-dependence in Ks,s
′

n1,n2 . First, we note that, in

β-representation, (22) involves two wave numbers β1 and β2 (from the Fourier transform on n1 and

n2). In contrast with (21), we cannot impose β1 = β2 by invoking destructive interference between

different wavenumbers, because we consider only a finite cell (n− 1/2)d < z < (n+ 1/2)d, not the

full line −∞ < z <∞.

To compute Ks,s
′

n1,n2 , we need the z-dependence of the basis fields Esn1
,Hs′

n2
, or equivalently of

eigenfields Esβ1 ,H
s′
β2 . The main difficulty in (22) lies in the eigenmode cross-term (19). For β1 = β2,

it relates directly with the group velocity (7). As a rule of thumb, because (β1 − β2)d is not very

large (in the so-called continuous waveform (CW) regime of prime interest to applications), the

simple approximation ∫ (n+ 1
2

)d

(n− 1
2

)d
Ks,s

′
n1,n2

(z) dz ≈ c2Ksn1−n2

1

2
(δnn1

+ δnn2
) δs

′
s (23)
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Figure 1. Spatial amplification of the electromagnetic power inside a model traveling-wave tube (no taper

or attenuations) for the fundamental mode (F = 12 GHz) and its second harmonic from 1D time-domain

simulation dimoha and frequency-domain algorithm mvtrad. Continuous blue (resp. cyan) curve : instan-

taneous power (24) at tfinal = 6 ns (resp. at tfinal + 1/(3F )). Thick red curve : power from (25), using for

Ẽz the time Fourier transform of the electric field (1) (i.e. field envelope). Black dashed curve : its second

harmonic. Black (resp. green) dots : fundamental (resp. second harmonic) power from mvtrad.

yields the estimated power in cell n

Pz,n(t) ≈ c2
∑
s

∑
n2

1

2
(Vsn I

s
n2
− Vsn2

Isn)Ksn−n2
, (24)

which is time dependent, and where the geometric kernel Ksn depends on the dispersion relation Ωs
β

and not on transverse components of the field (19). Of course, the sum over n of all (24) reduces

to the total electromagnetic power (21).
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To build an evolution algorithm from this formulation, we need the basis fields Esn for (1).

In this letter, we consider only one mode of propagation (we omit superscript s = 0) and the

thin beam approximation (axial 1D beam). This system is classically described by means of an

equivalent circuit model [23, 25, 26] with a telegraph equation for the RF field, coupled with the

beam. In the harmonic regime, the RF field evolves as Ez(r, t) = Ẽz(r)eiωt and generates locally

the (time-averaged) power crossing section S at abscissa z,

〈Pz〉 =
|Ẽz(r = 0)|2

2β2 Zcβ
, (25)

with the wave impedance (a.k.a. circuit impedance) Zcβ. As the angular frequency ω selects a single

wavenumber β, the electric field on axis must also read Vβ(t)Eβ,z(z), with eigenfield component

Eβ,z(z) and amplitude Vβ(t) = Ṽβeiωt. And since the impedance Zcβ is defined independently of

any beam, (25) holds also without beam (“cold” regime of the device), with evolution equations

reducing to Ṽβ = ĩIβ. Then the time-averaged flux of the Poynting vector (18) reduces to

〈Pz〉 =
1

2
Ṽ∗β ĩIβ

vg β Ωβ

d
. (26)

Finally, the longitudinal component of the electric field on axis is proportional to e−iβz. So the

electric eigenfield shape function is6

Ẽz,β(z) = e−iβz

√
vg β Ωβ

d
β2 Zcβ . (27)

The basis fields Esn in 1D are given by the Fourier transform of (27), and are similar to cardinal

sine functions. In [15], we also have iAsβ = Esβ/Ω
s
β, providing the magnetic potential eigenfield Asn.

Note that (27) involves only experimentally known values. The Fourier transform of (27) gives the

z-projected En to be used in (1). To obtain the actual electric field in our time-domain modeling,

for arbitrary waves and in presence of a beam, we only need to find coefficients Vn(t).

To benchmark our model, we run a one-dimensional numerical simulation with only the principal

mode of propagation (s = 0). The three hamiltonian terms (8), (11) and (13) generate simple

evolution equations amenable to explicit discrete-time symplectic maps [16–18] for In, Vn, zk and

pk, providing an order 2 symmetric symplectic integrator. Physical model inputs are the dispersion

relation Ωβ and impedance Zcβ, which can be obtained experimentally, or from a Helmholtz solver

(given the structure geometry). For later comparisons, we take the dispersion relation used in [23]

6 Note a difference by a
√

2 factor in [20] due to missing the 1/2 prefactor in the harmonic regime (the usual factor

for average power using peak amplitudes) in front of (26). Numerical comparisons with experimental data validate

our relation without the
√

2 factor.
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for a generic traveling-wave tube. These data yield the cell-based representation coefficients Ωn

and Kn, and field shape function En(z).

We simulate the beam as a line of N macro-electrons spaced from each other by δzpar =

1 · 10−5 m, with identical initial speed żk,ini = 4.56 · 107 m/s and charge Q = 103 270 |e| fixed

by cathode potential and current values. The on-axis space-charge field in one dimension is found

using Rowe’s approximation [20]. Fields are discretized on a grid with mesh δzfield. Time-sinusoidal

waves are excited at the first cell by adding a forcing term 2πFU sin(2πFt) to V̇1 in the integrator,

with frequency F = 12 GHz, and appropriate amplitude U to ensure7 Pz(z = 0) = 1 mW. Note

that generation of second harmonic occurs in TWTs. To represent the waveguide beginning and

end on the z-axis, we broke conservation properties by appending long attenuators on either side

to damp Vn′(n
′ < 0 or n′ > nend) at a small rate in space.

The comparison is performed versus algorithm mvtrad [10] (property of Thales Electron De-

vices), an industrial code in frequency domain (or so-called envelope model), well-used and robust

to simulate industrial traveling-wave tubes (TWTs) in the GHz regime but known to have some

difficulty at estimating accurately effects in nonlinear regimes and at predicting oscillation phe-

nomena. One reason for these discrepancies may be that frequency models are not fully consistent

with Maxwell equations [13].

Since the aim of this paper is mostly to present theoretical tools for wave-particle simulations

rather than to design a complete algorithm for scientific and industrial purposes, we focus on a

single numerical comparison. Benchmarking with simulations and experimental data over wide

ranges will be done in a separate work, with our algorithm modified to account for current TWT

defects (like losses and attenuations or tapering) : in the present letter, we focus on the fundamental

physical issue of momentum exchange.

Fig. 1 presents a comparison between the electromagnetic power computed with our approach

(dimoha for HAmiltonian DIscrete MOdel) and mvtrad. Initial parameters (like cathode current

and potential, coupling impedances, phase velocity, and tube length) are set to ensure that the

amplification leads the power to saturation before the end of the tube, and space charge effects are

taken into account. Our instantaneous power (24) at a time tfinal = 6 ns, is plotted (continuous thin

blue curve). The cyan curve is also the instantaneous power (24), but at the time tfinal + 1/(3F ),

and demonstrates that (24) follows the wave propagation with time. The thick red curve is the

power from (25), where we take the time Fourier transform over one time-period of the electric

7 To characterize the gain, in Fig. 1 we plot the power logarithmic ratio 10 log10(Pz(z)/Pz(0)), which defines the

dBm scale in electronics.
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field (1), and the black dashed curve is its second harmonic.

Nonlinear effects (trapping) start to occur approximately after z = 60 mm when observing

the electron dynamics (not shown in this letter, but presented in [24]). The power saturation

occurs at z = 90 mm, when trapped particles start to regain momentum. Agreement between

the frequency aspect of the discrete model, viz. time-averaged power (25), and mvtrad (black

dots) is excellent for the fundamental mode (actually, the discrepancy hardly catches the eye).

Oscillations for the instantaneous time power (24) occur in nonlinear regime, probably caused by

the approximation (23). Small variations between our approach and mvtrad (green circles), such

as a bias in saturation power, appear for the power’s second harmonic. But second harmonic

experimental measurements are difficult to perform accurately. Both our model and mvtrad

remain inside experimental uncertainty.

In this work, starting from a total hamiltonian describing the coupling between an electron

beam and the radiative fields propagating in a periodic waveguide, and using a field discretization,

we constructed the conserved momentum of the system and instantaneous and time-averaged elec-

tromagnetic power. We built a time-domain algorithm which is much faster than industrial PIC

codes (running in the scale of seconds) and as accurate as a frequency-domain algorithm in tested

regimes. But this approach goes further than frequency models, as it enables to address situations

in nonlinear regimes with trapped and chaotic particles interacting with fields, which is of interest

to a broader community of physicists and engineers (like [27]).

Oscillations, reflections and multitone operation are currently investigated. We are also working

on two- and three-dimensional versions of the model to provide a complete electron velocity and

position distribution. To validate our approach, comparison with experimental TWTs will be

performed (see [24] for preliminary results), after taking into account losses and tube defects.
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[20] Bernardi P., André F., David J-F., Le Clair A. Doveil F., IEEE Trans. Electron Devices, 58

(2011) 1761-1767.

[21] Gel’fand I. M., Dokl. Akad. Nauk. SSSR, 73 (1950) 1117-1120.

[22] Terentyuk A. G. Ryskin N. M., Private communication.

[23] Minenna D. F. G., Terentyuk A. G., André F., Elskens Y. Ryskin N. M., (2017)
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