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Simple expressions of the LASSO and SLOPE estimators in

small-dimension

Patrick J.C. Tardivel∗, Rémi Servien and Didier Concordet
TOXALIM, Université de Toulouse, INRA, ENVT, Toulouse, France.

Abstract

We study the LASSO and SLOPE estimators when the design X satisfies ker(X) = 0. We state that,
even if the design is not orthogonal, even if residuals are correlated, up to a transformation, the LASSO and
SLOPE estimators have a simple expression based on the best linear unbiased estimator.

Keywords: Best linear unbiased estimator, LASSO, SLOPE.

1 Introduction

Let us consider the following small-dimensional linear model

Y = Xβ∗ + ε, (1)

where X is a n× p fixed design matrix with ker(X) = 0 (thus n ≥ p hence the adjective ”small-dimensional”),
β∗ ∈ Rp is an unknown parameter and ε is a centered random vector with an invertible and known covariance
matrix Γ.

The Least Absolute Shrinkage and Selection Operator (LASSO) estimator [Tibshirani, 1996] and the Sorted
L-One Penalized Estimation (SLOPE) estimator [Bogdan et al., 2015] are respectively defined by

β̂lasso := argmin
β∈Rp

{
1

2
‖Y −Xβ‖2 + λ‖β‖1

}
and β̂slope := argmin

β∈Rp

{
1

2
‖Y −Xβ‖2 + λ1|β[1]|+ · · ·+ λ|β[p]|

}
(2)

where, in the second expression, the tuning parameters (λi)1≤i≤p satisfies λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 and [ . ] is a
permutation of {1, . . . , p} such that |β[1]| ≥ · · · ≥ |β[p]|.

It is well known that when the design X is orthogonal (so ker(X) = 0) the LASSO is just the following soft
thresholded Ordinary Least Squares (OLS) estimator [Tibshirani, 1996]

β̂lasso =
(

sign(β̂ols
1 )(|β̂ols

1 | − λ)+, . . . , sign(β̂ols
p )(|β̂ols

p | − λ)+

)
. (3)

Popularized by the pioneer work of Tibshirani, the orthogonal design became a case study: Chzhen et al. [2017],
Duan et al. [2016], G’Sell et al. [2015], Lockhart et al. [2014], Tian et al. [2015], Wen et al. [2016]. Furthermore
some nice properties such as the irrepresentable condition [Bühlmann and van de Geer, 2011, Meinshausen and
Bühlmann, 2006, Zhao and Yu, 2006, Zou, 2006] holds when X is orthogonal.

Similarly to the LASSO, the orthogonal design is also a case study for the SLOPE estimator [Bogdan et al.,
2015, Gossmann et al., 2015, Su and Candes, 2016].

As explain previously, the orthogonal design setting appears as the ideal case. By seeking to generalize its
properties to the non-orthogonal setting, we discovered a relevant orthogonalizing transformation U . Actually,
in the new model Ỹ + X̃β∗ + ε̃, where Ỹ = UY , X̃ = UX and ε̃ = Uε, the LASSO β̃lasso has the following
simple expression based on the Best Linear Unbiased Estimator (BLUE)

β̃lasso =
(

sign(β̂blue
1 )(|β̂blue

1 | − λ)+, . . . , sign(β̂blue
p )(|β̂blue

p | − λ)+

)
. (4)

∗corresponding author: patrick.tardivel@gmail.com
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Similarly to the LASSO we also obtained a simple expression for the SLOPE based on the BLUE. The transfor-
mation U is available in small dimension even if X is not orthogonal (but ker(X) = 0) and even if components
of ε are correlated

Let us point out the differences and advantages of the LASSO β̃lasso obtained after applying the orthogo-
nalizing transformation U .

• Contrarily to the LASSO β̂lasso obtained when X is orthogonal and ε ∼ N (0, σ2Idn) (very often met in
practice), in general the components of β̃lasso, given in (4), are not independent.

• Expression of the LASSO can be rewritten, up to a transformation, as an expression based on the BLUE.
As an example, one can derive from the multiple testing procedure based on the knockoff-LASSO estimator
[Janson and Su, 2016] a new procedure based on the BLUE. The knockoff-LASSO is the following estimator

β̂ := argmin
β∈Rp

‖Y −Xkoβ‖2 + λ‖β‖1.

Since Xko satisfies ker(Xko) = 0 [Barber and Candès, 2015], up to a transformation, the knockoff-LASSO
is just a soft thresholded BLUE (where the BLUE is (X ′koΓ−1Xko)−1XkoΓ−1Y , with Γ = var(Y )).

1.1 Notations

In this article, we denote J the SLOPE norm J : β ∈ Rp 7→ λ1|β|[1] + · · · + λp|β|[p] where |β[1]| ≥ · · · ≥ |β[p]|
and λ1 ≥ · · · ≥ λp (see e.g Bogdan et al. [2015] for the proof that J is a norm). The OLS and BLUE estimators

of the model (1), denoted β̂ols and β̂blue, are respectively equal to

β̂ols := (X ′X)−1X ′Y and β̂blue := (X ′Γ−1X)−1X ′Γ−1Y. (5)

Whatever t ∈ R, we set (t)+ = max{t, 0} and sign(t) = 1t>0 − 1t<0. Finally, given a subset A ⊂ Rp, conv(A)
is the smallest convex set containing A.

2 Orthogonalization of the design: simple form of the LASSO and
SLOPE

When the design is orthogonal, some algorithms provides the SLOPE estimation [Bogdan et al., 2015] but the
estimator writing is not explicit. To our knowledge, there is still no explicit formula for the SLOPE. In the
following theorem, we provide the explicit expression of the SLOPE when X is orthogonal.

Theorem 1 Let τ be a permutation of {1, . . . , p} ordering the components of the OLS estimator (5) namely

|β̂ols
τ(1)| ≥ · · · ≥ |β̂

ols
τ(p)|. Let (Ŝk)1≤k≤p be a sequence defined by ∀k ∈ {1, . . . , p}, Ŝk :=

∑k
i=1

(
|β̂ols
τ(i)| − λi

)
and

let 1 ≤ k1 ≤ · · · ≤ ks = p be a partition of {1, . . . , p} such that

k1 := max

{
argmax
k∈{1,...,p}

{
Ŝk
k

}}
and ∀i ∈ {2, . . . , s}, k̂i := max

{
argmax
k>k̂i−1

{
Ŝk − Ŝki−1

k − k̂i−1

}}
.

When the design matrix X is orthogonal (i.e X ′X = Idp), whatever i ∈ {1, . . . , p}, the components of β̂slope (2)

satisfy the inequality β̂ols
i β̂slope

i ≥ 0 and(
|β̂slope
τ(1) |, . . . , |β̂

slope
τ(p) |

)
:=

((
Ŝk1
k1

)
+

, . . . ,

(
Ŝk1
k1

)
+︸ ︷︷ ︸

k1 components

, . . . ,

(
Ŝks − Ŝks−1

ks − ks−1

)
+

, . . . ,

(
Ŝks − Ŝks−1

ks − ks−1

)
+︸ ︷︷ ︸

ks − ks−1 components

)
.

Let us notice that when β̂ols has a continuous distribution over Rp then almost surely the Cesàro sequence
(Ŝk/k) reaches its maximum at a unique point, thus k1 := argmax {Ŝk/k} is unique and the same argument
applies for k2, . . . , ks.

The figure 1 gives the relation between the OLS estimator and the SLOPE estimator when X is an orthogonal
design matrix with p = 2 columns, λ1 = 2 and λ2 = 1 .

When X is not orthogonal, the theorem 2 shows that applying the transformation U := (X ′Γ−1X)−1X ′Γ−1

to the model (1) gives a new model in which the LASSO and the SLOPE have simple expressions depending
only on the BLUE.
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Figure 1: This figure illustrates the relation between the OLS estimator and the SLOPE. Let Ŝ1, Ŝ2 be defined
as in the theorem 1. When Ŝ1 ≤ 0 and Ŝ2 ≤ 0 then β̂ols is on the black area and β̂slope = 0. When Ŝ1 ≤ Ŝ2/2

and Ŝ2/2 > 0 then β̂ols is on the red area and |β̂slope
1 | = |β̂slope

2 | > 0. When Ŝ1 > Ŝ2/2 with Ŝ1 > 0 and

Ŝ2− Ŝ1 < 0 then β̂ols is on the grey area, β̂slope 6= 0 and |β̂slope
1 ||β̂slope

2 | = 0. Otherwise β̂ols is on the white area

then |β̂slope
1 | > 0, |β̂slope

2 | > 0 and |β̂slope
1 | 6= |β̂slope

2 |.

Theorem 2 Let us apply the transformation U := (X ′Γ−1X)−1X ′Γ−1 to the model (1). One obtains the new
model Ỹ := β∗ + ε̃ where Ỹ = UY and ε̃ = Uε. Let β̃lasso and β̃slope be the LASSO and SLOPE of this new
model, namely

β̃lasso := argmin
β∈Rp

‖Ỹ − β‖2 + λ‖β‖1 and β̃slope := argmin
β∈Rp

‖Ỹ − β‖2 + J(β).

i) Whatever i ∈ {1, . . . , p}, the ith component of the lasso is β̃lasso
i = sign(β̂blue

i )(|β̂blue
1 | − λ)+.

ii) Let us denote Ŝk :=
∑k
i=1

(
|β̂blue
τ(i) | − λi

)
, then whatever i ∈ {1, . . . , p}, β̃slope

i βblue
i ≥ 0 and

(
|β̃slope
τ(1) |, . . . , |β̃

slope
τ(p) |

)
:=

((
Ŝk1
k1

)
+

, . . . ,

(
Ŝk1
k1

)
+︸ ︷︷ ︸

k1 components

, . . . ,

(
Ŝks − Ŝks−1

ks − ks−1

)
+

, . . . ,

(
Ŝks − Ŝks−1

ks − ks−1

)
+︸ ︷︷ ︸

ks − ks−1 components

)
.

Proof: After applying the U transformation, the design matrix of the new model is Idp (thus orthogonal).
Consequently the LASSO has the following expression (3)

(β̃lasso
1 , . . . , β̃lasso

p ) :=
(

sign(β̂ols
1 )(|β̂ols

1 | − λ)+, . . . , sign(β̂ols
p )(|β̂ols

p | − λ)+

)
.

The OLS estimator of the new model is β̂ols := (Id′pIdp)
−1IdpỸ = Ỹ = UY = β̂blue which provides the explicit

expression of the LASSO. The same argument remains true for the SLOPE. �

When the components of ε are correlated, a traditional transformation to recover the BLUE in model (1) is to

apply the linear transformation Γ−1/2. Because (Γ−1/2X)T (Γ−1/2X) = XTΓ−1X = var(β̂blue)−1, contrarily to
the transformation U , the obtained design matrix X̃ = Γ−1/2X is not orthogonal. Consequently, after applying
the transformation Γ−1/2, neither the LASSO nor the SLOPE estimators have an explicit expression. In order
to relax the irrepresentable condition, Jia et al. [2015] looked at the transformation F = PD−1PT where the
orthogonal matrix P and the diagonal matrix D are given by the singular value decomposition of X. Applying
the transformation F , one obtains a new model in which the design is orthogonal. Because after applying F ,
the OLS estimator β̃ols of the new model is β̃ols = X ′Y , the transformation F does not provide the BLUE
contrarily to the transformation U .
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3 Conclusion

In this article we proposed a transformation U that allows to get simple and explicit writing for the LASSO and
the SLOPE. In addition, our result points out that methods using the LASSO or the SLOPE in small dimension
can be derived as methods which only use the BLUE.

4 Appendix: Proof of the theorem 1

First, let us notice that when X is orthogonal the following equivalence holds

β̂slope := argmin
β∈Rp

‖Y −Xβ‖2 + J(β)⇔ β̂slope := argmin
β∈Rp

‖β̂ols − β‖2 + J(β).

Consequently, to prove the theorem 1, one only needs to provide an explicit expression of the minimizer of the
function φ defined hereafter

∀x ∈ Rp, φ(x) = ‖y − x‖2 + J(x), where y ∈ Rp is a fixed vector.

Let us notice that φ is a coercive and strictly convex function thus whatever y ∈ Rp, φ has a unique minimizer.
As suggested by the assumption 2.1 in the article of Bogdan et al. [2015], one can restrict the study of the
function φ to y1 ≥ y2 ≥ · · · ≥ yp ≥ 0. Actually finding the minimizer in this particular case allows to recover
easily the minimizer of φ when y is an arbitrary vector of Rp as explained in Bogdan et al. [2015]. Let us remind
some basic notions of sub-differentiability. Let ε > 0, let f : Rp → R be a convex function the sub-differential
of f at the point x ∈ Rp denoted ∂f(x) satisfies the following equivalence

s ∈ ∂f(x) if ∀h ∈ B(0, ε), f(x+ h)− f(x) ≥ 〈s, h〉 ⇔ s ∈ ∂f(x) if ∀h ∈ Rp, f(x+ h)− f(x) ≥ 〈s, h〉.

The sub-differentiability allows to characterise the minimizer of φ (see e.g Hiriart-Urruty and Lemaréchal [2013]
page 177). The point x∗ is a minimizer of φ if and only if 0 ∈ ∂φ(x∗).

The purpose of this part is to prove the proposition 1. The theorem 1 is a straightforward consequence of
this proposition.

Proposition 1 Let φ : x ∈ Rp 7→ ‖y−x‖2 +J(x) with y1 ≥ · · · ≥ yp ≥ 0, let (Sk)1≤i≤p be a sequence such that

Sk =
∑k
i=1 yi − λi and let 1 ≤ k1 ≤ · · · ≤ ks = p be a partition of {1, . . . , p} such that

k1 := max

{
argmax
k∈{1,...,p}

{
Sk
k

}}
and ∀i ∈ {2, . . . , s}, ki := max

{
argmax
k>ki−1

{
Sk − Ski−1

k − ki−1

}}
.

Let c1 = Sk1/k1 and for all i ∈ {2, . . . , s}, ci = (Ski − Ski−1
)/(ki − ki−1) and let x∗ ∈ Rp be a vector such that

x∗ = ((c1)+, . . . , (c1)+︸ ︷︷ ︸
k1 components

, (c2)+, . . . , (c2)+︸ ︷︷ ︸
k2−k1 components

, . . . , (cs)+, . . . , (cs)+︸ ︷︷ ︸
ks−ks−1 components

), where ∀t ∈ R, (t)+ = max{t, 0}.

Then the unique minimizer of φ is x∗.

To prove the proposition 1, we are going to provide three lemmas. The lemma 1 gives some results about the
sub-differential of J and φ. The lemma 2 show that x∗ = (0, . . . , 0) is the unique solution of φ once the sequence
(Sk)1≤k≤p is negative.

The lemma 3 shows that that x∗ = (Sp/p, . . . , Sp/p) is the unique solution of φ once the Cesàro sequence
(Sk/k)1≤k≤p reaches its maximum at k = p and Sp > 0.

Hereafter the SLOPE norm J is also denoted Jλ1,...,λp , the set of permutations of {1, . . . , p} is denoted Sp

and given u ∈ Rp, the permutation [ . ] ∈ Sp is such that |u[1]| ≥ · · · ≥ |u[p]|.

Lemma 1 The properties i) and ii) deal with the sub-differential of J and the property iii) deals with the
sub-differential of φ.

i) If x1 = · · · = xp > 0 then conv
(
(λr(1), . . . , λr(p))r∈Sp

)
⊂ ∂J(x).

ii) If x1 = · · · = xp = 0 then conv
(⋃

r∈Sp
[−λr(1), λr(1)]× · · · × [−λr(p), λr(p)]

)
⊂ ∂J(x).

4



iii) Let 0 = k0 ≤ k1 ≤ · · · ≤ ks ≤ ks+1 = p be a partition of {1, . . . , p} such that

xk0+1 = · · · = xk1 > xk1+1 = · · · = xk2 > · · · > xks−1+1 = · · · = xks > xks+1 = · · · = xks+1
= 0.

Let us define the functions φ1, . . . , φs+1 as follows

∀j ∈ {0, . . . , s}, φj+1(xkj+1, . . . , xkj+1
) =

kj+1∑
i=kj+1

(yi − xi)2 + Jλkj+1,...,λkj+1
(xkj+1, . . . , xkj+1

)

Then the sub-differential of φ satisfies ∂φ1(x1, . . . , xk1)× · · ·× ∂φs(xks−1+1, . . . , xks)× ∂φs+1(0) ⊂ ∂φ(x).

Proof: First, let us prove i). Because whatever r ∈ Sp the two following expressions hold

J(x+ h) = λ1|(x+ h)[1]|+ · · ·+ λp|(x+ h)[p]| ≥ λr(1)|x1 + h1|+ · · ·+ λr(p)|xp + hp| and

J(x) = λr(1)|x1|+ · · ·+ λr(p)|xp|,

one deduces that

J(x+ h)− J(x) ≥ λr(1)(|x1 + h1| − |x1|) + · · ·+ λr(p)(|xp + hp| − |xp|) ≥ λr(1)h1 + · · ·+ λr(p)hp.

Consequently, whatever r ∈ Sp we have (λr(1), . . . , λr(p)) ∈ ∂J(x). Furthermore because ∂J(x) is a convex set,
one deduces the result i).

Now, let us prove ii), whatever s1 ∈ [−1, 1], . . . , sp ∈ [−1, 1] whatever r ∈ Sp, the following inequality hold

J(h)− J(0) = λ1|h[1]|+ · · ·+ λp|h[p]| ≥ λr(1)|h1|+ · · ·+ λr(p)|hp| ≥ λr(1)s1h1 + · · ·+ λr(p)sphp.

Thus [−λr(1), λr(1)]× · · · × [−λr(p), λr(p)] ∈ ∂J(0). Because ∂J(0) is a convex set, one deduces the result ii).
Finally, let us show iii). Let h ∈ Rp small enough so that whatever i ∈ {1, . . . , s} the inequality xki−‖h‖∞ >

xki+1 +‖h‖∞ occurs (such a small h insures that the kth1 largest components of x+h are x1+h1, . . . , xk1 +hk1and
so on). As a consequence, the SLOPE norm satisfies the following equality

Jλ1,...,λp
(x+ h) =

s∑
i=0

Jλki+1,...,λki+1
(xki+1 + hki+1, . . . , xki+1

+ hki+1
).

When h is small enough one deduces that whatever u ∈ ∂φ1(x1, . . . , xk1)× · · · × ∂φs(xks−1+1, . . . , xks),

φ(x+ h)− φ(x) =

s∑
i=0

(
φi+1(xki+1 + hki+1, . . . , xki+1

+ hki+1
)− φi+1(xki+1, . . . , xki+1

)
)

≥
s∑
i=0

uki+1hki+1 × . . . , uki+1
hki+1

= 〈u, h〉.

Consequently, u ∈ ∂φ(x) which insures that iii) holds �

Lemma 2 Let us assume that ∀i ∈ {1, . . . , p}, Si ≤ 0 then the unique minimizer of φ : x ∈ Rp 7→ ‖y−x‖2+J(x)
is x∗ = (0, . . . , 0).

Proof: To prove that x∗ = (0, . . . , 0) is a minimizer of φ, it suffices to show that 0 ∈ ∂φ(x∗). Let us gives the
following equivalences

0 ∈ ∂φ(x∗)⇔ 0 ∈ −y + x∗ + ∂J(x∗)⇔ y ∈ ∂J(0).

By lemma 2, the sub-differential of φ at 0 contains the set C given hereafter

C := conv

 ⋃
r∈Sp

[−λr(1), λr(1)]× · · · × [−λr(p), λr(p)]

 ⊂ ∂J(0).

Let us remind that a closed convex set is the intersection of all closed half spaces containing it. Let a1x1 +
· · ·+ apxp ≥ b be an arbitrary closed half space containing C, to prove that y ∈ C, we are going to show that
a1y1+ · · ·+apyp ≥ b. Let us set |a(1)| ≤ · · · ≤ |a(p)| and let us denote ui = |a(i+1)|−|a(i)| with i ∈ {1, . . . , p−1}.
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Because v := (−λpsign(a(1)), . . . ,−λ1sign(a(p))) ∈ C and because whatever r ∈ Sp, (vr(1), . . . , vr(p)) ∈ C, one
deduces that a(1)v1 + · · · + a(p)vp = −λp|a(1)| − · · · − λ1|a(p)| ≥ b. The following implications shows that
a1y1 + · · ·+ apyp ≥ −λp|a(1)| − · · · − λ1|a(p)| ≥ b. We deduce from this last inequality that

a1y1 + · · ·+ apyp ≥ −λp|a(1)| − · · · − λ1|a(p)|,
⇔ a(1)y(1) + λp|a(1)|+ · · ·+ a(p)y(p) + λ1|a(p)| ≥ 0,

⇔ |a(1)|
(
sign(a(1))y(1) + λp

)
+ · · ·+ |a(p)|

(
sign(a(p))y(p) + λ1

)
≥ 0,

⇔ |a(1)|

(
p∑
i=1

λi +

p∑
i=1

sign(a(i))y(i)

)
+

p−1∑
i=1

ui

p−i∑
j=1

λj +

p∑
j=i

sign(a(j))y(j)

 ≥ 0.

The last expression comes from the identity |a(1)|b1 + · · ·+ |a(p)|bp = |a(1)|(b1 + · · ·+ bp) + u1(b2 + · · ·+ bp) +
· · ·+ up−1bp. Finally, the inequality given hereafter insures that a1y1 + · · ·+ apyp ≥ b. In other terms,

|a(1)|

(
p∑
i=1

λi +

p∑
i=1

sign(a(i))y(i)

)
+

p−1∑
i=1

ui

p−i∑
j=1

λj +

p∑
j=i+1

sign(a(j))y(j)

 ≥ −|a(1)|Sp − p−1∑
i=1

uiSi ≥ 0.

Consequently, y ∈ C and so x∗ = (0, . . . , 0) is the unique minimizer of φ. �

Lemma 3 Let us assume that ∀i ∈ {1, . . . , p}, Si/i ≤ Sp/p and Sp > 0 then the unique minimizer of φ : x ∈
Rp 7→ ‖y − x‖2 + J(x) is x∗ = (Sp/p, . . . , Sp/p) .

Proof: To prove that x∗ is a minimizer of φ, it suffices to show that 0 ∈ ∂φ(x∗). Let us gives the following
equivalences

0 ∈ ∂φ(x∗)⇔ 0 ∈ −y + x∗ + ∂J(x∗)⇔ y − x∗ ∈ ∂J(x∗).

By the lemma 1, conv
(
(λr(1), . . . , λr(p))r∈Sp

)
⊂ ∂J(x∗). Hereafter we are going to show

−y + x∗ ∈ conv
(
(λr(1), . . . , λr(p))r∈Sp

)
. Let us remind that a closed convex set is the intersection of all

closed half spaces containing it. Let a1x1 + · · · + apxp ≥ b be an arbitrary closed half space containing
conv

(
(λr(1), . . . , λr(p))r∈Sp

)
to prove that y−x∗ ∈ conv

(
(λr(1), . . . , λr(p))r∈Sp

)
it suffices to prove that a1(y1−

x∗1)+ · · ·+ap(yp−x∗p) ≥ b. Let us set a(1) ≤ · · · ≤ a(p) and let us denote ui = a(i+1)−a(i) with i ∈ {1, . . . , p−1}.
By definition of the half space a1x1 + · · ·+ apxp ≥ b, an appropriate permutation r ∈ Sp insures that a(1)λ1 +
· · ·+a(p)λp ≥ b. The following implications shows that a1(y1−x∗1)+ · · ·+ap(yp−x∗p) ≥ a(1)λ1 + · · ·+a(p)λp ≥ b.

a1(y1 − x∗1) + · · ·+ ap(yp − x∗p) ≥ a(1)λ1 + · · ·+ a(p)λp,

⇔ a(1)

(
y(1) −

Sp
p
− λ1

)
+ · · ·+ a(p)

(
y(p) −

Sp
p
− λp

)
≥ 0,

⇔ a(1)

(
p∑
i=1

y(i) − Sp −
p∑
i=1

λi

)
︸ ︷︷ ︸

=0

+

p−1∑
i=1

ui

 p∑
j=i+1

y(j) − (p− i)Sp
p
−

p∑
j=i+1

λj

 ≥ 0.

The last expression comes from the identity a(1)b1+· · ·+a(p)bp = a(1)(b1+· · ·+bp)+u1(b2+· · ·+bp)+· · ·+up−1bp.
Finally, the inequality given hereafter insures that a1(−y1 + x∗1) + · · ·+ ap(−yp + x∗p) ≥ b.

p−1∑
i=1

ui

 p∑
j=i+1

y(j) − (p− i)Sp
p
−

p∑
j=i+1

λj

 ≥ p−1∑
i=1

ui

(
Sp − Si − (p− i)Sp

p
−
)

=

p−1∑
i=1

ui
i

(
Sp
p
− Si

i

)
≥ 0.

Consequently, −y+x∗ ∈ conv
(
(λr(1), . . . , λr(p))r∈Sp

)
thus x∗ = (Sp/p, . . . , Sp/p) is the unique minimizer of φ. �

Proof of the proposition 1: First, let us show that c1 > c2 > · · · > cs. By construction c1 ≥ c2 ≥ · · · ≥ cs
thus let us shows that whatever i ∈ {1, . . . , s− 1} the inequality ci+1 = ci cannot occur. Indeed, the following
equality always holds

Ski+1 − Ski−1

ki+1 − ki−1
= ci+1

ki+1 − ki
ki+1 − ki−1

+ ci
ki − ki−1
ki+1 − ki−1

(by setting k0 = 0 and Sk0 = 0).
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Consequently, if ci+1 = ci thus one deduces that ki+1 ∈ argmax
k>ki−1

{
Sk−Ski−1

k−ki−1

}
. Because ki+1 > ki this contradicts

that ki is the largest element of argmax
k>ki−1

{
Sk−Ski−1

k−ki−1

}
.

First, let us assume that c1 > · · · > cs > 0 then the lemma 1 insures that

∂φ(x∗) = ∂φ1( c1, . . . , c1︸ ︷︷ ︸
k1 components

)× · · · × ∂φs( cs, . . . , cs︸ ︷︷ ︸
ks−ks−1 components

).

The lemma 3 insures that whatever i ∈ {1, . . . , s}, we have 0 ∈ ∂φi(ci, . . . , ci). Thus 0 ∈ ∂φ(x∗) which insures
that x∗ is a minimizer of φ.

Now, if 0 ≥ c1 > · · · > cs then the sequence (Si)1≤i≤p is negative thus the lemma 2 insures that x∗ =
(0, . . . , 0) is a minimizer of φ.

Finally, if c1 > · · · > ci0 > 0 ≥ ci0+1 > · · · > cs with i0 ∈ {1, . . . , s− 1} then the lemma 1 insures that

∂φ(x∗) = ∂φ1( c1, . . . , c1︸ ︷︷ ︸
k1 components

)× · · · × ∂φi0( ci0 , . . . , ci0︸ ︷︷ ︸
ki0−ki0−1 components

)∂ × φi0+1(0), with φi0+1 as in lemma 1.

The lemma 3 insures that whatever i ∈ {1, . . . , i0}, we have 0 ∈ ∂φi(ci, . . . , ci). Furthermore, because ∀i >
ki0 , (Si − Ski0 ) ≤ 0 the lemma 2 insures that 0 ∈ ∂φi0+1(0). Thus 0 ∈ ∂φ(x∗) which insures that x∗ is a
minimizer of φ. �
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