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ABSTRACT
We study the LASSO and SLOPE estimators when the design X satisfies ker(X) =
0. Similarly to the LASSO, the SLOPE estimator has an explicit expression when
the design matrix X is orthogonal which is reported in the main theorem of this
article. We state that, even if the design is not orthogonal, even if residuals are
correlated, up to a transformation, the LASSO and SLOPE estimators have a simple
expression based on the Best Linear Unbiased Estimator (BLUE). Comparisons with
the LASSO estimator show the benefits of the soft-thresholded BLUE.
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1. Introduction

Let us consider the following low-dimensional linear model

Y = Xβ∗ + ε, (1)

where X is a n × p fixed design matrix with ker(X) = 0 (i.e. n ≥ p), β∗ ∈ Rp is an
unknown parameter and ε is a centered random vector with an invertible and known
covariance matrix Γ.

The Least Absolute Shrinkage and Selection Operator (LASSO) estimator and the
Sorted L-One Penalized Estimation (SLOPE) estimator respectively introduced by
Tibshirani [1] and Bogdan et al. [2] are defined by

β̂lasso := argmin
β∈Rp

{
1

2
‖Y −Xβ‖2 + λ‖β‖1

}
and, (2)

β̂slope := argmin
β∈Rp

{
1

2
‖Y −Xβ‖2 + λ1|β[1]|+ · · ·+ λp|β[p]|

}
. (3)
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In the second expression, the tuning parameters (λi)1≤i≤p satisfy λ1 ≥ λ2 ≥ · · · ≥ λp ≥
0. The brackets [ . ] denote a permutation of {1, . . . , p} such that |β[1]| ≥ · · · ≥ |β[p]|.

It is well known that when the design X is orthogonal (i.e X ′X = Idp), the LASSO
estimator leads to the following soft-thresholded Ordinary Least Squares (OLS) esti-
mator [1]

β̂lasso =
(

sign(β̂ols
1 )(|β̂ols

1 | − λ)+, . . . , sign(β̂ols
p )(|β̂ols

p | − λ)+

)
. (4)

Popularized by the pioneer work of Tibshirani, the orthogonal design became a case
study [3–8]. Furthermore some properties such as the irrepresentable condition [9–12]
hold when X is orthogonal. The orthogonal design is also a case study for the SLOPE
estimator [2,13,14].

Whatever the considered estimator, the orthogonal design setting appears to be an
ideal case. When we tried to generalize its properties to the non-orthogonal setting,
we discovered a relevant orthogonalizing transformation Us := D(X ′Γ−1X)−1X ′Γ−1,
where s := (s1, . . . , sp), s1 > 0, . . . , sp > 0 and D := diag(1/

√
s1, . . . , 1/

√
sp). Actually,

if we consider the new model Ỹ = X̃β∗ + ε̃, where Ỹ = UsY , X̃ = UsX and ε̃ = Usε,
the LASSO estimator β̃s after applying the transformation Us can simply be written
as a function of the Best Linear Unbiased Estimator (BLUE) in the following way:

β̃s := argmin
β∈Rp

{
1

2

∥∥∥Ỹ − X̃β∥∥∥2
+ λ‖β‖1

}
⇔ β̃s =

(
sign(β̂blue

i )(|β̂blue
i | − λsi)+

)
1≤i≤p

.

(5)
Similarly to the LASSO estimator, we also obtained a simple expression for the SLOPE
estimator based on the BLUE. We can notice that, in low-dimension, the Us transfor-
mation giving (5) does not require X to be orthogonal or the components of ε to be
independent; but ker(X) = 0 is necessary.

1.1. Notations

In this article, we denote J the SLOPE norm J : β ∈ Rp 7→ λ1|β[1]| + · · · + λp|β[p]|
where |β[1]| ≥ · · · ≥ |β[p]| and λ1 ≥ · · · ≥ λp (see for example [2] for the proof that J

is a norm). The OLS and BLUE estimators of the model (1), denoted β̂ols and β̂blue,
are respectively equal to

β̂ols := (X ′X)−1X ′Y and β̂blue := (X ′Γ−1X)−1X ′Γ−1Y. (6)

Whatever t ∈ R, we set (t)+ = max{t, 0} and sign(t) = 1t>0 − 1t<0. Given a subset
A ⊂ Rp, conv(A) is the smallest convex set containing A. Finally, the notation Idp
represents the p× p identity matrix.

2. Orthogonalization of the design: simple form of the LASSO and
SLOPE

When the design is orthogonal, some algorithms provide the SLOPE estimation [2] but
the estimator writing is not explicit. To our knowledge, there does not exist currently
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any explicit formula for the SLOPE. In the following theorem, we provide the explicit
expression of the SLOPE when X is orthogonal.

Theorem 2.1. Let τ be a permutation of {1, . . . , p} ordering the components of the

OLS estimator (6) namely |β̂ols
τ(1)| ≥ · · · ≥ |β̂

ols
τ(p)|. Let (Ŝk)1≤k≤p be a sequence defined

by ∀k ∈ {1, . . . , p}, Ŝk :=
∑k

i=1

(
|β̂ols
τ(i)| − λi

)
and let 1 ≤ k1 ≤ · · · ≤ ks = p be a

partition of {1, . . . , p} such that

k1 = max

{
argmax
k∈{1,...,p}

{
Ŝk
k

}}
and ∀i ∈ {2, . . . , s}, ki = max

{
argmax
k>k̂i−1

{
Ŝk − Ŝki−1

k − k̂i−1

}}
.

When the design matrix X is orthogonal, whatever i ∈ {1, . . . , p}, the components of

β̂slope (2) satisfy the inequality β̂ols
i β̂slope

i ≥ 0 and
(
|β̂slope
τ(1) |, . . . , |β̂

slope
τ(p) |

)
is given by

((
Ŝk1
k1

)
+

, . . . ,

(
Ŝk1
k1

)
+︸ ︷︷ ︸

k1 components

, . . . ,

(
Ŝks − Ŝks−1

ks − ks−1

)
+

, . . . ,

(
Ŝks − Ŝks−1

ks − ks−1

)
+︸ ︷︷ ︸

ks − ks−1 components

)
.

Let us notice that when β̂ols has a continuous distribution over Rp, the Cesàro
sequence (Ŝk/k) almost surely reaches its maximum at a unique point. In other terms,

k1 := argmax {Ŝk/k} is unique and the same argument applies for k2, . . . , ks. When
λ1 = · · · = λp = λ, the Cesàro sequence is non-increasing and consequently the
following equality holds

∀i ∈ {1, . . . , p}, β̂slope
i = sign(β̂ols

i )(|β̂ols
i | − λ)+ = β̂lasso

i .

As a consequence, when λ1 = · · · = λp = λ in the orthogonal setting, the formula of
the SLOPE given in the theorem 2.1 coincides with the one of the LASSO given in
(4).
Remark: When X is orthogonal, ε ∼ N (0, σ2Idn) and λi = σz(1 − iq/(2p)), i ∈
{1, . . . , p} (where q ∈ (0, 1) and z(η) is the η−quantile of the N (0, 1) distribution),

the procedure rejecting the null hypothesis β∗i = 0 when β̂slope
i 6= 0 controls the FDR at

level q [2]. The explicit expression of the SLOPE shows that this procedure is close to
the original Benjamini-Hochberg procedure [15] (actually, these procedures are equal

when the sequence (Ŝk/k) is decreasing) and this provides an intuitive explanation for
the FDR control.

An illustration of the relationship between the OLS estimator and the SLOPE
estimator when X is orthogonal is given by the figure 1 in the special case where
p = 2, λ1 = 2 and λ2 = 1.
This figure also illustrates the properties of the SLOPE: this estimator is sparse (i.e.
some components are exactly equal to 0), and some components are equal in absolute
value.

Remarks: Let us point out some relevant transformations allowing us to ob-
tain simple expressions for the LASSO estimator and the SLOPE:

• Transformation which brings back to the orthogonal setting: When
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Figure 1. This figure illustrates the relationship between the OLS estimator and the SLOPE, the x-axis and

y-axis represent respectively the first and second component of the OLS estimator. Let Ŝ1, Ŝ2 be defined as in

the theorem 2.1. When Ŝ1 ≤ 0 and Ŝ2 ≤ 0 then β̂ols is on the black area and β̂slope = 0. When Ŝ1 ≤ Ŝ2/2

and Ŝ2/2 > 0 then β̂ols is on the red area and |β̂slope
1 | = |β̂slope

2 | > 0. When Ŝ1 > Ŝ2/2 with Ŝ1 > 0 and

Ŝ2 − Ŝ1 < 0 then β̂ols is on the grey area, β̂slope 6= 0 and |β̂slope
1 ||β̂slope

2 | = 0. Otherwise β̂ols is on the white

area then |β̂slope
1 | > 0, |β̂slope

2 | > 0 and |β̂slope
1 | 6= |β̂slope

2 |.

X is not orthogonal, applying the transformation U1 := (X ′Γ−1X)−1X ′Γ−1

on each side of the model (1) brings back the orthogonal setting in which
Ỹ := β∗ + ε̃, where Ỹ = U1Y and ε̃ = U1ε. In this new model, the LASSO
estimator has the expression described in (5) with s1 = · · · = sp = 1 and the
SLOPE has the expression described in the theorem 2.1 except that the OLS
estimator is substituted by the more accurate BLUE estimator.

• Transformation which brings back the orthogonal columns setting:
When columns of X are not orthogonal (i.e. when X ′X is not diagonal), ap-
plying the transformation Us := D(X ′Γ−1X)−1X ′Γ−1, where s := (s1, . . . , sp),
s1 > 0, . . . , sp > 0 and D := diag(1/

√
s1, . . . , 1/

√
sp), on each side of the model

(1) returns the orthogonal columns’ setting. After applying this transformation,
LASSO’s expression is still explicit and its expression is described by formula (5).

To avoid confusion, we call soft-thresholded BLUE the LASSO-type estimator whose
formula is given in (5) and LASSO the estimator solution of (2). The soft-thresholded
BLUE is easier to compute than the LASSO estimator (because the LASSO estimator
computation needs to solve numerically the optimization problem described in (2))
and the soft-thresholded BLUE estimator is also easier to interpret than the LASSO
estimator (contrarily to the LASSO estimator, the relationship between BLUE and
the soft-thresholded BLUE is explicit). Thus it is recommended that in low-dimension
the soft-thresholded BLUE should be used instead of the LASSO estimator, except
if there are particular reasons for using the latter. Finally, from procedures based on
the LASSO estimator defined in (2) one can derive new procedures based on the soft-
thresholded BLUE given in (5) as illustrated in the following remark.
Remark: Janson and Su [16] have developed a multiple testing procedure based on
the knockoff-LASSO estimator defined as follows

β̂kn−lasso := argmin
β∈Rp

1

2
‖Y −Xkoβ‖2 + λ‖β‖1.

Since the matrix Xko (defined in Barber and Candès [17]) satisfies ker(Xko) = 0, up
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to a transformation, the knockoff-LASSO is just a soft-thresholded BLUE (where the
BLUE is (X ′koΓ−1Xko)−1XkoΓ−1Y , with Γ = var(Y )). Therefore, from the procedure
described in [16] one can derive a new procedure based on the soft-thresholded BLUE.

3. Comparison between the LASSO estimator and the soft-thresholded
BLUE

When we want to recover the non-null components of β∗, the soft-thresholded BLUE
outperforms the LASSO estimator, solution of (2), as evidenced hereafter.

3.1. Support recovery

Let ε be a Gaussian vector of R2 having a N (0, Id2) distribution, let β∗ = (t, 0) ∈ R2

with t 6= 0, let X be the design matrix described hereafter and let Y = Xβ∗ + ε.

X =

(
1/2 1/2 1/2 1/2 0
1 1 1 1 1

)′
and thus β̂blue ∼ N

((
t
0

)
,

(
5 −2
−2 1

))
.

When u ∈ Rp, let us set supp(u) := {i ∈ {1, . . . , p} | ui 6= 0}. Now let us denote

respectively β̂lasso(λ) and β̃s(λ) the LASSO estimator and the soft-thresholded BLUE
to stress that these estimators depend on λ. Whatever λ > 0, and even if |t| is infinitely
large, the following inequality [18,19] holds

P
(

supp(β̂lasso(λ)) = supp(β∗)
)
≤ 1/2.

This inequality is illustrated in Figure 2 when λ ∈ {1/2, 1}.
On the other hand, if we take s1 =

√
5, s2 = 1 and λ as the 1 − α quantile of a

N (0, 1) distribution in (5), we have P(supp(β̃s(λ)) = supp(β∗)) ≈ 1 − α when |t| is
large. Consequently, by using the soft-thresholded BLUE, the probability to recover
supp(β∗) can be arbitrarily close to 1 when holds: |t| is large and α is small.

3.2. Estimation of β∗

When the covariance matrix Γ is not a scalar matrix then, usually, the LASSO esti-
mator is computed after whitening the noise as follows:

β̂lasso,w(λ) := argmin
β∈Rp

{
1

2

∥∥∥Γ−1/2Y − Γ−1/2Xβ
∥∥∥2

+ λ‖β‖1
}
. (7)

When λ = 0 the above estimator coincides with the BLUE and thus has a smaller
L2 risk than the LASSO estimator as computed in (2) which is equal to the OLS
estimator. The estimator given in (8) also coincides with the BLUE when λ = 0. Let
s := (s1, . . . , sp) where s1, . . . , sp are standard errors of the BLUE (thus s2

1, . . . , s
2
p are

the diagonal components of (X ′Γ−1X)−1). The soft-thresholded BLUE is defined as
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Figure 2. These figures provide the relationship between β̂ols and the set of non-null components of the

LASSO estimator supp(β̂lasso(λ)) (as explained in [20]) when λ = 0.5 (above) and λ = 1 (below). The x-

axis and y-axis represent respectively the first and second component of the OLS estimator. One may notice
that the estimator supp(β̂lasso(λ)) recovers the true set {1} when β̂ols is in the red area. Because β̂ols is

in the red area, this implies that βols
1 βols

2 ≤ 0, and because P(β̂ols
1 β̂ols

2 ≤ 0) ≤ 1/2, one may deduce that

P(supp(β̂lasso(λ)) = {1}) ≤ 1/2.

follows

β̃s(λ) := argmin
β∈Rp

{
1

2
‖UsY − UsXβ‖2 + λ‖β‖1

}
⇔ β̃s(λ) =

(
sign(β̂blue

i )(|β̂blue
i | − λsi)+

)
1≤i≤p

. (8)

Hereafter we compare estimators described in (7) and (8) with respect to the L2 risk.

Let Y = Xβ∗ + ε where X = Idp, β
∗ ∈ Rp and ε is a Gaussian vector in Rp

having a N (0,Γ) distribution. The performance of the LASSO as well as the
soft-thresholded BLUE depend on the design X and on Γ. By taking X = Idp, we
only focus on the whitening preliminary step for the LASSO. In Figure 3, we compare
the following functions

λ ≥ 0 7→ E(‖β̂lasso,w(λ)− β∗‖2) and λ ≥ 0 7→ E(‖β̃s(λ)− β∗‖2).

in the particular settings described hereafter:
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• Equicorrelated case: Let Γ be a 10 × 10 matrix whose diagonal and non-
diagonal coefficients are respectively equal to 1 and c where c ∈ {0.3, 0.9} and
let β∗ = (1, . . . , 1) ∈ R10 so that ‖β∗‖2 = E(‖Y − β∗‖2).
• Correlation exponentially decreasing: Let Γ be a 10 × 10 matrix where

Γij = c|i−j| for 1 ≤ i, j ≤ 10 and c ∈ {0.7, 0.9} and let β∗ = (1, . . . , 1) ∈ R10.

Figure 3 illustrates that, when the tuning parameter is appropriately selected for both
β̂lasso,w and β̃s, the L2 risk of the soft-thresholded BLUE is approximately equal or
smaller than the L2 risk of the LASSO estimator.
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Figure 3. The x-axis and y-axis of these curves represent respectively the tuning paramater λ ≥ 0 and

the L2 risk for both LASSO and soft-thresholded BLUE estimators. To obtain these curves we simulated

10000 the random vector Y and we computed the soft thresholded BLUE and LASSO estimator for λ ∈
{0, 0.02, 0.04, . . . , 3}. Computation of the LASSO estimator have been done with glmnet package [21]. In every

cases, when λ = 0 these two functions are equal to E(‖Y −β∗‖2) and when λ is very large these two functions are

approximately equal to ‖β∗‖22. One can notice that the function λ ≥ 0 7→ E(‖β̃s(λ) − β∗‖2) does not change
in these four settings since, in each case, components of the BLUE have a N (1, 1) marginal distribution.

The minimum is 7.01 and is reached at λ = 0.74. Depending on the setting, the minimum of the function

λ ≥ 0 7→ E(‖β̂lasso,w(λ) − β∗‖2) is 8.30, 6.71, 7.76 and 7.25 is reached at λ = 0.24, λ = 0.10, λ = 0.24
and λ = 0.10. Overall, after choosing properly the tuning parameter, one may notice that the L2 risk is

approximately equal or slightly smaller for the soft-thresholded BLUE than for the LASSO estimator.

4. Conclusion

Up to a transformation, the LASSO and the SLOPE have simple and explicit writing.
In addition, our results point out that methods using the LASSO or the SLOPE in low-
dimension can be derived as methods which only use the BLUE. Then, comparisons
with the LASSO estimator showed the benefits of the soft-thresolded BLUE.
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Appendix A. Proof of the theorem 2.1

Sketch of proof

Theorem 2.1 is a straightforward consequence of proposition A.1. Our goal is thus
to prove this proposition, which provides an explicit expression for the minimizer of
x ∈ Rp 7→ 1

2‖y − x‖
2 + J(x) (where y ∈ Rp is a fixed vector such that y1 ≥ y2 ≥ · · · ≥

yp ≥ 0).
Looking at the output of the algorithm described in [2] allowed us to conjecture the

following two minor results:

1) The null vector is the unique minimizer of x ∈ Rp 7→ 1
2‖y − x‖

2 + J(x) when
(Sk)1≤k≤p is negative.

2) The vector (Sp/p, . . . , Sp/p) is the unique minimizer of x ∈ Rp 7→ 1
2‖y−x‖

2+J(x)
when the Cesàro sequence (Sk/k)1≤k≤p reaches its maximum at k = p and when
Sp > 0.

Statements 1) and 2) are proved respectively in lemma A.3 and in lemma A.4. These
two lemmas are the keystones of the proof of proposition A.1.

In these lemmas we need to prove that an element u belongs to a closed convex
set C. To prove this belonging, we use the fact that C is the intersection of all half-
spaces that contain it (see [22] page 49). Consequently, if a1x1 + · · ·+ apxp ≥ b is an
arbitrary half-space containing C then, to show that u ∈ C, it is enough to prove that
a1u1 + · · ·+ apup ≥ b.

Let v ∈ Rp, let [ . ] be a permutation so that |v[1]| ≥ · · · ≥ |v[p]|, and let r be an
arbitrary permutation of {1, . . . , p}. One of the key inequalities in lemma A.2 is the
following one

λ1|v[1]|+ · · ·+ λp|v[p]| ≥ λr(1)|v1|+ · · ·+ λr(p)|vp|, where λ1 ≥ · · · ≥ λp > 0.
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Proof of the proposition A.1

First, let us notice that when X is orthogonal the following equivalence holds

β̂slope := argmin
β∈Rp

1

2
‖Y −Xβ‖2 + J(β)⇔ β̂slope := argmin

β∈Rp

1

2
‖β̂ols − β‖2 + J(β).

Consequently, to prove theorem 2.1, one only needs to provide an explicit expression
of the minimizer of the function φ defined hereafter

∀x ∈ Rp, φ(x) =
1

2
‖y − x‖2 + J(x), where y ∈ Rp is a fixed vector.

Let us notice that φ is a coercive and strictly convex function, thus whatever y ∈ Rp,
φ has a unique minimizer. As suggested by assumption 2.1 in the article of [2], one
can restrict the study of the function φ to y1 ≥ y2 ≥ · · · ≥ yp ≥ 0. Actually finding
the minimizer in this particular case makes it possible to recover easily the minimizer
of φ when y is an arbitrary vector of Rp as explained in [2]. Let us remind some basic
notions of sub-differentiability. Let ε > 0, let f : Rp → R be a convex function, the
sub-differential of f at the point x ∈ Rp denoted ∂f(x) is the convex set described
hereafter.

s ∈ ∂f(x) if ∀h ∈ B(0, ε), f(x+ h)− f(x) ≥ 〈s, h〉
⇔ s ∈ ∂f(x) if ∀h ∈ Rp, f(x+ h)− f(x) ≥ 〈s, h〉.

The sub-differentiability makes it possible to characterise the minimizer of φ (see e.g
[23] page 177). The point x∗ is a minimizer of φ if and only if 0 ∈ ∂φ(x∗).

Proposition A.1. Let φ : x ∈ Rp 7→ 1
2‖y − x‖

2 + J(x) with y1 ≥ · · · ≥ yp ≥ 0, let

(Sk)1≤i≤p be a sequence such that Sk =
∑k

i=1 yi − λi and let 1 ≤ k1 ≤ · · · ≤ ks = p be
a partition of {1, . . . , p} such that

k1 = max

{
argmax
k∈{1,...,p}

{
Sk
k

}}
and ∀i ∈ {2, . . . , s}, ki = max

{
argmax
k>ki−1

{
Sk − Ski−1

k − ki−1

}}
.

Let c1 = Sk1/k1 and for all i ∈ {2, . . . , s}, ci = (Ski−Ski−1
)/(ki−ki−1) and let x∗ ∈ Rp

be a vector such that

x∗ = ((c1)+, . . . , (c1)+︸ ︷︷ ︸
k1 components

, (c2)+, . . . , (c2)+︸ ︷︷ ︸
k2−k1 components

, . . . , (cs)+, . . . , (cs)+︸ ︷︷ ︸
ks−ks−1 components

).

Then the unique minimizer of φ is x∗.

Hereafter the SLOPE norm J is also denoted Jλ1,...,λp
, the set of permutations of

{1, . . . , p} is denoted Sp and given u ∈ Rp, the permutation [ . ] ∈ Sp is such that
|u[1]| ≥ · · · ≥ |u[p]|.

Lemma A.2. Properties i) and ii) deal with the sub-differential of J and property iii)
deals with the sub-differential of φ.

i) If x1 = · · · = xp > 0, then conv
(
(λr(1), . . . , λr(p))r∈Sp

)
⊂ ∂J(x).
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ii) If x = 0, then conv
(⋃

r∈Sp
[−λr(1), λr(1)]× · · · × [−λr(p), λr(p)]

)
⊂ ∂J(x).

iii) Let 0 = k0 ≤ k1 ≤ · · · ≤ ks ≤ ks+1 = p be a partition of {1, . . . , p} such that

xk0+1 = · · · = xk1 > xk1+1 = · · · = xk2 > · · · > xks−1+1 = · · · = xks
> xks+1 = · · · = xks+1

= 0.

Let j ∈ {0, . . . , s} and let us define functions φ1, . . . , φs+1 as follows

φj+1(xkj+1, . . . , xkj+1
) =

1

2

kj+1∑
i=kj+1

(yi − xi)2 + Jλkj+1,...,λkj+1
(xkj+1, . . . , xkj+1

)

Then the sub-differential of φ satisfies

∂φ1(x1, . . . , xk1)× · · · × ∂φs(xks−1+1, . . . , xks)× ∂φs+1(0) ⊂ ∂φ(x).

Proof: First, let us prove i). Because whatever r ∈ Sp, the two following expressions
hold

J(x+ h) = λ1|(x+ h)[1]|+ · · ·+ λp|(x+ h)[p]|,
≥ λr(1)|x1 + h1|+ · · ·+ λr(p)|xp + hp| and

J(x) = λr(1)|x1|+ · · ·+ λr(p)|xp|,

one may deduce that

J(x+h)−J(x) ≥ λr(1)(|x1+h1|−|x1|)+· · ·+λr(p)(|xp+hp|−|xp|) ≥ λr(1)h1+· · ·+λr(p)hp.

Consequently, whatever r ∈ Sp we have (λr(1), . . . , λr(p)) ∈ ∂J(x). Furthermore, be-
cause ∂J(x) is a convex set, one may deduce result i).

Now, let us prove ii), whatever s1 ∈ [−1, 1], . . . , sp ∈ [−1, 1] whatever r ∈ Sp, the
following inequality holds

J(h)− J(0) = λ1|h[1]|+ · · ·+ λp|h[p]| ≥ λr(1)|h1|+ · · ·+ λr(p)|hp| ≥
λr(1)s1h1 + · · ·+ λr(p)sphp.

Thus [−λr(1), λr(1)]× · · · × [−λr(p), λr(p)] ∈ ∂J(0). Because ∂J(0) is a convex set, one
may deduce result ii).

Finally, let us show iii). Let h ∈ Rp be small enough so that whatever i ∈ {1, . . . , s},
the inequality xki − ‖h‖∞ > xki+1

+ ‖h‖∞ occurs (such a small h ensures that the kth
1

largest components of x + h are x1 + h1, . . . , xk1 + hk1and so on). As a consequence,
the SLOPE norm satisfies the following equality

Jλ1,...,λp
(x+ h) =

s∑
i=0

Jλki+1,...,λki+1
(xki+1 + hki+1, . . . , xki+1

+ hki+1
).

When h is small enough, one may deduce that whatever u ∈ ∂φ1(x1, . . . , xk1)× · · · ×
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∂φs(xks−1+1, . . . , xks) then u ∈ ∂φ(x). Indeed φ(x+ h)− φ(x) is equal to

s∑
i=0

(
φi+1(xki+1 + hki+1, . . . , xki+1

+ hki+1
)− φi+1(xki+1, . . . , xki+1

)
)

≥
s∑
i=0

uki+1hki+1 × . . . , uki+1
hki+1

= 〈u, h〉.

Consequently, u ∈ ∂φ(x), which ensures that iii) holds. �

Lemma A.3. Let us assume that ∀i ∈ {1, . . . , p}, Si ≤ 0, then the unique minimizer
of φ : x ∈ Rp 7→ 1

2‖y − x‖
2 + J(x) is x∗ = (0, . . . , 0).

Proof: To prove that x∗ = (0, . . . , 0) is a minimizer of φ, it suffices to show that
0 ∈ ∂φ(x∗). Let us give the following equivalences

0 ∈ ∂φ(x∗)⇔ 0 ∈ −y + x∗ + ∂J(x∗)⇔ y ∈ ∂J(0).

By lemma 2, the sub-differential of φ at 0 contains the set C given hereafter

C := conv

 ⋃
r∈Sp

[−λr(1), λr(1)]× · · · × [−λr(p), λr(p)]

 ⊂ ∂J(0).

Let us remind that a closed convex set is the intersection of all closed half-spaces
containing it. Let a1x1 + · · · + apxp ≥ b be an arbitrary closed half-space containing
C. To prove that y ∈ C, we are going to show that a1y1 + · · ·+ apyp ≥ b. Let (.) be a
permutation of {1, . . . , p} such that |a(1)| ≤ · · · ≤ |a(p)| and let us denote ui = |a(i+1)|−
|a(i)| with i ∈ {1, . . . , p − 1}. Because v := (−λpsign(a(1)), . . . ,−λ1sign(a(p))) ∈ C
and because whatever r ∈ Sp, (vr(1), . . . , vr(p)) ∈ C, one may deduce that a(1)v1 +
· · · + a(p)vp = −λp|a(1)| − · · · − λ1|a(p)| ≥ b. The following implications show that
a1y1 + · · ·+ apyp ≥ −λp|a(1)| − · · · − λ1|a(p)| ≥ b. We deduce from this last inequality
that

a1y1 + · · ·+ apyp ≥ −λp|a(1)| − · · · − λ1|a(p)|,
⇔ a(1)y(1) + λp|a(1)|+ · · ·+ a(p)y(p) + λ1|a(p)| ≥ 0,

⇔ |a(1)|
(
sign(a(1))y(1) + λp

)
+ · · ·+ |a(p)|

(
sign(a(p))y(p) + λ1

)
≥ 0,

⇔ |a(1)|

(
p∑
i=1

λi +

p∑
i=1

sign(a(i))y(i)

)
+

p−1∑
i=1

ui

p−i∑
j=1

λj +

p∑
j=i

sign(a(j))y(j)

 ≥ 0.

The last expression comes from the identity |a(1)|b1 + · · ·+ |a(p)|bp = |a(1)|(b1 + · · ·+
bp)+u1(b2 + · · ·+bp)+ · · ·+up−1bp. Finally, because y1 ≥ · · · ≥ yp ≥ 0 one may deduce
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the inequality given hereafter which ensures that a1y1 + · · ·+apyp ≥ b. In other terms,

|a(1)|

(
p∑
i=1

λi +

p∑
i=1

sign(a(i))y(i)

)
+

p−1∑
i=1

ui

p−i∑
j=1

λj +

p∑
j=i+1

sign(a(j))y(j)


≥ |a(1)|

(
p∑
i=1

λi −
p∑
i=1

yi

)
+

p−1∑
i=1

ui

p−i∑
j=1

λj −
p−i∑
j=1

yj


≥ −|a(1)|Sp −

p−1∑
i=1

uiSi ≥ 0.

Consequently, y ∈ C and so x∗ = (0, . . . , 0) is the unique minimizer of φ. �

Lemma A.4. Let us assume that ∀i ∈ {1, . . . , p}, Si/i ≤ Sp/p and Sp > 0, then the
unique minimizer of φ : x ∈ Rp 7→ 1

2‖y − x‖
2 + J(x) is x∗ = (Sp/p, . . . , Sp/p) .

Proof: To prove that x∗ is a minimizer of φ, it suffices to show that 0 ∈ ∂φ(x∗).
Let us gives the following equivalences

0 ∈ ∂φ(x∗)⇔ 0 ∈ −y + x∗ + ∂J(x∗)⇔ y − x∗ ∈ ∂J(x∗).

By the lemma A.2, conv
(
(λr(1), . . . , λr(p))r∈Sp

)
⊂ ∂J(x∗). Hereafter we are going to

show
−y + x∗ ∈ conv

(
(λr(1), . . . , λr(p))r∈Sp

)
. Let us remind that a closed convex set is

the intersection of all closed half-spaces containing it. Let a1x1 + · · · + apxp ≥ b be
an arbitrary closed half-space containing conv

(
(λr(1), . . . , λr(p))r∈Sp

)
. To prove that

y − x∗ ∈ conv
(
(λr(1), . . . , λr(p))r∈Sp

)
, it suffices to prove that a1(y1 − x∗1) + · · · +

ap(yp − x∗p) ≥ b. Let (.) be a permutation of {1, . . . , p} such that a(1) ≤ · · · ≤ a(p)

and let us denote ui = a(i+1) − a(i) with i ∈ {1, . . . , p − 1}. By definition of the
half-space a1x1 + · · · + apxp ≥ b, an appropriate permutation r ∈ Sp ensures that
a(1)λ1 + · · · + a(p)λp ≥ b. The following implications show that a1(y1 − x∗1) + · · · +
ap(yp − x∗p) ≥ a(1)λ1 + · · ·+ a(p)λp ≥ b.

a1(y1 − x∗1) + · · ·+ ap(yp − x∗p) ≥ a(1)λ1 + · · ·+ a(p)λp,

⇔ a(1)

(
y(1) −

Sp
p
− λ1

)
+ · · ·+ a(p)

(
y(p) −

Sp
p
− λp

)
≥ 0,

⇔ a(1)

(
p∑
i=1

y(i) − Sp −
p∑
i=1

λi

)
︸ ︷︷ ︸

=0

+

p−1∑
i=1

ui

 p∑
j=i+1

y(j) − (p− i)Sp
p
−

p∑
j=i+1

λj

 ≥ 0.

The last expression comes from the identity a(1)b1 + · · · + a(p)bp = a(1)(b1 + · · · +
bp) + u1(b2 + · · ·+ bp) + · · ·+ up−1bp. Finally, because y1 ≥ · · · ≥ yp ≥ 0 and because
whatever i ∈ {1, . . . , p}, Si/i ≤ Sp/p one may deduce the inequalities given hereafter
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which ensures that a1(−y1 + x∗1) + · · ·+ ap(−yp + x∗p) ≥ b.

p−1∑
i=1

ui

 p∑
j=i+1

y(j) − (p− i)Sp
p
−

p∑
j=i+1

λj

 ≥
p−1∑
i=1

ui

 p∑
j=i+1

(yj − λj)− (p− i)Sp
p

 ,

≥
p−1∑
i=1

ui

(
Sp − Si − (p− i)Sp

p

)
,

≥
p−1∑
i=1

iui

(
Sp
p
− Si

i

)
≥ 0.

Consequently, −y + x∗ ∈ conv
(
(λr(1), . . . , λr(p))r∈Sp

)
thus x∗ = (Sp/p, . . . , Sp/p) is

the unique minimizer of φ. �

Proof of the proposition A.1: First, let us show that c1 > c2 > · · · > cs.
By construction c1 ≥ c2 ≥ · · · ≥ cs, thus let us show that whatever i ∈ {1, . . . , s− 1},
the inequality ci+1 = ci cannot occur. Indeed, the following equality always holds

Ski+1
− Ski−1

ki+1 − ki−1
= ci+1

ki+1 − ki
ki+1 − ki−1

+ ci
ki − ki−1

ki+1 − ki−1
(by setting k0 = 0 and Sk0 = 0).

Consequently, if ci+1 = ci one may deduce that ki+1 ∈ argmax
k>ki−1

{
Sk−Ski−1

k−ki−1

}
. Because

ki+1 > ki, this contradicts ki being the largest element of argmax
k>ki−1

{
Sk−Ski−1

k−ki−1

}
.

First, let us assume that c1 > · · · > cs > 0, then the lemma A.2 ensures that

∂φ(x∗) = ∂φ1( c1, . . . , c1︸ ︷︷ ︸
k1 components

)× · · · × ∂φs( cs, . . . , cs︸ ︷︷ ︸
ks−ks−1 components

).

Lemma A.4 ensures that whatever i ∈ {1, . . . , s}, we have 0 ∈ ∂φi(ci, . . . , ci). Thus
0 ∈ ∂φ(x∗), which ensures that x∗ is a minimizer of φ.

Now, if 0 ≥ c1 > · · · > cs then the sequence (Si)1≤i≤p is negative, thus lemma A.3
ensures that x∗ = (0, . . . , 0) is a minimizer of φ.

Finally, if c1 > · · · > ci0 > 0 ≥ ci0+1 > · · · > cs with i0 ∈ {1, . . . , s−1}, then lemma
A.2 ensures that

∂φ(x∗) = ∂φ1( c1, . . . , c1︸ ︷︷ ︸
k1 components

)× · · · × ∂φi0( ci0 , . . . , ci0︸ ︷︷ ︸
ki0−ki0−1 components

)∂ × φi0+1(0),

with φi0+1 as in lemma A.2. Lemma A.4 ensures that whatever i ∈ {1, . . . , i0}, we
have 0 ∈ ∂φi(ci, . . . , ci). Furthermore, because ∀i > ki0 , (Si − Ski0 ) ≤ 0, lemma A.3
ensures that 0 ∈ ∂φi0+1(0). Thus 0 ∈ ∂φ(x∗), which ensures that x∗ is a minimizer of
φ. �
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