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The traveling-wave tube is a critical subsystem for satellite data transmission. Its role in

the history of wireless communications and in the space conquest is significant, but largely

ignored, even though the device remains widely used nowadays. This paper present, albeit

non-exhaustively, circumstances and contexts that led to its invention, and its part in the

worldwide (in particular in Europe) expansion of TV broadcasting via microwave radio-

relays and satellites. We also discuss its actual contribution to space applications and its

conception. The originality of this paper comes from the wide period covered (from first

slow-wave structures in 1889 to present space projects) and from connection points made

between this device and commercial exploitations. The appendix deals with an intuitive

pedagogical description of the wave-particle interaction.
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INTRODUCTION

On November 12, 2014, the space probe Rosetta, built by the European Space Agency (ESA),

detached its lander module Philae which performed the first successful landing on a comet, more

than 475 million kilometres away from the Earth. This historic achievement was met thanks to

years developing critical systems of the probe, like solar cells, trajectory computer, or propulsion

parts. Yet the success of a mission depends crucially on the spacecraft capacity to transmit data

across the vacuum of space. Messages must contain enough information, and must be sent with

enough power to be captured on the ground, but avoid spending too much electric power, which

is scarce in space. Such communication systems from Rosetta enabled us to receive scientific data

to understand the history of the solar system as well as stunning images of the comet.

Telecommunication subsystems are mainly composed by an antenna, a receiver and a trans-

mitter. Inside the transmitter, we need a device that amplifies radio-waves enough for us to

communicate with spacecrafts, even at more than billions of kilometres —like with the probes

Voyager 1 or New Horizons, discussed below. This wave amplifier meets a large number of criteria

to be operational in space. For data emission, it needs to reach high signal amplitude with very

low noise, and also needs a large bandwidth at high frequency corresponding to the amount of

transmitted information. Lastly, this device needs to resist the shocks of its rocket launch and to

operate for years in the dangers of space, in particular aggressive radiations.

All those conditions are fulfilled by the traveling-wave tube (TWT). Its apparition was followed

by the expansion of long-range communications with the worldwide development of TV broadcast-

ing since the 1950s, and multiplication of telecom satellites since the 1960s. Today, this device

remains at the cutting edge, and still contributes to transmissions for major satellites and space

probes.

Traveling-wave tubes1 (see figure 1) are electronic tubes (a.k.a. vacuum electron devices or

thermionic valves) [Faillon 2008, Gilmour 2011] used to amplify radio-waves, and have a lot of

applications, like radar, electronic warfare, television or radio broadcasting, Internet, sending data

from space probes, planes and ships transponders, GPS, and imaging devices, or even studying the

scientific characterisation of plasmas. Like all other vacuum electron devices, it is based on the

momentum transfer —similar to kinetic energy transfer— from accelerated electrons to a radio-

frequency wave via an interaction in a vacuum environment (see appendix A). When combined

1 In the past, they were sometimes called forward-wave tubes, or traveling-wave valves. Also, some authors write

“travelling” in British English with a double l.
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Figure 1. The traveling-wave tube is a simple electrical equipment comprising three parts: An electron gun

that emits the beam; a delay line —also called a slow-wave structure— where the signal travels and where

the wave-particle interaction is performed; a collector to take back the energy of electrons and limit losses.

All those parts are under an extremely high vacuum. Beam focusing magnets —or periodic permanent

magnet (PPM)— keep electrons moving on the longitudinal axis. In space traveling-wave tubes, the optical

path is a metallic helix, as shown in figure 2; the schematic here displays a folded waveguide. Space tubes

are 10-30 centimetres long. For higher frequency regimes, one uses shorter tubes, but they are harder to

assemble.

with a power supply, TWTs are preferably called traveling-wave tube amplifiers (TWTAs). They

are not the most powerful of vacuum electron devices, but their main features are their large

bandwidth and their excellent power efficiency: ideal for long-range communications. Combined

with their robustness, their high power and their long lifespan, traveling-wave tubes became quickly

indispensable for space programs.

WIRELESS SIGNALS BEFORE 1945

The history of wireless communications2 started long before the invention of the traveling-wave

tube. It all begun in 1888, when the German physicist Heinrich R. Hertz observed experimen-

tally the propagation of electromagnetic waves in the air for the first time [Hertz 1888], twenty

years after they were theorized by the Scottish mathematician and physicist James Clerk Maxwell

[Maxwell 1865]. Six years later, the Italian Guglielmo Marconi built one of the first radio transmit-

ters with a range of a hundred meters. With his Wireless Telegraph & Signal Company, Marconi

realized a cross-Channel radio-telegraphic transmission in 1899, then a transatlantic emission in

1901 [Coe 1961]. At this time, all intercontinental telecommunications were performed thanks to

2 In fact, long-range communications began a long time ago with smoke signals, drums, whistled languages, beacons,

semaphore, etc.
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submarine telegraph cables [Schwartz 2008]. Marconi’s ambition was to build a global wireless net-

work to rival with cables. He started to open communication stations, but he immediately faced

competition when electrical equipment manufacturers and some countries started their own devel-

opments. Indeed, to help the German navy, Siemens and the Allgemeine Elektricitäts-Gesellschaft

(AEG) were encouraged to create the radio company Telefunken in 1903. That same year, Gustave

A. Ferrié performed long-distance radio experiments3 at the top of the Eiffel tower [Ferrié 1911].

Thereafter, in 1915, the first transatlantic telephony call is achieved by AT&T4, between Arlington,

Virginia and the Eiffel Tower, followed by a call between Arlington and Honolulu.

Marconi’s first successful transatlantic message, sent out more than 3500 km away, had raised

some interrogations regarding the curvature of the Earth’s surface. Indeed, it would require two

towers 550 km tall (or one 900 km tall) to have a direct visual connection between both stations.

Actually, the Earth’s ionosphere plays an important role because it reflects waves with a frequency

lower than 300 MHz, wiping out limitations due to our planet curvature, thus allowing long-

range emissions. Reflections occurred in one of the layers of the atmosphere composed of ions

called the Kennelly-Heaviside layer (100 km above the ground) and theorized separately by Arthur

E. Kennelly [Kennelly 1902], and Oliver Heaviside [Heaviside 1902]. It was thanks to this property

that the British Broadcasting Corporation (BBC) was able to broadcast radio from London over

Europe during World War II, without any facilities on the Old Continent. But this application is

extremely sensitive to weather conditions.

On the other hand, the history of vacuum electron devices started in the late 19th century

with the discovery of thermionic emission —the electron flux emission coming from heated metal

filaments— utilized for incandescent light bulbs5. In 1904, the English physicist Sir John A. Flem-

ing, while working for the Marconi company, used this effect to detect radio waves and built the first

vacuum tube: the Fleming valve (a.k.a. the vacuum diode) [Fleming 1905]. But the first practical

tube is credited to the American Lee de Forest when he built, in 1906, a triode (named “audion”),

which was able to better receive, radiate and amplify electromagnetic signals [Forest 1908]. As

electromagnetic waves were also reflected by metallic surfaces, as proved by Hertz, another major

application of vacuum tubes was radar (RAdio Detection And Ranging) operations. Patents about

3 Unintentionally, Ferrié experiments granted an important usefulness to the Iron Lady and protected it from its

scheduled demolition. The Eiffel Tower became and still is an important radio station. Before him, Eugène Adrien

Ducretet performed, in 1898, a sound emission by wireless waves between the Eiffel tower and the Panthéon, 4 km

away [Eiffel 1900].
4 One of the pioneers of telephony, the Scot Alexander Graham Bell, founded the Bell Telephone Company in 1877.

The company became the American Telephone & Telegraph Company (AT&T) in 1885, and was at times the

world’s largest telephone company.
5 The same kind of light bulbs used for domestic consumption during the 19th and 20th centuries.
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radars were filed during the 1900s, but it is only in the 1930s and the 1940s that they began

to gain in importance for military applications. Long-range detection of small objects (boats or

planes) requires to broadcast strong electromagnetic powers that only magnetrons —another kind

of vacuum electron device— were able to generate at the moment. During the Second World War,

radars made thanks to the magnetron were one major element of the Allies’ victory.

Between the two World Wars, television broadcasting begun timidly to emerge to the general

public. For instance, RCA6 is known to have broadcast [Goldsmith 1946] the first TV programs

for New Yorkers on April 30, 1939, from the top of the Empire State Building in New York City

and from a series of relay stations spanning the length of Long Island. But instead of telegraphy

and low definition radio, applications for a large number of telephone calls simultaneously or TV

emissions need larger flows of information sent, requiring wireless signals with higher frequencies.

And for those higher frequencies (above 300 MHz), the ionosphere does not reflect the waves7

any more, imposing the use of relays for line-of-sight propagation to compensate for the Earth

curvature. Moreover, the range and the noise of amplifiers limited the expansion of telephones and

TV by Hertzian-waves, until the appearance of better devices.

INVENTIONS OF THE TRAVELING-WAVE TUBE

Fatherhood of the traveling-wave tube (TWT), as we know it today, is most often granted

to an Austrian refugee, Rudolf Kompfner in 1942 —notably after his public announcement in

1946— when he was secretly working on microwave vacuum tubes for the British Admiralty at the

University of Birmingham during World War II. But the history of this device is more complex

because the traveling-wave tube was, consecutively, discovered thrice independently. In fact, two

fundamental concepts were needed to conceive a TWT: the slowing-down of electromagnetic waves,

and the addition of an electron beam inside the tube to have the wave-particle interaction.

One year after his extraordinary discovery that electromagnetic waves can propagate in the air,

Hertz, scrupulous to get on with his studies, did the earliest work [Hertz 1889] on electromagnetic

wave-guides: structures that confine and guide waves. Investigating the velocity of waves, he

realized they could be steered along metallic guides. Because of the increase of their optical path,

6 The Radio Corporation of America (RCA) was formerly the American Marconi, a subsidiary of the British Marconi

Company before 1919.
7 In fact, microwaves (from 300 MHz to 300 GHz) are slightly reflected by the troposphere (15 km). This effect,

discovered in the 1950s [Booker 1950], was used to increase the range of radio-relays, but it needed powerful

amplifiers and huge antennas.
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waves will take more time to cross the guide than if they were going straight, hence Hertzian-waves

are slowed down, and such frameworks are called slow-wave structures or delay-lines. Hertz built

the first metallic helical wave-guide in 1889: “I [Hertz] rolled a wire 40 metres long into a spiral 1 cm

in diameter, and so tightly that the length of the spiral was 1.6 metre” [Hertz 1893, p. 158]. It was

a simple coil where waves were 5 times slower along the guide longitudinal axis. But the slow-wave

structure alone cannot provide any wave amplification without an electron beam. Also, Hertz’

pioneer achievement on wave-guides was paltry compared to the theoretical works performed by

three English physicists: Sir Joseph J. Thomson [Thomson 1893], Lord Rayleigh [Rayleigh 1897],

and Henry C. Pocklington [Pocklington 1897]. They have been followed by few other authors early

in the 20th century, but only the development of traveling-wave tubes in the 1950s increased the

interest for the helical structure. Other forms of slow-wave structures were also designed in parallel

with the development of earliest radio sets, mostly in the 1930s, when klystrons and magnetrons,

two kind of vacuum electron tubes, appeared. However, the helix guides (see figure 2) still remain

the most used structure for space TWTs because they allow broader bandwidth than others,

meaning higher flows of information.

To build a traveling-wave tube, we need another fundamental idea: adding an electron beam

to the slow-wave structure in a vacuum tube, which enables the wave amplification. This idea was

recognized in 1933 by the Russian Andrei V. Haeff, a young researcher of the California Institute

of Technology (Caltech), inspired after watching surfers on Santa Monica Beach, California; he

concluded that the surfboard speed and the wave velocity had to match so the surfer can properly

use the wave energy [Copeland 2015b]. In his first patent [Haeff 1936], Haeff described a device

“for generating, controlling and measuring extremely high frequency waves”, to which he refers

sometimes by the term “travelling waves”. His device used two parallel helical slow-wave structures

with an electron beam flowing between them: it was the first traveling-wave tube, even though its

slow-wave structure looks unusual. It seems that Haeff used his TWT to build a portable radio

transmitter and receiver operating at 750 MHz. But at this time, electron guns were not good

enough to provide an efficient focusing of the beam, so his device was not very efficient. The next

year, Haeff joined the Radio Corporation of America (RCA) at Harrison, New Jersey, and sold

them his patent, but the corporation did not permit Haeff to develop his invention further, and his

discovery was largely ignored.

Meanwhile in the Netherlands, the traveling-wave interaction principle was the first time appre-
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ciated theoretically by Klaas Posthumus at the Philips NatLab8 (Eindhoven) when investigating

the newly-invented magnetron [Posthumus 1935]. He found that the axial component of the rotat-

ing wave velocity was synchronised with the average speed of electrons. As a result, the electron

energy was transferred to the wave and amplified it.

The variety of early microwave devices built before 1945 is astonishing, and some inventors

came very close to make a TWT. The American researcher Frederick B. Llewellyn, working at Bell

Labs9, proposed a patent10 [Llewellyn 1945] in 1940. His amplifier was built “to secure a useful

cooperative relation between the alternating electric field within the guide and electrons traversing

that field”. However, Llewellyn’s invention was not really a TWT because his folded wave-guide

—a kind of delay line comparable to the one sketched by the figure 1— was closed in two spots

at the middle of the tube, making his invention working more like a klystron with two (very long)

cavities having some aspects of a TWT.

The second time the traveling-wave tube was invented was in 1940 by the Swedish research

physicist Nils E. Lindenblad when working at Rocky Point, New York. This time, the patent

[Lindenblad 1942] proposed a modified version of Haeff’s tube, to put the electron beam inside

through a helix slow-wave structure. Lindenblad designed the first modern version of the helix

traveling-wave tube as we know it today and introduced it as a “device capable of efficiently

amplifying a wide band of frequencies such as would be demanded by a multichannel radio relay

amplifier”. In his patent, the basics of TWTs are well understood: “the speed of electrons [...] is

made to be substantially equal to the axial velocity of propagation of the electromagnetic wave”.

Lindenblad estimated possible to amplify a frequency band from 30 to 390 MHz without any

important variations over the band. In addition, he also recognized that the pitch (the gap d in

figure 2) of the helix can be modified to maintain synchronism with the electron beam. As electrons

lose velocity inside the tube, the pitch is decreased to slow-down the electromagnetic wave, so the

amplification can be performed during a longer time: a method now often used and called “taper”

or “pitch tapering”.

8 To avoid depending on third-party patents, Gerard and Anton Philips established in 1914 their company’s own

“Physics Laboratory”, which turned into a world class fundamental and applied research facility, growing to over

2000 employees in the 1970s. Breakthroughs and achievements at the Nat(uurkundig) Lab(oratorium) include

nonlinear dynamics (Balthasar van der Pol), quantum physics (Hendrik Casimir), magnetic resonance imaging,

audio cassettes and the compact disc [Philips 2014].
9 The Bell Telephone Laboratories [Gertner 2012], now Nokia Bell Labs, were founded in 1925 by AT&T and the

Western Electric as a independent division to conduct research and development. These laboratories are famous

worldwide for their numerous contributions in telephony, TV, space communications, information theory, radio

astronomy, mathematics, computer science, etc., and are associated with the discovery of transistors, photovoltaic

cells, CCD captors, or optical fibers. They have also employed a lot of famous award-winning researchers including

eight Nobel prizes and three Turing awards.
10 In fact, the use of wave-electron interaction along distributed or wave circuits within one or more vacuum tubes

has been proposed in various patents [Percival 1937, Llewellyn 1937, Zworykin 1937, Potter 1938, Roberts 1939,

STC 1939, STC 1941, Clavier 1941].
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Figure 2. The slow-wave structure is used to elongate the optical path of waves. For a helix, waves are

slowed down by a factor 2πa∅/d. In space tubes, this represents generally one-tenth of the speed of light.

The geometry of the slow-wave structure is chosen to match the wave velocity with the electron speed: there

is resonance, and some momentum of the electrons can be transferred to the wave for amplification.

But Lindenblad’s discovery is controversial because he was an antenna specialist at RCA at the

same time as Haeff, and their labs were about 100 km apart, though there is no evidence that they

ever met [Copeland 2015b]. And more curious is the fact that it was the same attorney who filed

both their patents for the RCA, but the one by Haeff was never cited in Lindenblad’s patent of

1940. The lack of theoretical models about TWTs and the significantly different designs of both

inventions could explain why Lindenblad did not refer to Haeff. However, after the rise of the TWT

popularity, Lindenblad filed a new patent [Lindenblad 1951] in June 1947, this time with a reference

to Haeff’s one. Regardless of this anecdote, early works of Haeff11 and Lindenblad12 on traveling-

wave tubes were never really recognized nor used, and are only mentioned in very few historical

accounts [Wathen 1954], nor referred as TWTs [Pierce 1947a, Warnecke 1956, Pierce 1962].

As previously stated, the traveling-wave tube was then rediscovered a third time by Kompfner

in late 1942 at Birmingham. During wartime, the limited information exchange about radio and

radar technologies might explain why the patents by Lindenblad —published in October, just a

few months before— were unknown across the Atlantic. When Kompfner joined13 the Admiralty

in 1941, to work on valves at the Physics Department, Birmingham University, one of his first goals

was to help a team to build a klystron amplifier, which would be more sensitive —with a stronger

wave-electron interaction— than the crystal-mixer receivers available at that time, with the intent

11 Andrei Vasily Haeff is also known for his invention of another kind of vacuum tube: the inductive-output tube

(IOT, a.k.a. the klystrode) [Haeff 1939]. These tubes built by RCA were used on 1939 to broadcast TV programs

from the top of the Empire State Building in New York City [Goldsmith 1946].
12 Nils Erik Lindenblad is credited with more than 300 patents, and is mainly known for his antennas. He developed

the television antenna placed on top of the Empire State Building in 1939 [Lindenblad 1939].
13 Rudolf Kompfner had a training as an architect, but he was a tinkerer with cathode-ray tubes and klystrons when

he joined the Admiralty.
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to improve the range of radars. To do this, we can either increase the power output or boost the

sensitivity of the receiver. After a year of working on this problem, Kompfner concluded that if

the klystron was relatively inefficient and had a narrow bandwidth, it was because the device had

a fundamental weakness: the coupling between the electron beam and the radio-frequency field in

the resonator gaps was too weak, because electrons spent too much time in the field, losing part of

the energy they had gained a little earlier, or vice-versa. Therefore, Kompfner made the brilliant

suggestion to match the wave and electrons velocities. This led him to discuss with delay-line

experts and to design the TWT concept. The next year, in November 1943, Kompfner used a helix

as slow-wave structure to build his first traveling-wave tube with a modest power gain. Later he

produced a TWT at a frequency of 3.3 GHz with a better sensitivity than the best klystron ever

built at this time [Kompfner 1976].

At that moment, the TWT was still a secret device developed in wartime.

PUBLIC ANNOUNCEMENT AND DEVELOPMENTS

Kompfner moved to the Clarendon Laboratory, Oxford, in 1944, where he continued his work,

aiming to find a theory that would enable design optimization. Seeing the great opportunities

given by TWTs, he was helped by more and more people, including his research assistant Joseph

Hatton. Visiting the Clarendon Laboratory at this time, John R. Pierce, an American researcher

of Bell Labs, examined the device and realized the significance of the wide bandwidth available,

ideal for microwave telecommunications. Indeed, the main purpose of Bell Labs —as part of a

telephone company— was to develop communication systems, even though they also worked on

radars during the war. With the aim to develop a good theory about TWTs, Pierce and Kompfner

organized a partnership, then Pierce brought the concept with him to the United States.

The results of British wartime investigation on the traveling-wave tubes were presented to

public announcement by Hatton at the 4th IRE14 Electron Tube Conference at Yale University,

New Haven, on June 27 and 28, 1946. Hatton described some of the British results, and later in this

conference, Pierce, associated with his colleague Lester M. Field15, revealed how far the research

at Bell Labs had progressed. Since the IRE conferences had a good reputation among electrical

14 In 1963, the Institute of Radio Engineers (IRE) merged with the American Institute of Electrical Engineers to

became the Institute of Electrical and Electronics Engineers (IEEE).
15 Lester M. Field was employed at Bell Labs for only two years, between 1944 to 1946, after his Ph.D. Thereafter,

he joined Stanford university, and became, in four years, its youngest professor at the age of 32. He was one of the

founders of the Electronics Research Laboratory at Stanford. This lab was well known for TWT research. After a

transition by Caltech, he became vice-president and associate director of the Hughes Research Laboratories (HRL)

where he was involved in TWT developments and in space programs.
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engineers, the discovery became immediately famous in the sphere of vacuum electron devices, and

Kompfner’s name became inseparable from his invention. After the conference, worldwide task

forces of industrial and research labs started to develop their own versions of tubes. For instance,

in the Soviet Union, teams of young military servicemen started to better understand the electron-

wave theory and to build TWTs; but due to the Cold War, their advancement stayed barely known

beyond the Iron Curtain [Loshakov 1949, CIA 1953, Pchelnikov 2003].

A few days after the announcement, The New York Times ostentatiously reported the possi-

bility to send ten thousands phone calls at once by “a device that eventually may provide the

means of setting up more channels for long-distance communications than they will know what

to do with” and “it is expected to do as much for the future of very-highfrequency [sic] nation-

wide communication as the deForest ‘audion’ did for the broadcast and world-wide telephony and

telegraphy pioneers” [Kennedy 1946].

In August 1946, the first general description TWTs appeared [Barton 1946], followed the next

months by articles [Rockett 1946, Whitmore 1946, Wildhack 1946] in a few journals of electronics.

In November, Kompfner published [Kompfner 1946] an introduction about his invention in the

journal Wireless World16, followed by Pierce the next month [Pierce 1946] in the Bell Labs Record.

The world’s first peer-reviewed publication on a TWT theory was submitted, in December 1946,

by two French researchers, André Blanc-Lapierre and Pierre Lapostolle [Blanc-Lapierre 1946] of

CNET17, immediately followed by Jean Bernier [Bernier 1947] of CSF18 in January 1947 and by

Pierce and Field [Pierce 1947a, Pierce 1947b] in February. By the end of 1950, probably a hundred

papers and patents had been published about the new tube. A famous textbook [Pierce 1950],

written by Pierce and still a classic, established the robust basis of the device. Since then, research

and development to improve tubes never stopped.

The traveling-wave tube brought many benefits from the point of view of electrical laborato-

ries. Performance showed the device to be more suitable for telecommunication usages than other

vacuum tubes, at a period where powerful means of message transmission were needed (see next

section). And, for academic purpose, all the theoretical study was to do. But its main advantage

16 The British electronics journal Wireless World —very popular among amateurs and professionals of audio and

electronic devices— was originally published by the Marconi Company under the name The Marconigraph from

1911 to 1913. Since 1984, it is renamed the Electronics World.
17 The Centre National d’Études des Télécommunications (CNET) was an independent division of the Postes,

Télégraphes et Téléphones (PTT) administration (nowadays Orange).
18 The French Compagnie Générale des Téléphonies sans Fils (CSF) was founded in 1918 by Emile Girardeau —a

former member of Ferrié’s team— to compensate the lack of French radio companies, and probably because the

army bought equipments only from legal business entities. CSF became Thomson-CSF in 1968 after merging with

the Compagnie Française Thomson-Houston (CFTH). CFTH was also one of the early companies to investigate

TWTs [Roubine 1947]. In 2000, the group became Thales after another merger with AEG-Telefunken. Their tube

division, Thales Electron Devices (TED), is currently one of the leaders in the space TWTs market.
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was that, as a new device, each competitors were on equal terms, even small ones. It was for those

reasons the French public laboratory CNET went to investigate the TWT immediately after its

annoucement [Atten 1996]. But the competition was tough. Indeed, in 1947, CSF obtained the

equivalent of 600 000 euros (taking into account inflation) by the French Government for a market

research on the new electrical equipment after announcing having made a 2.7 GHz TWT working

at 200 mW.

In the summer of 1947, Kompfner attended to the 5th IRE Electron Tube Conference at Syracuse

University, New York. At this conference, he discovered TWT had become an important subject,

both theoretical and experimental, of many laboratories and industries all over the world. He was

impressed by advancements achieved, but also worried [Kompfner 1976] that the researches in the

United Kingdom on these subjects had not progressed as much. After returning to his country,

Kompfner with British Admiralty representatives aimed to report on this conference and to plead

for a special effort by Britain to regain the initiative. They met the UK Coordination of Valve

Development Committee (CVD) composed by government and industrial tube representatives and

managed by D. C. Rogers of STC19. Aware of the benefits for communication of TWTs compared

to other amplifiers, one of their research teams led by Rogers achieved [Rogers 1949, Rogers 1953]

an efficient 4 GHz TWTA, which will later be used for commercial applications. Under Pierce’s

recommendation, Kompfner joined the Bell Labs in 1951.

In parallel, the active TWT developments led to the discovery of the backward-wave oscillator

(BWO) (a.k.a. carcinotron20). The BWO is basically a TWT where the wave is propagated in

the opposite direction to electrons. Its main use is for military scramblers. Invention of BWO

was simultaneously and independently presented by Kompfner from Bell Labs, and by Bernard

Epsztein from CSF, at the IRE Electron Tube Conference in Ottawa, Canada, on June 1952

[Guénard 1952, Kompfner 1976]. It also seems that a Soviet team secretly invented the BWO

back in 1948 [Pchelnikov 2003]. In the same vein, consecutive progress to improve klystrons, in

particular to expand their bandwidth, led to the invention of the extended interaction klystron

(EIK) [Wessel-Berg 1957, Chodorow 1961], a device —similar to the rugged coupled cavity and

the interdigital line TWTs— which tries to combine the advantages of both klystrons (ruggedness,

and high power capability) and TWTs (larger bandwidth).

The major advances in the United Kingdom, France, the United States, Japan and the Soviet

19 The Standard Telephones and Cables Ltd. (STC) was the British division of the Western Electric.
20 CSF, now TED, still uses the trade-name carcinotron because of the crayfish which swims backwards (in Greek

“karkinos”) [Guénard 1952].
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Union brought those countries to the forefront of traveling-wave tubes’ manufacturing, and to their

commercial applications.

WIRELESS RADIO-RELAYS AFTER 1945

After the Second World War, European countries needed to rebuild their economic power. While

the priority was first given to transport grids, power generation and distribution, the transmission

networks progressively gained an interest, notably under the pressure of the North Atlantic Treaty

Organization (NATO), for tactical communication purposes, and because of the public’s interest

for a new medium shelved during the war: the television. TV emissions were retransmitted in some

big cities since the 1930s, and only for a small audience, so the number of programs and channels

was limited. Those transmissions were done by radio-wave from low range stations directly to the

customer. But to provide TV over countries, it was needed to send the programs to each stations,

and there were two available means of propagation: coaxial cables and wireless signals.

The cable option was the oldest one and has been practiced sufficiently long to be firmly es-

tablished. It was the option chosen, in 1951, for the Birmingham–Manchester cable [Halsey 1952].

The Hertzian-wave approach was new21 to broadcast television on country-scale but was promising,

and was the option taken the same year for the London–Birmingham radio-relay [Clayton 1951]

established with triodes. Because of the Earth curvature, this choice required relays 50–70 km

apart.

In 1948, the British Television Advisory Committee recommended the extension of television

diffusion to cover 80% of the United Kingdom. Hence, to provide TV in Scotland, the British

Broadcasting Corporation (BBC) and the Post Office considered the best means of propagation

was the use of wireless waves instead of cables, and they signed a contract with STC to estab-

lish the first commercial microwave radio-relay systems in the world using traveling-wave tubes

[Dawson 1954]. The system needed to carry television signals between Manchester and the Kirk

o’Shotts transmitting station, near Edinburgh, at more than 350 km, using seven intermediate re-

lays. The line was activated22 in August 1952, and was the first application of the, so called, super

high frequency (over 3 GHz) outside North America [Unk. 1951, Bray 1995]. With this achieve-

ment, the traveling-wave tube demonstrated having improved performances for television signals

21 The world’s first experimental microwave (1.7 GHz) radio link was demonstrated in 1931 between Calais and Dover

(40 km long) [Kohlhaas 1931].
22 In parallel with TWTs of STC, the microwave radio-relays between Manchester and Edinburgh used also 2 GHz

triode valve amplifiers from the General Electric Company [Bray 1995], but this system was later ousted by the

one with TWTs.
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compared with triodes and klystrons. From 45 000 television receivers in 1948, the country went

to more than 2 million ones five years later, and the 80% goal was reached in 1957.

Since at this time, the United Kingdom had been equipped with both cables and radio-relays,

an early economic comparison between them was performed [Faulkner 1952] with the conclusion

that, for almost the same service, the cost of the cable system was inevitably higher and required

many more repeater stations than a radio-link. But cable required less maintenance charges, and

unnecessary expenditure could be avoided when sharing facilities with pre-existing telephone cables.

However, microwave radio-relay systems were young and steadily improved.

On the other side of the Channel, France possessed a large telephonic network composed of

coaxial cables connecting big cities. Those lines were able to transmit several hundreds of phone

calls, but just enough to send one TV program, and pulling additional cable for each wanted

signal was an expensive option. Also, a more serious problem was the fact that those cables

were designed for multichannel telephony and not well suited for TV transmission. The Postes,

Télégraphes et Téléphones (PTT) administration decided to use the microwave option and they

started a collaboration with CSF to upgrade the network of wireless transmission. First tests

were completed in July 1951, by making the connection between Paris and a radio tower in Bois

de Molle, Beauvais, 60 km away. The emitter provided by CSF comprised a broad bandwidth

klystron to obtain a linear frequency modulation with an output at 1 mW, then the signal was

amplified by a TWT up to 1 W for a base frequency at 4 GHz (similar to STC tubes). In

1953, they finished the wireless liaison between Paris and Lille, distant of 230 km. This liaison23

was the first in the world to provide both telephone and television using the same transmitters

[Forestier 1951, Marzin 1951, Gutton 1952].

Before June 1953, the Paris–Lille liaison was extended to London and Brussels with CSF hard-

wares. This line and all other TV networks available in Western Europe —including cable lines—

were used for the live transmission of the coronation of Queen Elisabeth II, on June 2. Broadcast24

simultaneously in at least six countries to several million of TV spectators, it was the world’s first

major TV event [Smith 1953]. Millions of other people were able to see the coronation after tapes

were sent25 around the world.

23 The first French wireless radio-relay of 1 GHz with telephone commercial use was built in 1951 by the Compagnie

Française Thomson-Houston (CFTH) for the Radiodiffusion - Télévision Française, from the Eiffel Tower, Paris,

to the city hall belfry of Lille, with two relays [Angel 1952, Martin 1952]. This line did not involve TWTs and was

replaced after 1953 by the other one presented.
24 The live multinational TV transmission of the coronation of Queen Elisabeth II in 1953 was organized by the

European Broadcasting Union. This success led one year later to the creation of Eurovision.
25 To provide videos of the coronation to the rest of the world, and especially the Commonwealth, tapes were sent

by airplane. This was a common practice until transoceanic communications by satellites were implemented.
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Table I. Commercial helix traveling-wave tubes used in early microwave radio-relays in the United Kingdom,

France and the United States. The CV2188 was the first commercial tube and was used in the Manchester–

Edinburgh line. The TPO 921 is the direct sucessor of the TPO 851 used in the Paris–Lille line. The type

7812 was a TWT (third stage) used on the Tokyo–Osaka line. The 444A (developed by Bell Labs) was

used in the TH system covering the United States. For Color-Television (CTV), a much wider bandwidth

is required than for black and white. Sources: [Rogers 1953, Voge 1957b, Sawazaki 1956, McDowell 1960].

Manufacturer STC CSF Shibaura Western Electric

Name CV2188 TPO 921 7812 444A

Year 1952 after 1953 1954 1960

Capacity 1 TV 1 TV + 240 ph. 1 TV 1 CTV + 420 ph.

or 720 phones Hundreds 1860 phones

Frequency 3.6-4.4 GHz 3.8-4.2 GHz 3.5-4.3 GHz 5.9-6.4 GHz

Power Out 2 W > 2 W 3.5 W 5 W

Gain 25 dB 28-30 dB 17 dB 30 dB

Efficiency ≈ 1% 20% ? 23%

Life Time 3 500 hours thousands hours ? 10 000 hours

On April 1954, Japan showed its advances when opening the Hertzian-wave line Tokyo–Nagoya–

Osaka, more than 460 km long. This line was established for the Broadcasting Corporation of Japan

(NHK) to start regular TV emissions, and also for the Nippon Telegraph and Telephone Public

Corporation (NTT) to rebuild the country’s telephone service which had been wiped out (nearly

80% of the service) by bombing. It was the first microwave radio-relay system of the country and

the system was equipped with three-stage TWTs working at 4 GHz and built by the Tokyo Shibaura

Electric Co —nowadays Toshiba Corporation— [Nomura 1954, Sawazaki 1956, Young 1965]. Ten

years later, in 1964, NHK covered 81% of the Japanese population for 13 millions viewers, and

NTT had 8.6 million telephones in service.

During this time, the pioneers of microwave radio-relay systems were the United States. Imme-

diatley after the war, the urgent need to provide television throughout the country pushed AT&T

to develop their microwave radio-relay systems. But it was before first commercial TWTs, so Bell

Labs began a live-demonstration by building the New York–Boston wireless line [Durkee 1947,

Thayer 1949], which was 350 km long (with eight relays), using 4 GHz triodes [Morton 1949]. This

system (called TD-2) could handle 240 (then 600) telephone channels at once and was used af-

terwards by AT&T for commercial applications. In 1951, the New York–San Francisco line was
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established26 [Roetken 1951] and the system was extended to more than 70 000 km with relays

by the end of 1960. From 155 000 television receivers in 1948, the country went to more than

15 million ones four years later. There are several reasons why triodes were privileged in the first

instance in the United States. The main one is historical. In 1912, AT&T had bought de For-

est’s triode patent, and they already used it as a repeater for the 1914 New York–San Francisco

telephone cable, the world first transcontinental telephone line. Four decades of improvements in

all its aspects made the triode hard to dethrone. Also early microwave tests (1945) were done

before the TWTs was known. But at the end of the 1950s, the triodes were replaced by the 6 GHz

TWT newly developed by Bell Labs, carrying at least 1860 telephone channels (called TH system)

[McDowell 1960, Jarrett 1964].

Only 10 years after its (third) invention in 1942, the traveling-wave tube was already com-

mercially used (cf. table I), which is an exceptionally short time since the device was not really

optimized at this time, and some companies had sold TWTs after only 5 years of development. Sev-

eral kinds of vacuum electron tubes, like triodes, were used, but the appearance of traveling-wave

tube amplifiers (TWTAs) provided large bandwidth signals ideal for long-range TV-transmission,

and replaced other vacuum tubes. It was not the first vacuum tubes used for long-range com-

munication, but it surely boosted the development of microwave radio-relay systems for television

around the world between the 1950s and the 1980s. At the same time, international agreements

on favored standards (including frequency band designation, see table III) were achieved by orga-

nizations from a wide range of countries including the Soviet block.

The next step was sending those relays in outer space.

EXTRA-TERRESTRIAL RADIO-RELAYS

It is hard to say with certainty who was the first person to write about communications in space.

Probably inspired by the 1865 novel From the Earth to the Moon by Jules Verne [Verne 1865], and

of Percival Lowell’s books [Lowell 1896, Lowell 1906] dealing with Martian life, the Soviet science-

fiction writer Aleksey N. Tolstoy (a remote relative of Leo) wrote Aelita in 1923, a novel about

explorers leaving the Earth with a rocket and finding Atlantean descendants on Mars [Tolstoy 1985].

The novel was adapted, a year later, in a silent film with the same title. Not written in the novel,

26 The line was 4 700 km long with 117 stations about 52 km apart and cost 380 million dollars (with inflation).
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the film’s narrative thread is the moment when every radio stations on Earth receive the same

message from Mars: “Anta... Odeli... Uta”.

On the other side of the world, in the United States, the science-fiction writer Hugo Gernsback

published a serious seminal article titled Can we radio the planets? [Gernsback 1927]. In this

article, he wrongly assumed that if the Earth, meteors and stars are composed predominantly of

iron, then the Moon should be too, and according to Hertz works “it would therefore make an

excellent reflecting medium”. So, he proposed to use the Moon as a reflector to determine the

existence of the Kennelly-Heaviside layer and he dealt with interplanetary emission. This was

followed, two years later, by a study from a geophysicist on commercial Hertzian-wave propagation

on the Mars ionosphere [Hulburt 1929].

Inspired by Gernsback’s work, a few papers [Mofenson 1946, Grieg 1948] proved the feasibility

of using the Moon as passive reflector, like a mirror, to achieve transcontinental communication,

leading later to the first signals sent and received through space [Gootée 1946]. In the early 1950s,

the U.S. Naval Research Laboratory (NRL) developed the Communication Moon Relay project

(a.k.a. Operation Moon Bounce) [Butrica 1997] and they transmitted the first vocal message in

space sent back to Earth, on July 24, 1954. At this time, ground stations used 10 kW klystron

amplifiers. This project was used in 1959 by the U.S. Navy, in a context of cold war, to create a

backup line between Washington, D.C. and Hawaii or U.S. fleets. Indeed, ionospheric storms could

cut off radio transmissions. The system27 was made public in 1960. But this concept was difficult

to implement because the distance and the weak fraction of radiation reflected off the Moon, impose

powerful devices, making TV transmissions difficult. In addition, there is a 2.5 seconds delay to

send any signal —too much for telephone conversations— not to mention the fact that the Moon

is visible only up to twelve hours a day. In conclusion, our natural satellite was not a perfect relay

but it gave the idea to use much closer reflectors.

Twelve years before the launch of the satellite Sputnik 1, the British scientist and science-fiction

writer Sir Arthur C. Clarke28 wrote two papers ; the first one was private [Clarke 1945b] and

only given to his colleagues at the British Interplanetary Society, while the other was published

[Clarke 1945c] in the journal Wireless World, titled “Extra-Terrestrial Relays”, and both dealt

27 The Communication Moon Relay project was originally from a classified program of espionage, the Passive Moon

Relay (PAMOR), to monitor Soviet communications reflected on our natural satellite [Butrica 1997].
28 Sir Arthur Charles Clarke’s vision of the space conquest was inspired by traumatic V-2 rockets developed during

World War II. Before writing on space stations for telecommunications, he wrote another article [Clarke 1945a]

in Wireless World to propose a peaceful use of those V-2 at geosynchronous orbit (GSO) for research on the

ionosphere. Indeed, the space race started immediately after the war, when the United States and the Soviet

Union collected as many V-2 rockets as possible and captured German scientists.
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with the usefulness of putting satellites at a geosynchronous orbit (GSO) for communications.

GSO (a.k.a. Clarke orbit) was imagined by the Russian theorist Konstantin E. Tsiolkovsky29, who

proved that an object orbiting at 36 000 km above the equator would appear as stationary from the

Earth, because its orbital period is 24 hours. For comparison, at 400 km, objects have a period of

an hour and a half, while the Moon, at 362 000 km, has a period of 28 days. Clarke’s revolutionary

idea was to place on this orbit three space stations covering all the planet, intended for censorship-

free global TV and radio-telephones. Since those objects stay in the sky at the same point, it is

easy to point an antenna at them. In Clarke’s proposals, space stations worked via some “solar

engines” and were regularly supplied from Earth. Clarke estimated that GSO could be reached by

artificial crafts in perhaps half a century ahead. While the publication of his article did not collect

much audience in 1945, the appearance of the first satellites made Clarke famous30 as a pioneer in

the domain.

The next year, in May 1946, the members of the Project RAND31, working for the U.S. Army Air

Force, started to investigate Clarke’s ideas. They wrote a complete report [Project RAND 1946,

Davies 1988] dealing with GSO satellites as relays for communications, but also included aspects on

military applications, scientific research, weather reconnaissance, interplanetary travels, and prac-

tical analysis, like orbit trajectories and payload available. They estimated that this achievement

would bear considerable repercussions to the world, comparable to the Wright brothers’ success, or

the explosion of the atomic bomb. But the initiative to build the first communication spacecrafts

came from civilian commercial investigations.

Meanwhile, Pierce was also known —under the pseudonym J. J. Coupling— as a science-fiction

writer and a precursor in the field of space communications. He wrote a novel mentioning the possi-

bility of reflecting radio-waves from the Moon and interplanetary radio signals [Pierce 1952b]. Just

after, he started to seriously work on his ideas with his colleagues at Bell Labs. In 1955, he proposed

[Pierce 1955] the first paper addressing the economic viability for orbital radio-relays. At this time,

AT&T and the British Post Office were building the first transatlantic telecommunications cable

(TAT-1) [Schwartz 2008], providing 36 telephone channels all at once, where existing cables were

only for telegraph. TAT-1 was inaugurated in 1956 and costed approximatively 42 million dollars.

Pierce analysed that to provide one television signal —or 1080 telephone channels— across the

29 Konstantin Eduardovich Tsiolkovsky is considered as one of the fathers of modern astronautics for his theoretical

developments, and was a science-fiction writer. In addition with geosynchronous orbit, he is also granted for the

rocket equation and for the multistage rocket concept, a key element in the success of Sputnik 1.
30 His article [Clarke 1945c] became so popular that it was reprinted in the centenary issue of the Electronics World

[Josifovska 2013] (formerly Wireless World) as one of the most influent paper of the journal.
31 “Research ANd Development”, now the RAND Corporation, is an American think tank founded by the U.S. Army

Air Force and the Douglas Aircraft Company.
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ocean, you would need a billion dollars or more to put additional cables. If building a spacecraft

is worth this billion, then the concept appeared immediately more suitable. Pierce estimated that

relays in space would not compete with microwave radio-relays over land, but would certainly be

feasible for transoceanic communication. In his proposal, satellites are not at the geosynchronous

orbit (GSO), but instead, are at a lower height called Low Earth Orbit (LEO), imposing for com-

munications to wait until satellites appear overhead emitters and receivers. To remedy the lack of

permanent link with the ground, the system needs several other identical satellites —a configura-

tion called a satellite constellation— to ensure that at least one satellite be visible at any time.

LEO crafts can be sent with smaller rockets or carry heavier payloads. Pierce also mentioned the

possibility to use either passive crafts to reflect signals, like with simple spherical mirrors, or active

crafts where signals are re-amplified before being sent back.

The idea for extra-terrestrial relays was established and only needed a remarkable instigation

to appear.

FIRST COMMUNICATION SATELLITES

On October 4, 1957, the Soviet Union reached the outer space with the first man-made object

orbiting32 around Earth, the satellite Sputnik 1, launched from Tyuratam. Because it was orbiting

at very low height, a repetitive steady beep, emitted from a 20–40 MHz pentode, was receivable

by any radio amateurs throughout the world. There is no doubt the Soviet achievement was the

disruptive element that started the space race once for all in the United States. It led to the first

American satellite Explorer 1 launched in February 1958 from Cape Canaveral, Florida. Less than

three years later, more than a hundred objects had been launched33 into space, successfully or not,

by Soviets and Americans.

The Echo project, started in 1956 by the National Advisory Committee for Aeronautics

(NACA), was originally a mission to measure the density of the upper atmosphere by observ-

ing a 3.5 metres diameter balloon-like satellite. During the U.S. Sputnik crisis in 1958, NACA

was dissolved to become the National Aeronautics and Space Administration (NASA). At this

32 The V-2 rockets, used in the 1940s by German, then after the war by American, British, and Soviet, were probably

the first man-made objects in space but they were not orbiting. They also took the first Earth pictures and videos

[White 1952].
33 For instance, American sent SCORE (Signal Communications by Orbiting Relay Equipment) in December 1958.

The satellite carried a recorded voice message from President Eisenhower, continuously emitted like the Sputnik

beep. But the device was not a relay for live telecommunication. In April 1960, the American TIROS-1 (for

Television Infrared Observation Satellite) became the world’s first weather satellite. The craft was composed of

two cameras sending down videos of the Earth [Logsdon 1995].
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time, Pierce and Kompfner —after he joined Bell Labs in 1951— realized that it would be pos-

sible to use spherical mirrors as passive reflectors to test space communications. NASA accepted

this suggestion, and the Echo project became NASA’s first communications satellite project. On

August 12, 1960, they launched a plastic sphere, with aluminized surface, named Echo 1, large of

30 metres in diameter. It became the first artificial satellite that actually relayed a real-time voice

message, from Holmdel34, New Jersey to Nançay (near Bourges), France. It was a passive object

because there were no electronic systems to amplify the signal aboard. The success of Echo 1

proved it was possible to send a message through space via man-made relays. However, the limited

communication capacity of a single voice channel highlighted that passive reflectors would not have

a lot of applications. A similar project between the same stations was also being conducted using

the Moon as a passive reflector. Those two projects were crucial to the improvement of tracking

techniques —Echo 1 was visible and usable as relay only 5 minutes per passage over the Atlantic—

and ground station equipments. Also, while ground stations at this time used klystrons as power

amplifiers, these were quickly replaced by TWTs for the Telstar project.

Thereafter, to demonstrate the reliability of the active satellite, and to keep their advantage

in long distance communications, AT&T and Bell Labs approved the Telstar project initiated by

Pierce, Kompfner, and some or their colleagues at Bell [Crawford 1963]. Like Clarke’s idea, an

active relay would amplify signals before sending them back to Earth. But reaching the geosyn-

chronous orbit seemed too difficult for the researchers, instead Telstar satellites were planned for

a low altitude orbit (LEO), like Echo 1, so they could only be seen, at the same moment, by two

ground stations for a maximum of twenty minutes across the Atlantic, with an orbital period of

2.5 hours around our planet. The original idea was to make fifty five satellites (a constellation)

to cover almost the entire Earth surface, linked with twenty five ground stations at any time.

Pierce estimated an expense of 500 million dollars. Telstar satellites were nearly spherical poly-

hedra of 88 centimetres diameter for 77 kilograms. They were composed of the new technology

required for satellite communication, like thousands of transistors for other various electric sys-

tems, solar cells for power generation, and a 4 GHz helix traveling-wave tube amplifier from Bell

Labs [Bodmer 1963]. In fact, all the satellite’s active elements were solid-state devices (transis-

tors) excepted for the TWT amplifier. On the U.S. East coast, Bell Labs built a ground station

at Andover, Maine. On the European side, a French–British rivalry led to the construction of

two ground stations, one at Goonhilly Downs, Cornwall, by the British Post Office, and one at

34 The Bell Labs horn antenna of Holmdel, built in 1959 to support the Echo project, is also famous because of its

association with the discovery of the cosmic microwave background, the oldest light in the universe, by Bell Labs

employees A. Penzias and R. Wilson who were awarded the Nobel Prize in 1978.



20

Pleumeur-Bodou35, Brittany, by the French PTT. All three ground stations exploited a 2 kW TWT

with coupled cavities as slow-wave structure [Collier 1963]. Telstar 1, launched on July 10, 1962,

was the world’s first active satellite for telecommunication, and transmitting36 television across the

Atlantic Ocean. In her following Christmas message, Queen Elizabeth II mentioned that “this tiny

satellite has become the invisible focus of a million eyes” [Titchmarsh 2013]. After this success,

scientific, engineering, financial and political forces moved forward in developments for satellite

communications which also increased the interest of TWTs.

Just five months later, on December 14, 1962, NASA launched Relay 1, a similar satellite with

the same features as Telstar 1 but built37 by RCA and with a longer lifetime in orbit. Relay 1

was the first satellite to broadcast between the United States and Japan. The spacecraft is also

known for its large number of recorded anomalies, including the 60 minutes time to warm up the

traveling-wave tube (usually it was only taking around 3 minutes) [Butrica 1997].

On another hand, Haeff —after he left RCA to briefly join the U.S. Naval Research Laboratory

(NRL)— joined the Hughes Research Laboratories (HRL) of the Hughes Aircraft Company38 in

1950, and became rapidly vice president and director of research39 in the company. Hughes was

developing their own TWTs, and it was more and more interested in the space conquest.

When Pierce and Kompfner were conceptualizing Echo and Telstar projects, they published,

in 1959, an article [Pierce 1959b] in the Proceedings of the IRE giving their view of transoceanic

communication. For them, a constellation of at least twenty four active satellites orbiting at LEO

height would be enough to cover the world. This vision was not shared by Harold A. Rosen,

an electrical researcher at Hughes. Unaware of Clarke’s work, for him the future of satellite

communication was achievable by reaching the geosynchronous orbit (GSO). Agreeing with him,

Haeff formed a task force, led by Rosen, to initiate the Syncom design. Unlike low orbit, to

reach GSO, one must drastically reduce the weight of the launched object. A part of the Syncom

success was due to the lightweight traveling-wave tube built by John T. Mendel40 at Hughes, with

35 The antenna of Pleumeur-Bodou, France, used for Telstar 1 signals was completed on July 7, 1962, viz. three days

before the launch of the spacecraft.
36 The first transmission by Telstar 1 on July 10, 1962, is a telephone conversation between the chairman of AT&T

and Vice President Johnson, from Andover to Washington. This was followed by TV emission from the United

States to France. France sent back footage of Yves Montand interpreting “la Chansonnette”, while across the

Channel, Britain sent back a color test card (the world’s first transatlantic color transmission). Then America and

Europe sent each other various videos and messages, like footages of Mount Rushmore, the Statue of Liberty, the

Eiffel Tower, or a base-ball match and a declaration of President John F. Kennedy, broadcast to the public by

local television organizations.
37 When NASA initiated the Relay project, AT&T and Hughes Aircraft Company tried to win the contract to build

the two spacecrafts but finally NASA selected RCA.
38 The Electron Dynamics Division, of the Hughes Research Laboratories (HRL) of the Hughes Aircraft Company,

became L3 Electron Devices in 2005, and still is a major space TWT manufacturer.
39 Haeff left Hughes in 1961 and his position was given to Field.
40 After earning his Ph.D. from Stanford University in 1952, John Thomas Mendel was employed at Bell Labs. Then

he joined Hughes until he became a vice president of the company.
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a weight of half a kilogram [Highstrete 1962]. The total mass of the spacecraft was less than 40 kg,

compared to the 170 kg of Telstar 1. Following an enthusiastic report on the feasibility of the

project, Hughes Aircraft Company funded its construction, and after a previous failure, Syncom 2

became on July 26, 1963, the first geosynchronous satellite; it was equipped with Hughes’ TWTs.

The major advantage of a geosynchronous satellite is that ground station can keep the link with

the satellite at any time, easing the tracking. In 1964, Syncom 3 orbited over a sustained period

of time, and transmitted the Summer Olympics from Tokyo to the United States.

Understanding the huge impact of those new orbital radio-relays, the U.S. government funded, in

August 1962, the Communications Satellite Corporation (Comsat), a government-owned telecom-

munication company recognized by western countries. Its first satellite Intelsat 1 (a.k.a. Early

Bird) was the world’s first commercial communications satellite. Built by the Hughes Aircraft

Company, it was launched in April 1965 on a GSO. The next step for those satellites was to increase

their area capability, with more powerful amplifiers with a wider bandwidth. The second series

of Intelsat crafts integrate a multiple-access capability by carrying four 6 W traveling-wave tubes

for each spacecraft that could operate simultaneously. But when Comsat was funded, President

Kennedy gave it the monopoly on space transmissions [Butrica 1997]. AT&T’s Telstar project41

immediately vanished because Comsat only bought satellites from the Hughes Aircraft Company,

preferring the GSO configuration.

41 Bell Labs designed and built six Telstar spacecrafts, but only two were launched. NASA negotiated an excellent

deal with AT&T because NASA’s contribution to the project was limited to launch services, but they claimed the

project to be supported by them, and they even published results of the experiment as a NASA publication, while

it was originally issued as articles in the Bell Telephone technical journal.
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Table II. Example of helix space traveling-wave tubes used in early satellites. The M4041 was the first TWT

in space. Applications Technology Satellites (ATS ) were NASA’s experimental probes based on Syncom

design. Sources: [Feldman 1965, NASA 1963a, NASA 1963b, NASA 1965, Kornfeld 2001].

Manufacturer Bell Labs RCA Hugues AEG-Telefunken

Name M4041 A-1245 384H TL 4003

Satellite Telstar 1 Relay 1 ATS 1 Symphonie A

Launched 1962 1962 1966 1973

Frequency 3.7-4.2 GHz 4.05-4.25 GHz 3.96-4.12 GHz 3.7-4.2 GHz

Output Power 2 W 11 W 4 W 13 W

Gain 40 dB 35 dB 36-40 dB 46 dB

Efficiency < 10% 12% ? 34%

Mass > 1000 g < 2000 g < 567 g 640 g

Life Time 100 000 hours > 5 years 50 000 hours ?

In the Soviet block, telecom satellites started with Molniya 1-1, launched less than three weeks

after Early Bird, in 1965. This satellite and its successors were put on elliptical orbits called

Molniya orbits —one category of Highly Elliptical Earth Orbit (HEO)— with a center largely

shifted from Earth, enabling them to appear over northern latitudes most of the day.

Table III. Microwave bands of frequencies (also referred as hyper-frequencies, or centimetre and millimetre

waves) from IEEE standards [IEEE 2003] established in 1976. Higher frequency enables larger flow of

information, but are more subject to atmospheric attenuation. Present satellites operate from L to Ka-

Band.

Band L-Band S-Band C-Band X-Band Ku-Band

GHz 1 to 2 2 to 4 4 to 8 8 to 12 12 to 18

Band K-Band Ka-Band Q-Band V-Band W-Band

GHz 18 to 26.5 26.5 to 40 33 to 50 40 to 75 75 to 110

It is not a coincidence that the main U.S. manufacturers of traveling-wave tubes (Bell Labs,

RCA, and Hughes) at this time, were also those who supplied space communication devices. Re-

searchers who developed TWTs were conscious this device —reliable, effective and light— was

perfectly adapted for the space conquest42 (cf. table II). Progressively, transcontinental telephone

42 To reach the Moon, Apollo’s Command Modules (CSM) were equipped with S-Band TWTAs [Baldwin 1968,

Rosenberg 1972].
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and television communications were enabled everywhere, including specialized satellites, like for

maritime ships or airplanes (Inmarsat), and Direct-to-Home TV broadcasting (Intelsat, Eutelsat,

Galaxy, Astra), and new services, like satellite phones (Iridium, Globalstar), GPS (cited below),

Internet access by satellite (Wildblue, KA-SAT ), or numerical radio diffusion (XM Radio, Sirius).

They also offered high-definition images of the Earth, including contributions in weather science,

and images of solar system objects. In the same time, Rosen43, Clarke44, and Pierce45 started to

share the title of “fathers of satellite communications”.

THE EUROPEAN SPACE CONQUEST

Four days after the launch of Telstar 1 in 1962, a few western European countries joined the

space conquest race by signing an agreement to establish two new space agencies: the Euro-

pean Space Research Organisation (ESRO) which would build scientific probes, and the European

Launcher Development Organisation (ELDO) which would focus on a launcher. But those agencies

fell behind for many reasons, like the number of member states with different space policies and

budgets, or the issue of users. Indeed, since western Europe is relatively small and not crossed by an

ocean, a large telecommunication program could be considered as a superfluous luxury compared

to terrestrial options. Meanwhile, some European countries progressed with theirs own finances46.

Until 1975, ESRO built eight scientific satellites —one failure due to the rocket— sent by American

rockets. Indeed, ELDO had a series of failures in attempting to develop a European launcher. This

led to the merging of ESRO and ELDO, to create the European Space Agency (ESA) in 1975.

Since then, they continued the quest for a launcher with the Ariane project.

During the 1960s, President de Gaulle and Chancellor Adenauer had acted for French-German

cooperation. To balance the communication monopoly of the two superpowers, a consortium

was created between French and German organisations; Symphonie A was launched on Decem-

43 Harold Allen Rosen won, in 1995, with Pierce, the Charles Stark Draper Prize for “development of communication

satellite technology”. He was involved with the majority of Comsat crafts built after the 1960s for Hughes Aircraft

Company, and then the Boeing Company.
44 Writer of almost 100 books, Clarke is one of the most influential science-fiction authors of his time with Robert

Heinlein and Isaac Asimov. The world remembers him mainly as the writer of 2001: A Space Odyssey, simultane-

ously published and released as a movie by Stanley Kubrick in 1968.
45 In addition to TWTs, satellite communications and science-fictions, his pioneering spirit brought John Robinson

Pierce to contribute in information theory with Claude E. Shannon, and in music theory. With his colleague

Max Mathews and others, they released Music from Mathematics, an album completely played by an IBM 7090

computer. One of their songs, Daisy Bell (a.k.a. Bicycle Built for Two), was later interpreted by the fictitious

artificial intelligence HAL 9000, in Stanley Kubrick’s 2001: A Space Odyssey. He is also the neologist of the

term “transistor”. Beside computing science, transistors can be used as solid-state power amplifiers (SSPAs), and

ironically are the main competitors of vacuum electron tubes.
46 The United Kingdom operated Ariel 1 (a.k.a. UK-1 ) in 1962, a satellite built by NASA. Then, the Italian Com-

missione per le Ricerche Spaziali (CRS) sent its own spacecraft San Marco 1 in 1964 with a U.S. rocket. Fi-

nally, the Centre National d’Études Spatiales (CNES) —founded in 1961 by President de Gaulle— launched A-1

(a.k.a. Astérix ) with a French launcher Diamant, in 1965. Those three spacecrafts carried no TWTs.
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ber 19, 1974, with the American rocket Delta, from Cape Canaveral, Florida, and became the

first European satellite for telecommunication. The 13 W TWTAs —the first space TWTs built

in Europe47— working in C-Band (see table III) were provided by the German AEG-Telefunken

company. Just after, the newly merged ESA financed a series of two experimental telecommuni-

cation satellites called Orbital Test Satellite (OTS ), and equipped with Ku-Band TWTAs from

the French Thomson-CSF. After a failure of the rocket, OTS-2 was put in GSO in 1978. The

consequence of this demonstration was the creation in 1977 of the intergovernmental European

Telecommunications Satellite Organization (Eutelsat) to develop space communication in Europe,

financed at 60% by ESA [Butrica 1997]. Eutelsat started operations using in first instance OTS

crafts with ESA consent, then brought its own satellites. The OTS program served as the fore-

runner of the European Communication Satellite (ESC ), with four satellites launched in the 80s,

including ESC-1 launched with the new European Ariane 1 launcher.

In the continuation of Symphonie A, another French-German consortium was created to develop

TV broadcasting in the two countries. Between 1987 and 1990, they successfully launched four

satellites: TDF 1 and 2 for France, and TV-SAT 1 and 2 for Germany. Each was sent into

GSO using Ariane 2 and 4 launchers. TDF 1 was equipped with 240 W Ku-Band TWTAs from

Thomson-CSF, the most powerful tube at this time. In comparison, currently state-of-the-art Ku-

Band TWTAs work at 200 W maximum. Operators do not need more power, mainly thanks to

improvements in antennas.

Meanwhile, Japan had also joined the party as another foreign competitor for the United States

and Europe. In February 1983, the National Space Development Agency of Japan (NASDA)

launched Sakura 2a (a.k.a. CS-2a), the first commercial (and civilian) satellite equipped with

Ka-Band TWTAs, using a Japanese N-II rocket.

PRESENT SPACE USES OF TRAVELING-WAVE TUBES

In 2017, we celebrated the sixtieth anniversary of Sputnik 1 and the beginning of the space

conquest. The traveling-wave tube is still widely used in satellites and scientific spacecrafts, even

though solid-state power amplifiers (SSPAs) have gained importance and could compete with them

nowaday, especially for amplifiers below and up to C-Band. Nowadays, the two dominant man-

47 Before that, there were other European vacuum electron tubes in space, like the 10 W output, S-Band triodes from

Siemens —escorting Hughes’ TWTs— in the NASA’s Mariner program [Feldman 1965, Kosmahl 1982]. Mariner 2

is the first probe to achieve a planetary flyby (Venus), followed by Mariner 4 (Mars) and Mariner 10 (Mercury)

[Siddiqi 2002].
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ufacturers on the space TWT market are the French-German Thales Electron Devices (TED)

—formely Thomson-CSF and AEG-Telefunken— (cf. table IV) and the American L3 Electron De-

vices —formely Hughes. The Nippon Electric Corporation (NEC) was another important player

until it stopped their space tubes commercialisation in the end of the 1990s. The Indian CEERI

also entered the competition in 2012, as well as the Chinese BVERI.

Table IV. Examples of recent helix space traveling-wave tubes manufactured by Thales Electron Devices,

and used in current satellites. The TH 4626, and the TH 4606C will respectively be installed on the James-

Webb Space Telescope and the probe BepiColombo. For each ones, the life time is estimated to more than

15 years. Sources: [Dürr 2015, Gastaud 2014, Barsotti 2018, Thales].

Name TL 4150 TH 4795 TH 4816 TH 4626 TH 4606C THL40040CC

GHz 3.4-4.2 10.7-12.75 17.3-20.2 ∼ 26 32 37.5-42.5

Pout 150 W 150 W 160 W 50 W 35 W 40W

Gain 50 dB > 50 dB > 50 dB > 50 dB > 50 dB 48 dB

Eff. 73% 68% 63% 55% 54% 50%

Mass 1000 g 800 g 900 g 700 g 700 g <890g

The Global Positioning System (GPS), initiated by the U.S. government for military operations,

became freely available48 for civilian use in 1983. GPS is currently achieved by a constellation of

thirty-one satellites orbiting on Medium Earth orbits (MEO) situated between LEO and GSO, and

using only solid-state power amplifiers (SSPAs) because it does not need large data transmissions.

However, there exist other global navigation satellite systems to balance the American monopoly

and which all use TWTs, like the fifteen Galileo satellites —and ten others scheduled—, financed

by the European Union and launched by ESA, or the Chinese BeiDou-2, the Indian IRNSS, and

the Japanese QZSS. Indeed, in the L-Band, SSPAs and TWTAs have similar RF performances

—but SSPAs are smaller and less expensive.

The technological revolution of the early 21st century is undisputably the Internet. If the

main traffic of the net is sent though cable or optical fibre, however, communication satellites

were early used to connect isolated big city hubs (important nodes), which redistribute the flux

to individual homes and offices. One of major issues of the Internet is the global cover of rural

areas. Some programs try to remedy this, like the French THD-Sat Project, financed by the

48 GPS was allowed for civilian air lines in 1983 by president Reagan after a Boeing 747 of the Korean Air Lines was

shot down by the Soviet Air Force in the Sea of Japan. A navigation error conducted the plane to trespass the

Soviet prohibited airspace.
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French government and carried out by CNES, in order to develop the products and technologies

dedicated to a new generation of satellites for high throughput Internet access. In particular,

THD-SAT is supporting the development of two space TWTAs from TED, one 170 W in Ka-Band

for direct communication to individual homes and a second one of 40 W in Q-Band [Barsotti 2018]

for the satellite transmission toward anchor stations. This project is a forerunner of space Q-Band

applications.

In 2017, we also celebrate the 40 years of the launch of twin probes Voyager. Voyager 1

is performing its journey at more than 21 billion kilometres from Earth —140 times the Sun–

Earth distance, viz. more than 4 times the Sun–Neptune distance, the longest telecommunication

range ever done— and is currently the farthest man-made object still in communication with us

thanks to its three TWTAs built by Watkins-Johnson49: one in the S-Band, and two in the X-

Band [NASA 1977]. The signal takes 19 hours to reach us from the probe, and is captured by a

worldwide network of tracking facilities belonging to the NASA Deep Space Network. Her sister

Voyager 2 made a detour near ice giants Uranus and Neptune —the only spacecraft to have ever

visited them— and is only more than 17 billion kilometres from Earth (or 16 light-hours away).

Even now, the probes regularly send us data about cosmic rays or sun magnetometry. Between

them flies Pioneer 10 —sent with two 8 W TWTs working at 2.3 GHz [Siegmeth 1973]— but

NASA lost communication with the probe in January 2003.

The majority of deep space missions were, are and will be equipped with TWTAs. As a non-

exhaustive list, we can mention the following explorer probes:

• Giotto sent in 1985 —terminated in 1992— by ESA to fly by the Halley comet;

• Cassini/Huygens sent in 1997 —terminated in 2017— by NASA, ESA and the Italian Space

Agency (ASI) to study Saturn, its rings and its countless moons, and which stepped on

Titan;

• Rosetta/Philae sent in 2004 —terminated in 2016— by ESA which landed on the 67P/Churyumov-

Gerasimenko comet;

• Venus Express sent in 2005 —terminated in 2015— by ESA to explore Venus;

49 The Watkins-Johnson Company was founded in 1957 by Dean A. Watkins, a former professor of electrical engi-

neering at Stanford University, and Horace R. Johnson, a former head of Hughes Aircraft Company’s microwave

laboratory [Grant 1996].
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• New Horizon sent in 2006 by NASA to observe the dwarf planet Pluto ; a flyby of one Kuiper

belt object is scheduled for 2019;

• MAVEN sent in 2013 by NASA to study the Mars atmosphere;

• OSIRIS-REx sent in 2016 by NASA to bring samples from an asteroid;

• BepiColombo scheduled for 2018 by ESA and the Japan Aerospace Exploration Agency

(JAXA formely NASDA) to observe Mercury;

• Solar Orbiter scheduled for 2019 by ESA and NASA to investigate the heliosphere and solar

wind.

The Hubble Space Telescope is one of the most precious tools for astronomers since 1990, because

it is not affected by the atmosphere. Developed by NASA and ESA, it has largely contributed to

increase our knowledge on lots of domains in astrophysics and cosmology, like on our solar system,

stellar evolutions, interstellar medium, far away galaxies, exoplanets, the supermassive black hole

at the center of our galaxy, or the accelerated expansion of the universe. Hubble is orbiting at LEO

height (600 km) and uses solid-state amplifiers. But its successor, the James-Webb Space Telescope

(JWST or Webb) scheduled for launch in 2018, and developed by NASA, ESA and the Canadian

Space Agency (CSA), will use Ka-Band traveling-wave tubes from TED. Webb will be positioned

at about 151.1 million kilometres from us, in a Sun–Earth Lagrangian point, a privileged spot

for observation. If we compare the contribution of Hubble, with its 2.5 meter wide mirror, with

promises of Webb and its mirror of 6.5 meter, we cannot conceive yet the tremendous scientific

contribution which this new satellite will bring, transmitted to Earth thanks to TWTs.

Because of the Earth curvature, keeping a continuous link between objects at LEO and their

operation centres is not possible. During the 1980s, NASA started to launch the Tracking and Data

Relay Satellite (TDRS ) system, a constellation of ten GSO satellites —the last one, TDRS-M, was

sent on August 18, 2017— assembled with Ku-Band TWTs, and allowing a permanent coverage

for selected missions at LEO. Main representative missions are the Hubble Space Telescope and the

International Space Station (ISS ), both equipped with solid-state amplifiers, and before them, the

system was operating for the Space Shuttle program. TDRS satellites act as relay satellites, always

keeping the space-to-ground connection with stations. The rock star of this system was TDRS-

1, launched on April 1983, which was the first satellite able to see both Poles simultaneously,

performing the first Pole-to-Pole call, and was providing most of the TDRS coverage50. Originally

50 The second TDRS satellite was destroyed on January 28, 1986 in the Space Shuttle Challenger explosion.
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planned for a duration of 7 years, TDRS-1 was in operation for 27 years, until its last traveling-

wave tube failed [Zaleski 2011], leaving the craft unable to operate its retransmission activities and

expediting its retirement.

Most of recent LEO constellations do not use any TWTs. Solid state power amplifiers (SSPAs)

grabbed their share of this market since they are cheaper than vacuum electronics. OneWeb

constellation (to be launched in a few years) designed with more than eight hundred satellites

to global Internet distribution, will work with Ku-Band SSPAs. The first generation of the O3b

constellation51, providing Internet between the two tropics, were equipped with Ka-Band TWTs.

However, its second generation used SSPAs. But SSPAs cannot yet reach the high power and/or

high frequencies available with TWTs, like for most of GSO program and deep space missions with

high data traffic required. Besides, there still are recent satellite families at LEO using TWTs like

Earth observation programs —like the Sentinel missions sent by ESA or the Canadian Radarsat52

made by CSA—, meteorological programs —like ESA’s MetOp satellites—, or the CryoSat program

of ESA to measure the thickness of polar ices.

Besides, almost all ground stations in contact with spacecrafts use TWTs or klystrons.

CONCEPTION OF TRAVELING-WAVE TUBES

There exist numerous amplifiers from vacuum tubes, like triodes, magnetrons or klystrons, to

solid-state power amplifiers (SSPAs), like transistors. A popular misconception claims tubes to be

under threat of extinction for the benefit of solid-state electronics. While this is true in computers

and modern domestic electronics —except for microwave ovens—, this is plainly false in space

applications. TWTs provide a crucial service to space telecommunication and have continuously

been improved. There is no perfect amplifier for all needed applications, but there are better ones

depending on their performances, their cost and their operating regimes, and traveling-wave-tube

amplifiers still dominate satellite communications.

The number of space TWTs produced each year depends on the number of satellites launched.

Since 2010, there were approximatively twenty GSO satellites sent per year, and a communication

satellite contains between fifty to sixty amplifiers. Consequently, there are between five hundred to

two thousand space TWTs produced per year. The first manufacturer is Thales Electron Devices

51 The O3b constellation was referring to the “Other 3 billion” people without Internet access at that time.
52 In addition to TWTs for communication, Radarsat-2 is equipped with enhanced interaction klystrons (EIK) for

tomography.
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(TED) with two-thirds of the market share, followed by L3 Electron Devices with the remaining

third.

We believe that the traveling-wave tube can be considered as the purest microwave device due

to its harmonic way of using the wave-particle interaction (see appendix A). It is also probably

the hardest vacuum tube to build due to the Swiss watch precision required for highly rugged

elements. The choice of an amplifier is determined by four main characteristics (in importance

order): reliability, performance, weight, and price. Current space TWTs prices range from 40 000

to 150 000 euros depending on the precision of the device —high frequencies need smaller slow-

wave structures. Production of traveling-wave tubes requires handicraft methods. Manufacturing

is divided in two parts separated by the device pumping. The upstream part is the assembly of the

diverse components and takes one to two months. Then, an ultra high vacuum —beyond 10−8 Pa—

is obtained with pumps while heating tubes to over 500◦C. Finally, the downstream part consists

in adjustment to fix the device —all TWTs are unique—, measurements to know characteristics of

each tube, and finally, a burn-in process where devices are tested under various conditions —like

vibrations, vacuum environment, or long runs of functioning. This part takes five to six months.

The traveling-wave tube is still the most efficient device when one wants to reach high power

and/or high efficiency in space telecom. For the moment, it is more expensive to use SSPAs above

the Ku-Band instead of TWTs. Of course, in the future, development of better SSPAs53 will border

the separation between the two, but vacuum valves, especially TWTs, have not yet reached the

limit of their improvements. Several paths for optimization can be taken considering the three

parts of TWTs.

As presented by tables I, II and IV, TWTs have been dynamically improved over the years

(see [Kornfeld 2001]). Compared to their historical debut, engineers have increased the number of

collectors to three, then four, and now five, with a massive progression of the efficiency. In addition,

thanks to the invention of radiation cooling, TWTs are probably the only electronic component

operating up to 200◦C. And, the linearized TWTs, which appeared in the 1990s, fully compensate

for the tube higher non-linearity. Also, the power flexibility of the device allows remote control of

the output power from the ground.

How the electron gun injects exactly the electron beam is still under investigation. The number

of particles imposes the use of powerful computers. The type of slow-wave structures can also

53 Space SSPAs have some advantage, like a noise factor around 5 dB, compared to 30 dB for space TWTs.
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be improved (including materials used) to optimize the momentum conversion from electrons to

the electromagnetic wave. Indeed, only a quarter of the beam power is transferred. The rest of

it needs to be recovered, lest it will become unwanted thermal power —heating a TWT modifies

its performances. So the last part to be improved is the depressed collector that determines the

efficiency of the TWT. In addition, a better understanding of nonlinear effects occurring with high

amplifications is required to maximize the interaction and to grasp the wave output modulation

—the most important factor in current complex signal transmissions.

OTHER APPLICATIONS OF TRAVELING-WAVE TUBES

Furthermore, traveling-wave tubes have other applications than space ones. In addition to

ground-to-space transmissions, the device still has some use in telecommunication, including

transponders for high frequency military bands. Also, TWTs can be found in command-guidance

systems for missiles and in electronic countermeasures (ECM). While this article is focused on its

amplification role, the traveling-wave tube can also be used as a radar transmitter: the role for

which Kompfner worked on valves. For those applications, the slow-wave structure can be replaced

with coupled cavities or folded wave-guides, and the tube can be a few metres long.

Engineers in microwave radio-relays (still used nowadays) replaced TWTs in stations built from

the 1950s to the 1990s, by solid-state power amplifiers over time. Simultaneously, those relays

faced the competition with satellite communications, improved cables, and recent optical fibres.

But tubes are not gone in data transfers since TWTs can reach higher frequencies. For the new 5th

generation mobile networks, abbreviated 5G, the tweether project is funded by the European

Union, aiming to create state-of-the-art W-Band TWTs, based on a folded wave-guide slow-wave

structure. In addition, several research groups aim to build terahertz TWTs (the record is probably

1.03 THz so far [Tucek 2016]).

TWTs represent an important part of the vacuum devices market. In 1995, the total worldwide

sales of all microwave tubes were estimated at 780 million dollars (taking into account inflation),

and over half of it were for TWTs (410 million dollars) [DoD 1997]. This was, and still is, due

to the price of TWTs, from a few thousand to several hundred thousand dollars. In comparison,

simple low power magnetrons, like those in microwave ovens for the general public, are relatively

inexpensive (a few dollars).

Since the beginning of the space race, a large number of objects are orbiting for centuries in

our close neighbourhood. Collisions between them have already occurred, creating large fields
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of debris, which might make it impossible to achieve any new space mission. For example, on

August 25, 2017, the Indonesian satellite Telkom 1, orbiting at GSO, was struck by an unknown

object generating a large cloud of debris. This incident caused the breakdown of 12 000 cash

dispensers in the Indonesian archipelago [Unk. 2017]. To track the hundreds of thousand crafts and

debris in orbit, space agencies have started numerous programs to catalogue them to keep space

clean. As an example, ESA collaborates with the Research Establishment for Applied Science

(FGAN), Wachtberg, Germany, which have the Tracking and Imaging Radar (TIRA) facility. This

installation possesses a high-resolution Ku-Band imaging radar, including a traveling-wave tube,

to photograph large objects and verify their integrity [Mehrholz 2002].

Traveling-wave tubes have also a role in plasma physics. A plasma is a noisy medium and is hard

to control and to analyse. Researchers at the University of California, San Diego, noted that a helix

slow-wave structure can behave analogously to a plasma. To study self-consistent and nonlinear ef-

fects (e.g. trapping) of electrons in plasma waves, they built [Dimonte 1977, Tsunoda 1987] in 1976

a huge TWT, 2.7 meters long, with 2.1 centimetres diameter and 1 millimetre pitch for frequen-

cies around 50 MHz. Later, a team from CNRS & Aix-Marseille University, brought forward the

idea, this time to investigate the chaos transition occurring in plasma physics [Guyomarc’h 1996,

Doveil 2007]. Their tube, still used, is one of the longest TWTs for civil use in the world with its

4 meters —long enough to need magnets to compensate for the Earth magnetic field.

CONCLUSION

The same year Telstar 1 reached posterity, Clarke claimed, with his Third Law, that “any

sufficiently advanced technology is indistinguishable from magic” [Clarke 1973]. If long-distance

communication seemed impossible a hundred years ago, the traveling-wave tube made it possible

from outer space.

The traveling-wave tube is one of the most appropriate vacuum electron tubes in the field of

telecommunication. Conceiving one requires the precision of a goldsmith and to appreciate the

exchange of momentum between electromagnetic waves and electrons (see Appendix A). Relaying

on decades of progress in delay-lines and thermionic valves, Haeff, Lindenblad and Kompfner were

successively able to understand the intuitive basis of this process. They imagined a device where

the electron beam accompanied the wave by making their velocities almost equal.

Since then, TWTs appeared on the majority of spacecrafts; from LEO research probes, to deep

space missions, and GSO communication satellites. Numerous people and organizations took part
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in their development and expansion. The tube is still at the cutting edge of space power amplifiers

and will certainly continue for several decades ; their remote future will depend on further researches

to enhance its competitiveness. As the challenges continue to grow with space exploration reaching

always further, or Internet creating always more data, the research and industrial communities are

still very active to improve them.

But back in the 1950s, a lot of vacuum tube designs were available. Yet, in less than two decades,

the TWT was on every continent and even in space. Its success was due to many factors. The

early researches, lead by Kompfner and Pierce, showed encouraging results and were announced

at popular conferences and journals among electrical engineers. The devices they built were able

to generate waves at high power and high frequencies, but mainly they had large bandwidths for

low noise levels, making TWTs a perfect choice for the new requests on communication systems.

Consequently, a lot of competitors appeared, allowing a quick development of the device through

all of its aspects. Most important, the device appeared in peace time, at the time when people were

interested by the emergence of the television. Between the 1950s and the 1980s, the appearance

of microwave radio-relays, made thanks to TWTs, created one of the first public global networks

across continents.

Extension of this network was possible via space. During the end of the 1950s, and after

attempts at using the Moon as a relay, Clarke, Pierce, and Rosen put forward fundamental ideas

to develop communication satellites. The traveling-wave tube was certainly a part of the success,

since it allowed satellites to be cost-effective. Successive accomplishments of Telstar 1, Relay 1, and

Syncom 2 and 3, proved the considerable advantage of space communications and drew mandkind

into a new era.

APPENDIX A: THE WAVE-PARTICLE INTERACTION

Predictions about wave-matter interactions occurring in traveling-wave tubes are made with the

same tools as to study plasma evolutions, because the electron beam is a plasma itself with a single

species. Basically, there are three model classes54: fluid, kinetic (like Vlasovian description) and

N -body descriptions, each with a wide range of different models and variations. We choose to focus

on the latter like [Elskens 2003] from a hamiltonian approach. In the particle description (a.k.a.

discrete particle or finite N description), each particle of the system is governed by elementary

54 Quantum effects are not significant in space TWTs since electron energies are not high enough.
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Figure 3. Pendulum phase portrait (p, q) of the wave-electron interaction. The width of the cat’s eye

enclosed by the separatrix (dashed curve) is proportional to
√
U . This portrait is in the reference frame of

the wave, so p = 0 correspond to synchronism with the wave. The further a particle momentum is from

p = 0, the less its dynamics is affected. A resonant motion occurs when the particle dynamics is significantly

affected by the wave (when both wave and particles velocities match), viz. in the range |p| . 3
√
U .

mechanics (like the Lorentz force). Discrete N -body description for N → ∞ become continuous

distribution functions within the kinetic picture [Elskens 2014]. The N -body description is hardly

ever used to describe the beam in TWTs for it involves an enormous number of degrees of freedom,

which increases its computing costs and running time excessively. However, this description55 is a

remarkably intuitive way to represent wave-particle dynamics.

We start from a system composed of a single charged particle with coordinate z = q/k and

momentum p, subject to a sinusoidal electrostatic potential56 with wavenumber k. The equation

of motion of this particle reads

q̈ = −kU sin q , (2)

with U > 0. This system obeys the same mathematical relation as the nonlinear pendulum if we

55 The particle description is common in Free Electron Laser (FEL) characterization (see [Bonifacio 1990] for such

description and [Pellegrini 2012] for a historical review on FELs). It is also used to study Hamiltonian chaos (see

[Escande 2010] and the historical review [Escande 2017]) and the laser-plasma interaction (see [Bénisti 2016]).
56 Indeed, we consider an electron beam with initial speed vel,0 near resonance with a sinusoidal electric field

Ez(z, t) = Ez,0 sin(kz − ωt) projected on the z-axis of the beam, with a phase velocity vph = ω/k, such that

vel,0 ' vph. From Newton’s second law, we write the equation of motion of each electron mez̈ = −|e|Ez, or

z̈′ =
−|e|Ez,0

me
sin(kz′) , (1)

after the substitution z′ = z − vpht to the reference frame where the wave is immobile, with |e| the elementary

electric charge and me the electron mass. Equation (1) is the same as eq. (2) with U = |e|Ez,0/me, leading to

the same phase portrait as figure 3. Acceleration areas are where kz′ ∈ [−π + 2nπ, 0 + 2nπ], with n ∈ Z, and

deceleration areas range where kz′ ∈ [0 + 2nπ, π + 2nπ]. This effect causes a particle grouping, called electron

bunching.
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Figure 4. Wave-electron momentum exchange for a self-consistent system, inspired from [Firpo 2001]. The

width of the cat’s eye (dashed lines) is proportional to
√
U ∼ I1/4. At time t0 (left panel), we consider a

monokinetic beam of speed vel where particles are represented by the continuous black curve. We add a

wave of phase velocity vph . vel, and trajectories get modulated. Some particles get accelerated by the wave,

and others get decelerated ; it turns out that the deceleration effect dominates the acceleration, so that the

total momentum of particles decreases. This lost momentum is transferred to the wave, whose amplitude

(hence the cat’s eye size) increases. At later times, resp. t1 and t2, the wave is amplified (central panel), and

this process goes on until particles get trapped, which initiates the nonlinear regime due to bunching (right

panel). The reverse effect occurs if we take vph & vel: particles will gain momentum and the wave amplitude

will decrease [Doveil 2005, Escande 2010]. Remark that this example expressed the amplification in time

whereas the amplification of a TWT is in space (see figure 5). For the traveling-wave tube, nonlinearity

effects (as at t2) have been studied since the early years [Cutler 1956].

let kU = g/l, with g the gravity acceleration, l the length of the pendulum and q the angle with

the vertical axis.

The kinetic energy of this particle, with its mass set to 1, is p2/2 ; its potential energy is

−U cos q, and the sum of both is the total energy (namely, the hamiltonian)

H(p, q) =
p2

2
− U cos q . (3)

Since this hamiltonian is time-independent, it is also a constant of motion in phase space (p, q).

Figure 3 shows typical orbits for the particle trajectory depending on the value of H. If the particle

is located between q = 0 and q = π, it faces a potential barrier at π: it is slowed-down because of

the effect of the field. If the particle is located between q = −π and q = 0, it faces a potential well

at 0 and is accelerated. Depending on the value of H, we have

— For H > U , the particle is not confined spatially and reaches all possible positions q. It is

just like the pendulum in perpetual rotation in one direction (forward for p > 0, backward
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for p < 0). Then there are two possible cases. If H � U , the particle does not “see” the

field, and its momentum is barely modified. If H & U , the particle is near resonance with

the field: its momentum is modulated depending on the wave.

— For −U < H < U , the particle is trapped in the potential well and traces a closed curve

in phase space which never reaches −π and π positions. This corresponds to the pendulum

librating between two points, without having enough energy to complete a full turn. Again,

one may distinguish between 1−H/U � 1, in which case the particle is close to the separatrix,

undergoes large momentum changes, and spends much time close to the X point, and the

case 1−H/U ∼ O(1) in which the particle is “deeply trapped” and oscillates mildly around

the O point.

— For H = U , the particle is located on the separatrix which is made of two unstable orbits

forming a “cat’s eye” in phase space between libration and rotation motions.

However, this model is incomplete. Indeed, its neglects the wave alteration by the presence of

charged particles.

A model taking into account the action of the wave on electrons and the feedback from electrons

to the wave, is called self-consistent. When adding the energy of harmonic oscillators corresponding

to the free oscillation of the wave, one finds a self-consistent hamiltonian like

H(p, z, I, ϕ) =
∑
r

p2r
2

+
∑
j

ωjIj −
∑
j

∑
r

Uj cos(kjzr − ϕj) , (4)

for waves (j) and particles (r), where the electrostatic energy of a wave is proportional to the square

of its amplitude Uj ∝
√
Ij , and waves have phases ϕj , nominal angular frequencies ωj = vph,jkj ,

phase velocities vph,j and wavenumbers kj . The abrupt transition between relations (3) and (4)

is further detailed in [Antoni 1998, Elskens 2003]. As the hamiltonian (4) is invariant under time

translations (t′ := t+ b), the dynamics conserves total energy H. Since (4) is also invariant under

space translations (z′r := zr + c, ϕ′j := ϕj + kjc), the dynamics also conserves total momentum

P =
∑
r

pr +
∑
j

kjIj , (5)

which is a simple sum of particle and wave momenta. The wave-electron interaction is an effect

based on momentum exchange. This effect is sketched on figure 4.

The physical process in traveling-wave tubes is easy to appreciate (see figure 5). The slow-wave

structure of the tube is designed to impose quasi-resonance between the phase velocity of the wave
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Figure 5. One-dimensional time simulation of a traveling wave tube (excluding tapers or attenuations) from

a self-consistent hamiltonian model [Minenna 2017]. Initial parameters (like cathode current and potential,

coupling impedances, and phase velocity) are set to ensure the amplification to reach the power saturation

at the end of the tube (z = 1), and space charge effects are taken into account. Each dot correspond to

a macro-electron (with charge |Q| ∼ 200 000 |e|). At the beginning of the tube (z = 0), all particles are

emitted with the same velocity vel,0. Particles with vel < vel,0 have given their momenta to the wave, and

since there are more particles below vel = vel,0, then the wave is amplified. The dashed line represent the

phase velocity vph of the wave. Nonlinear effects (trapping) start to occur approximatively when z = 0.8

(some particles crossed the separatrix centred on vph).

vph along the propagation axis, and the electron speed vel from the electron gun. As shown on

figure 2, the phase velocity in helix tubes is vph ' 2π c a∅/d, with the light celerity c. To obtain

amplification of the wave, one just needs to ensure vel & vph. During the interaction in the tube, the

total momentum (5) is conserved, so electrons on average will lose their momentum for the benefit

of the wave. This effect is linear (because the amplification gain is linear) until particles have lost

enough momentum for crossing the separatrix in their individual (z, p) space and become trapped.
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More realistic models can contain in particular the space charge effect (viz. the Coulombian effect):

electrons repel each other since they have the same charge sign. This effect is noticeable in TWTs,

since it reduces the electron bunching and requires slightly longer slow-wave structures. We also

remark that in real TWTs, emitted electrons are not forming a perfect thin and monokinetic beam,

as well as the phase velocity is not constant and losses occur.
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plificateurs à ondes progressives”, Ann. Télécommun., 1(12): 283-302, doi: 10.1007/BF03000767.

[Blanc-Lapierre 1947] Blanc-Lapierre A., Lapostolle P., Voge J. P. et Wallanschek R. Mai 1947. “Sur la
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