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A priori error for unilateral contact problems with augmented Lagrange multipliers and IsoGeometric Analysis

The aim of the present work is to extend the a priori error for contact problems with an augmented Lagrangian method. We focus on unilateral contact problem without friction between an elastic body and a rigid one. We consider the pushforward of a NURBS space of degree p for the displacement and the pushforward of a B-Spline space of degree p -2 for the Lagrange multipliers. This specific choice of space is a stable couple of spaces. An optimal a priori error estimate inspired from the Nitsche's method theory is provided and compared to the regularity of the solution. We perform a numerical validation with two-and three-dimensions in small and large deformations with N 2/S0 and N 3/S1 elements.

Introduction

The purpose of this paper is to study theoretically a Lagrange multiplier method penalized in a consistent way, the augmented Lagrangian method. Little work has been done in this area and, as far as we know, this result is the first theoretical result of an optimal a priori estimate for the contact problem for an augmented Lagrangian method using Isogeometrical Analysis. This article is based on the article by Erik Burman and his co-authors [START_REF] Burman | Augmented Lagrangian finite element methods for contact problems[END_REF], where it used Brouwer's fixed point theorem to show the existence and uniqueness of the approximate solution. This recent work is inspired by the work carried out on the contact of Nitsche's contact methods, where we use the coercivity and the hemi-continuity of the operator, a method that has proven its stability, its advantages and its robustness in many cases , for example fictitious domain and in dynamic cases [START_REF] Chouly | A Nitsche-Based Method for Unilateral Contact Problems: Numerical Analysis[END_REF][START_REF] Chouly | Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: Theory and numerical experiments[END_REF][START_REF] Chouly | A Nitsche finite element method for dynamic contact : 1. Semi-discrete problem analysis and time-marching schemes[END_REF][START_REF] Chouly | A Nitsche finite element method for dynamic contact : 2. Semi-discrete problem analysis and time-marching schemes[END_REF][START_REF] Fabre | A fictitious domain method for frictionless contact problems in elasticity using Nitsche's method[END_REF][START_REF] Mlika | An unbiased Nitsche's formulation of large deformation frictional contact and self-contact[END_REF][START_REF] Chouly | An Overview of Recent Results on Nitsche's Method for Contact Problems, Geometrically Unfitted Finite Element Methods and Application[END_REF].

The methods for contact problems have been increasingly studied in recent years and remain, especially in the industry, a central point due to its intrinsic non-linearity at the edge of contact and poor conditioning [START_REF] Alart | A generalized Newton method for contact problems with friction[END_REF][START_REF] Laursen | Computational contact and impact mechanics[END_REF][START_REF] Wriggers | Computational contact mechanics[END_REF][START_REF] Konyukhov | [END_REF].

In order to take into account this lack of robustness and to obtain an accurate method, work using the framework of isogeometric analysis [START_REF] Hughes | Isogeometric analysis: Cad, finite elements, nurbs, exact geometry and mesh refinement[END_REF] increases. Indeed, the geometries are precisely or exactly approximate and also smoother. Moreover, in the industry, the different geometries are initially built thanks to CAD, which uses Bezier curves and their generalizations: B-Splines and NURBS. However, the isogeometric paradigm is based on the use of these basic functions in order to discretize the partial differential equations. They have many advantages, including the use of fewer degrees of freedom in order to represent the bodies and higher approximation analysis. Isogeometric analysis methods for contact problems have been introduced in [START_REF] Zavarise | The node-to-segment algorithm for 2d frictionless contact: Classical formulation and special cases[END_REF][START_REF] Temizer | Contact treatment in isogeometric analysis with NURBS[END_REF][START_REF] Temizer | Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS[END_REF][START_REF] De Lorenzis | A mortar formulation for 3d large deformation contact using nurbs-based isogeometric analysis and the augmented lagrangian method[END_REF][START_REF] De Lorenzis | Isogeometric contact: A review[END_REF][START_REF] De Lorenzis | Isogeometric collocation: Neumann boundary conditions and contact[END_REF], using Lagrange methods or augmented Lagrangian methods and also see those using primal and dual elements [START_REF] Wohlmuth | A mortar finite element method using dual spaces for the lagrange multiplier[END_REF][START_REF] Hüeber | A primal-dual active set strategy for non-linear multibody contact problems[END_REF][START_REF] Hüeber | A primal-dual active set algorithm for three-dimensional contact problems with coulomb friction[END_REF][START_REF] Popp | Dual quadratic mortar finite element methods for 3d finite deformation contact[END_REF][START_REF] Seitz | Isogeometric dual mortar methods for computational contact mechanics[END_REF].

In this paper, we theoretically and numerically extend a Lagrange multiplier method [START_REF] Antoln | A priori error for unilateral contact problems with multiplier and IsoGeometric Analysis[END_REF] using the theory present in [START_REF] Chouly | A Nitsche-Based Method for Unilateral Contact Problems: Numerical Analysis[END_REF][START_REF] Chouly | Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: Theory and numerical experiments[END_REF][START_REF] Chouly | An Overview of Recent Results on Nitsche's Method for Contact Problems, Geometrically Unfitted Finite Element Methods and Application[END_REF] for Nitsche's methods. We continue with the stable choice of multiplier space proposed in [START_REF] Brivadis | Isogeometric mortar methods[END_REF] and used in [START_REF] Antoln | A priori error for unilateral contact problems with multiplier and IsoGeometric Analysis[END_REF]. For the numerical point of view, an active set strategy method is used in order to help the convergence of Newton-Raphson iterations [START_REF] Hüeber | A primal-dual active set strategy for non-linear multibody contact problems[END_REF][START_REF] Hüeber | A primal-dual active set algorithm for three-dimensional contact problems with coulomb friction[END_REF].

Finally, the performance of this method will be presented on tests in small and large deformations, using an internal development code, the free library of Igatools [START_REF] Pauletti | Igatools: An isogeometric analysis library[END_REF].

In Section 1, we will introduce Signorini's problem and the various notations. Section 2 is devoted to the description of discrete spaces and their properties. In Section 3, an a priori optimal estimate will be presented. In the last section, we will illustrate cases in small and large deformations for different types of elements.

Preliminaries and notations 1.Unilateral contact problem

We consider that Ω ⊂ R d (d =2 or 3) is a bounded regular domain which represents the reference configuration of an elastic body. Let Γ be the boundary domain which is split into three non overlapping parts, the Dirichlet part Γ D with meas(Γ D ) > 0, the Neumann one Γ N and Γ C the potential zone of contact. The elastic body Ω is submitted to volume load f , to surface force on Γ N and a homogeneous Dirichlet condition at Γ D . For the next of the section, we define our normal vector n as the unit normal vector of the rigid body and by n Ω the outward normal vector on Γ.

In the following section of the article, we denote the displacement by u of the domain Ω, the linearized strain tensor by ε(u) = 1 2 (∇u + ∇u T ) and the stress tensor by σ = (σ ij ) 1≤i,j≤d is given by σ(u) = Aε(u), where A = (a ijkl ) 1≤i,j,k,l≤d is a fourth order symmetric tensor verifying the usual uniform ellipticity and boundedness properties. We decompose any displacement in Ω and any density of surface force on Γ as a normal and a tangential components, as follows:

u = u n n + u t and σ(u)n = σ n (u)n + σ t (u).
We write the classical unilateral contact problem between an elastic body and a rigid one, find u such that div σ(u)

+ f = 0 in Ω, σ(u) = Aε(u) in Ω, u = 0 on Γ D , σ(u)n Ω = on Γ N , (1) 
and the Signorini condition without friction at Γ C are:

u n ≥ 0 (i), σ n (u) ≤ 0 (ii), σ n (u)u n = 0 (iii), σ t (u) = 0 (iv).
(
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We consider the following Hilbert spaces to describe the variational formulation of ( 1)-( 2):

V := H 1 0,Γ D (Ω) d = {v ∈ H 1 (Ω) d , v = 0 on Γ D }, W = { v n | Γ C , v ∈ V },
and their dual spaces V , W endowed with their usual norms and we denote by •, • W ,W the duality pairing between W and W . We introduce the following notations, we denote by • 3/2+s,Ω the norm on H 3/2+s (Ω) d and by • s,Γ C the norm on H s (Γ C ). For all u and v in V , we set:

a(u, v) = Ω σ(u) : ε(v) dΩ and L(v) = Ω f • v dΩ + Γ N • v dΓ.
We define the classical variational inequality of ( 1)-(2) (see [START_REF] Lions | Non-homogeneous boundary value problems and applications[END_REF]) by finding

u ∈ K C := {v ∈ V, v n ≥ 0 on Γ C } such as: a(u, v -u) ≥ L(v -u), ∀v ∈ K C , (3) 
where K C is the closed convex cone of admissible displacement fields satisfying the non-interpenetration conditions.

It is well known that a Newton-Raphson's method cannot be used directly to solve this formulation (3). One method is to introduce a Lagrange method denoted by λ, which represents the surface normal force. For all λ in W , we denote b(λ, v) = -λ, v n W ,W and M is the classical convex cone of multipliers on Γ C :

M := {µ ∈ W , µ, ψ W ,W ≤ 0 ∀ψ ∈ H 1/2 (Γ C ), ψ ≥ 0 a.e. on Γ C }.
We can now rewrite the complementary conditions as follows:

u n ≥ 0 (i), λ ≤ 0 (ii), λu n = 0 (iii). ( 4 
)
The mixed formulation [START_REF] Belgacem | Hybrid finite element methods for the Signorini problem[END_REF] of the unilateral contact problem (1) and (4) consists in finding (u, λ) ∈ V × M such that:

a(u, v) -b(λ, v) = L(v), ∀v ∈ V, b(µ -λ, u) ≥ 0, ∀µ ∈ M. (5) 
Stampacchia's Theorem ensures that problem (5) admits a unique solution.

The existence and uniqueness of the solution (u, λ) of the mixed formulation has been established in [START_REF] Haslinger | Numerical methods for unilateral problems in solid mechanics[END_REF] and it holds λ = σ n (u). So, the following classical inequality (see [START_REF] Bazilevs | Isogeometric analysis: Approximation, stability and error estimates for h-refined meshes[END_REF]) holds:

Theorem 1.1. Given s > 0, if the displacement u verifies u ∈ H 3/2+s (Ω) d , then λ ∈ H s (Γ C )
and it holds:

λ s,Γ C ≤ u 3/2+s,Ω . (6) 
With regards to writing the augmented Lagrange multiplier methods, we use the equivalence between the complementary condition (4) and the following equality with r > 0 a augmented Lagrangian parameter:

λ = [λ + ru n ] -, (7) 
where [•] -is the negative part, i.e.

[z] -= min(0, z). This method involved penalizing the multiplier to ensure the contact conditions are verified by the multiplier.

Using this equality, we can express the augmented Lagrangian method (see [START_REF] Alart | A generalized Newton method for contact problems with friction[END_REF][START_REF] Bićanić | Semismooth newton method for frictional contact between pseudo-rigid bodies[END_REF][START_REF] Renard | Generalized Newton's methods for the approximation and resolution of frictional contact problems in elasticity[END_REF]) as follows

       a(u, v) + Γ C [λ + ru n ] -v n dΓ = L(v) ∀v, - 1 r Γ C (λ -[λ + ru n ] -)µ dΓ = 0 ∀µ. (8) 
Optionally, the second line of the system (8) can be exploited to replace [λ + ru n ] -in the first line with λ, we obtain

       a(u, v) + Γ C λv n dΓ = L(v) ∀v, - 1 r Γ C (λ -[λ + ru n ] -)µ dΓ = 0 ∀µ. (9) 
We noticed that, the augmented Lagrange multiplier seeks stationary points of the functional:

L(ϕ, λ) := 1 2 a(u, u) + 1 2r [λ + ru n ] - 2 0,Γ C - 1 2r λ 2 0,Γ C . (10) 
The aim of this paper is to discretize the problem (8) within the isogeometric paradigm, i.e. with splines and NURBS. To choose properly the space of Lagrange multipliers properly, we inspire by [START_REF] Brivadis | Isogeometric mortar methods[END_REF][START_REF] Antoln | A priori error for unilateral contact problems with multiplier and IsoGeometric Analysis[END_REF]. In what follows, we introduce NURBS spaces and assumptions together with relevant choices of space pairings. In particular, following [START_REF] Brivadis | Isogeometric mortar methods[END_REF][START_REF] Antoln | A priori error for unilateral contact problems with multiplier and IsoGeometric Analysis[END_REF], we focus on the definitions of B-Spline displacements of degree p and multiplier spaces of degree p -2.

NURBS discretisation

In this section, we give a brief overview on isogeometric analysis providing the notation and concept needed in the next sections. Firstly, we define B-Splines and NURBS in one-dimension. Secondly, we extend these definitions to the multi-dimensional case. Finally, we define the primal and the dual spaces for the contact boundary. We denote by Z = {ζ 1 , . . . , ζ E } as vector of breakpoints, i.e. knots taken without repetition, and m j , the multiplicity of the breakpoint ξ j , j = 1, . . . , E. We define by p the degree of univariate B-Splines and by Ξ an open univariate knot vector, where the first and last entries are repeated (p + 1)-times. Ξ is the open knot vector associated to Z where each breakpoint is repeated m j -times, i.e.

Ξ := {0 = ξ 1 = • • • = ξ p+1 < ξ p+2 ≤ . . . ≤ ξ η < ξ η+1 = • • • = ξ η+p+1 }.
In what follows, we suppose that m 1 = m E = p + 1, while m j ≤ p -1, ∀j = 2, . . . , E -1. We define by Bp i (ζ), i = 1, . . . , η the i-th univariable B-Spline based on the univariate knot vector Ξ and the degree p. We denote by S p (Ξ) = Span{ Bp i (ζ), i = 1, . . . , η}. Moreover, for further use we denote by Ξ the sub-vector of Ξ obtained by removing the first and the last knots.

Multivariate B-Splines in dimension d are obtained by tensor product of univariate B-Splines. For any direction δ ∈ {1, . . . , d}, we define by η δ the number of B-Splines, Ξ δ the open knot vector and Z δ the breakpoint vector. Then, we define the multivariate knot vector by Ξ = (Ξ 1 ×. . .×Ξ d ) and the multivariate breakpoint vector by Z = (Z 1 × . . . × Z d ). We introduce a set of multiindices

I = {i = (i 1 , . . . , i d ) | 1 ≤ i δ ≤ η δ }.
We build the multivariate B-Spline functions for each multi-index i by tensorization from the univariate B-Splines, let ζ ∈ Z be a parametric coordinate of the generic point:

Bp i (ζ) = Bp i 1 (ζ 1 ) . . . Bp i d (ζ d ).
Let us define the multivariate spline space in the reference domain by (for more details, see [START_REF] Brivadis | Isogeometric mortar methods[END_REF]):

S p (Ξ) = Span{ Bp i (ζ), i ∈ I}.
We define N p (Ξ) as the NURBS space, spanned by the function

N p i (ζ) with N p i (ζ) = ω i Bp i (ζ) Ŵ (ζ)
,

where {ω i } i∈I is a set of positive weights and Ŵ

(ζ) = i∈I ω i Bp i (ζ) is the weight function and we set N p (Ξ) = Span{ N p i (ζ), i ∈ I}.
In what follows, we will assume that Ω is obtained as image of Ω =]0, 1[ d through a NURBS mapping ϕ 0 , i.e. Ω = ϕ 0 ( Ω). Moreover, in order to simplify our presentation, we assume that Γ C is the image of a full face f of Ω, i.e. Γ C = ϕ 0 ( f ). We denote by ϕ 0,Γ C the restriction of ϕ 0 to f . A NURBS surface, in d=2, or solid, in d=3, is parameterised by

C(ζ) = i∈I C i N p i (ζ),
where C i∈I ∈ R d , is a set of control point coordinates. The control points are somewhat analogous to nodal points in finite element analysis. The NURBS geometry is defined as the image of the reference domain Ω by ϕ, called geometric mapping, Ω t = ϕ( Ω).

We remark that the physical domain Ω is split into elements by the image of Z through the map ϕ 0 . We denote such a physical mesh Q h and physical elements in this mesh by Q. Γ C inherits a mesh that we denote by Q h Γ C . Elements on this mesh will be denoted as

Q C .
Finally, we introduce some notations and assumptions on the mesh. Assumption 1. The mapping ϕ 0 is considered to be a bi-Lipschitz homeomorphism. Furthermore, for any parametric element Q,

ϕ 0 Q is in C ∞ ( Q) and for any physical element Q, ϕ -1 0 Q is in C ∞ ( Q).
Let h Q be the size of an physical element Q, it holds h Q = diam(Q). In the same way, we define the mesh size for any parametric element. In addition, the Assumption 1 ensures that both size of mesh are equivalent. We denote the maximal mesh size by h = max

Q∈Q h h Q . Assumption 2. The mesh Q h is quasi-uniform, i.e there exists a constant θ such that h Q h Q ≤ θ with Q and Q ∈ Q h .
2 Discrete spaces and their properties

We will now focus on the definition of spaces on the domain Ω, following the ideas of [START_REF] Brivadis | Isogeometric mortar methods[END_REF].

For displacements, we denote by V h ⊂ V the space of mapped NURBS of degree p with appropriate homogeneous Dirichlet boundary condition:

V h := {v h = vh • ϕ -1 0 , vh ∈ N p (Ξ) d } ∩ V.
For multipliers, we define the space of B-Splines of degree p -2 on the potential contact zone Γ C = ϕ 0,Γ C ( f ). We denote by Ξ f the knot vector defined on f and by Ξ f the knot vector obtained by removing the first and last value in each knot vector. We define:

Λ h := {λ h = λh • ϕ -1 0,Γ C , λh ∈ S p-2 ( Ξ f )}.
The scalar space Λ h is spanned by mapped B-Splines of the type Bp-2 i (ζ) • ϕ -1 0,Γ C for i belonging to a suitable set of indices. In order to reduce our notation, we call K the unrolling of the multi-index i, K = 0 . . . K and remove super-indices: for K corresponding a given i, we set

BK (ζ) = Bp-2 i (ζ), B K = BK • ϕ -1
0,Γ C and:

Λ h := Span{B K (x), K = 0 . . . K}. (11) 
For further use, for v ∈ L 2 (Γ C ) and for each K = 0 . . . K, we denote by (Π h λ •) K the following weighted average of v:

(Π h λ v) K = Γ C vB K dΓ Γ C B K dΓ , (12) 
and by Π h λ the global operator such as:

Π h λ v = K K=0 (Π h λ v) K B K . ( 13 
)
We can now define the discrete formulation, as follows:

       a(u h , v h ) + Γ C [λ h + r(Π h λ u h n )] -(Π h λ v h n ) dΓ = L(v h ) ∀v h , - 1 r Γ C (λ h -[λ h + r(Π h λ u h n )] -)µ h dΓ = 0 ∀µ h . (14) 
In the following, we define r = r 0 h .

For any

Q C ∈ Q h Γ C
, QC denotes the support extension of Q C (see [START_REF] Bazilevs | Isogeometric analysis: Approximation, stability and error estimates for h-refined meshes[END_REF][START_REF] Beirão Da Veiga | Mathematical analysis of variational isogeometric methods[END_REF]) defined as the image of supports of B-Splines that are not zero on QC = ϕ -1 0,Γ C (Q C ). We notice that the operator verifies the following estimate error: Lemma 2.1. Let ψ ∈ H s (Γ C ) with 0 ≤ s ≤ 1, the estimate for the local interpolation error reads:

ψ -Π h λ (ψ) 0,Q C h s ψ s, QC , ∀Q C ∈ Q h Γ C . ( 15 
)
Proof: see the article [START_REF] Antoln | A priori error for unilateral contact problems with multiplier and IsoGeometric Analysis[END_REF].

Lemma 2.2. Let a, b ∈ R, then we have:

([a] --[b] -) 2 ≤ ([a] --[b] -)(a -b), |[a] --[b] -| ≤ |a -b| . Proof: Using that for c ∈ R, [c] 2 -= c[c] -, it holds: ([a] --[b] -) 2 = [a] 2 --[a] -[b] --[a] -[b] -+ [b] 2 - ≤ a[a] --a[b] --b[a] -+ b[b] -= ([a] --[b] -)(a -b).
The second inequality is trivial if a and b have the same sign. If a > 0 and b < 0, it holds:

|[a] --[b] -| = |b| ≤ |a -b| .
On the contrary, if a < 0 and b > 0, we get:

|[a] --[b] -| = |a| ≤ |a -b| .
In the next section, we prove the existence and the uniqueness of the discrete solution. In the article of Burman's article [START_REF] Burman | Augmented Lagrangian finite element methods for contact problems[END_REF], they use a Brouwer's fixed point. In order to prove our result [START_REF] Antoln | A priori error for unilateral contact problems with multiplier and IsoGeometric Analysis[END_REF] in the augmented context, we use the proof using in Nitsche's method [START_REF] Chouly | A Nitsche-Based Method for Unilateral Contact Problems: Numerical Analysis[END_REF][START_REF] Chouly | Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: Theory and numerical experiments[END_REF][START_REF] Chouly | An Overview of Recent Results on Nitsche's Method for Contact Problems, Geometrically Unfitted Finite Element Methods and Application[END_REF], thanks to the hemi-continuity and monotonicity of the operator. First, prove the coercivity property. Then, the existence and uniqueness of the result is deduced from the hemi-continuity of the non-linear operator which corresponds to discrete problem of [START_REF] Chouly | Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: Theory and numerical experiments[END_REF]. Now, we define the following operator

B h from V h × Λ h to V h × Λ h , for all u h , v h ∈ V h and λ h , µ h ∈ Λ h : (B h (u h , λ h ); (v h , µ h )) := a(u h , v h )+ Γ C [λ h +r(Π h λ u h n )] -(Π h λ v h n ) dΓ- 1 r Γ C (λ h -[λ h +r(Π h λ u h n )] -)µ h dΓ. (B h (u h , λ h ); (v h , µ h )) := a(u h , v h ) + 1 r Γ C [λ h + r(Π h λ u h n )] -(µ h + r(Π h λ v h n )) dΓ - 1 r Γ C λ h µ h dΓ.
Let us define the following discrete linear operators:

P h r : V h × Λ h → L 2 (Γ C ) (v h , µ h ) → µ h + r(Π h λ v h n ). , P r : V h × Λ h → L 2 (Γ C ) (v h , µ h ) → µ h + rv h n .
It holds:

(B h (u h , λ h ); (v h , µ h )) := a(u h , v h ) + 1 r Γ C [P h r (u h , λ h )] -P h r (v h , µ h ) dΓ - 1 r Γ C λ h µ h dΓ.
First, we need to prove that B h is coercive.

(B h (u h , λ h ) -B h (v h , µ h ); (u h , λ h ) -(v h , µ h )) = I + II + III, with I = a(u h -v h , u h -v h ), II = 1 r Γ C [P h r (u h , λ h )] --[P h r (v h , µ h )] -P h r (u h , λ h ) -P h r (v h , µ h ) dΓ, III = - 1 r Γ C λ h -µ h λ h -µ h dΓ.
We denote by α the ellipticity constant of a(•, •) on V , it holds:

I ≥ α u h -v h 2 1,Ω
.

Using the trace's theorem and Lemma 2.2, we get:

II = 1 r Γ C [P h r (u h , λ h )] --[P h r (v h , µ h )] -P h r (u h , λ h ) -P h r (v h , µ h ) dΓ ≥ r -1 2 [P h r (u h , λ h )] --[P h r (v h , µ h )] - 2 0,Γ C
And obviously, we have:

III = -r -1 2 λ h -µ h 2 0,Γ C .
We deduce from the previous estimates that:

(B h (u h , λ h ) -B h (v h , µ h ); (u h , λ h ) -(v h , µ h )) ≥ α u h -v h 2 1,Ω + r -1 2 [P h r (u h , λ h )] --[P h r (v h , µ h )] - 2 0,Γ C -r -1 2 λ h -µ h 2 0,Γ C
Thus, if r 0 is sufficiently large, we get the coercivity, as follows:

(B h (u h , λ h ) -B h (v h , µ h ); (u h , λ h ) -(v h , µ h )) ≥ C u h -v h 2 1,Ω . Now, we prove the hemi-continuity of B h . Let s, t ∈ [0, 1], u h , v h ∈ V h and λ h , µ h ∈ Λ h , we get: (B h (u h -tv h , λ h -tµ h ) -B h (u h -sv h , λ h -sµ h ); (v h , µ h )) ≤ |s -t| a(v h , v h ) + - 1 r Γ C (λ h -tµ h )µ h dΓ + 1 r Γ C (λ h -sµ h )µ h dΓ + 1 r Γ C [λ h -tµ h + r((Π h λ u h n ) -t(Π h λ v h n ))] --[λ h -sµ h + r((Π h λ u h n ) -s(Π h λ v h n ))] -µ h + r(Π h λ v h n ) dΓ.
Using the trace's theorem and Lemma 2.2, it holds

(B h (u h -tv h , λ h -tµ h ) -B h (u h -sv h , λ h -sµ h ); (v h , µ h )) ≤ |s -t| a(v h , v h ) + |s -t| r -1 2 µ h 2 0,Γ C + |s -t| r -1 2 µ h + r(Π h λ v h n ) 2 0,Γ C . Hence B h is hemi-continuous.
Let us recall that the following inequalities (see [START_REF] Bazilevs | Isogeometric analysis: Approximation, stability and error estimates for h-refined meshes[END_REF]) are true for the primal and the dual space, before concentrating on the analysis of ( 14).

Theorem 2.3. Let a given quasi-uniform mesh and let r, s be such that 0 ≤ r ≤ s ≤ p + 1. Then, there exists a constant dependence only on p, θ, ϕ 0 and Ŵ such that for any v ∈ H s (Ω) there exists an approximation

v h ∈ V h such that v -v h r,Ω h s-r v s,Ω . (16) 
We will also make use of the local approximation estimates for splines quasi-interpolants that can be found e.g. in [START_REF] Bazilevs | Isogeometric analysis: Approximation, stability and error estimates for h-refined meshes[END_REF][START_REF] Beirão Da Veiga | Mathematical analysis of variational isogeometric methods[END_REF].

Lemma 2.4. Let λ ∈ H s (Γ C ) with 0 ≤ s ≤ p -1,
then there exists a constant depending only on p, ϕ 0 and θ, there exists an approximation λ h ∈ Λ h such that:

h -1/2 λ -λ h -1/2,Q C + λ -λ h 0,Q C h s λ s, QC , ∀Q C ∈ Q h Γ C . (17) 

A priori error analysis

In this section, we present an optimal a priori error estimate for the unilateral contact problem using augmented Lagrangian method. Our estimates follows the ones for finite elements, provided in Nitsche's context [START_REF] Chouly | A Nitsche-Based Method for Unilateral Contact Problems: Numerical Analysis[END_REF][START_REF] Chouly | Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: Theory and numerical experiments[END_REF][START_REF] Chouly | An Overview of Recent Results on Nitsche's Method for Contact Problems, Geometrically Unfitted Finite Element Methods and Application[END_REF]. For any p, we prove our method to be optimal for solutions with regularity up to 5/2. Thus, optimality for the displacement is obtained for any p ≥ 2. The cheapest and more convenient method proved optimal corresponds with the choice p = 2. We also present the choice p = 3 which produces continuous pressures. Larger values of p may be of interest but, on the other hand, the error bounds remain limited by the regularity of the solution, i.e. , up to Ch 3/2 . In order to prove Theorem 3.2 which follows, we need a few preparatory Lemmas. Theorem 3.1. Let (u, λ) and (u h , λ h ) be respectively the solution of the augmented Lagrange problem (5) and the discrete augmented Lagrange problem [START_REF] Chouly | Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: Theory and numerical experiments[END_REF]. Assume that u ∈ H 3/2+ν (Ω) d with 0 < ν < 1. Then, the following error estimate is satisfied:

u -u h 2 1,Ω + r -1 2 λ -[P h r (u h , λ h )] - 2 0,Γ C ≤ C inf v h ×µ h ∈V h ×Λ h u -v h 2 1,Ω + r 1 2 (u n -(Π h λ v h n )) 2 0,Γ C + r -1 2 (λ -µ h ) 2 0,Γ C . ( 18 
)
Proof: In what follows, we adapt in the IGA and augmented Lagrangian context the proof proved in [START_REF] Antoln | A priori error for unilateral contact problems with multiplier and IsoGeometric Analysis[END_REF] . Using the coercivity of a(•, •), its continuity and Young inequalities, it holds:

α u -u h 2 1,Ω ≤ a(u -u h , u -u h ) = a(u -u h , u -v h ) + a(u -u h , v h -u h ) ≤ C u -u h 1,Ω u -v h 1,Ω + a(u, v h -u h ) -a(u h , v h -u h ) ≤ α 2 u -u h 2 1,Ω + C 2 2α u -v h 2 1,Ω + a(u, v h -u h ) -a(u h , v h -u h ).
Hence

α 2 u -u h 2 1,Ω ≤ C 2 2α u -v h 2 1,Ω + a(u, v h -u h ) -a(u h , v h -u h ).
Using the definition of operator P r and equality (7), we get:

IV = a(u, v h -u h ) -a(u h , v h -u h ) = 1 r Γ C (λ -λ h )(µ h -λ h ) dΓ + 1 r Γ C [P h r (u h , λ h )] --[P r (u, λ)] -P h r (v h -u h , µ h -λ h ) dΓ = r -1 2 (µ h -λ h ) 2 0,Γ C + 1 r Γ C (λ -µ h )(µ h -λ h ) dΓ + 1 r Γ C [P h r (u h , λ h )] --λ P r (u, λ) -P h r (u h , λ h ) dΓ + 1 r Γ C [P h r (u h , λ h )] --λ P h r (v h , µ h ) -P r (u, λ) dΓ.
Using Lemma 2.2 and the trace's theorem, it holds:

IV ≤ r -1 2 (µ h -λ h ) 2 0,Γ C + r -1 2 (λ -µ h ) 0,Γ C r -1 2 (λ h -µ h ) 0,Γ C -r -1 2 λ -[P h r (u h , λ h )] - 2 0,Γ C + r -1 2 λ -[P h r (u h , λ h )] - 0,Γ C r -1 2 P r (u, λ) -P h r (v h , µ h ) 0,Γ C .
Using the Young inequalities and Lemma 2.1 and summing on all elements, it holds:

IV ≤ (1 + β 1 2 ) r -1 2 (µ h -λ h ) 2 0,Γ C + 1 2β 1 r -1 2 (λ -µ h ) 2 0,Γ C +(-1 + 1 2β 2 ) r -1 2 λ -[P h r (u h , λ h )] - 2 0,Γ C + β 2 2 r -1 2 P r (u, λ) -P h r (v h , µ h ) 2 0,Γ C .
Using the equality (7), we get:

r -1 2 P r (u, λ) -P h r (v h , µ h ) 2 0,Γ C ≤ 2 r -1 2 λ -µ h 2 0,Γ C + 2 r 1 2 u n -(Π h λ v h n ) 2 0,Γ C .
It holds the following inequality:

r -1 2 (µ h -λ h ) 2 0,Γ C ≤ 2 r -1 2 (µ h -λ) 2 0,Γ C + 2 r -1 2 (λ -λ h ) 2 0,Γ C . If β 2 is chosen sufficiently large such that -1 + 1 2β 2 ≤ - 1 2 .
And if r 0 is sufficiently large, this ends the proof of Theorem 3.1.

Theorem 3.2. Let (u, λ) and (u h , λ h ) be respectively the solution of the mixed problem (5) and the discrete augmented Lagrange problem [START_REF] Chouly | Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: Theory and numerical experiments[END_REF]. Assume that u ∈ H 3/2+ν (Ω) d with 0 < ν < 1.

Then, the following error estimate is satisfied:

u -u h 2 1,Ω + r -1 2 λ -[P h r (u h , λ h )] - 2 0,Γ C h 1+2ν u 2 3/2+ν,Ω . (19) 
Proof: Now we can establish the inequality [START_REF] De Lorenzis | A large deformation frictional contact formulation using NURBS-based isogeometric analysis[END_REF], for r = r 0 /h, if we replace (v h , µ h ) by (u h , λ h ) and using Theorem 16, Lemmas 2.1 and 2.4 and summing on all elements, in the inequality [START_REF] De Lorenzis | Isogeometric contact: A review[END_REF].

Numerical Study

In this section, we perform a numerical validation for the method we propose in small as well as in large deformation frameworks, i.e., also beyond the theory developed in previous Sections. Due to the intrinsic lack of regularity of contact solutions, we restrict ourselves to the case p = 2, for which the N 2 /S 0 method is tested, and p = 3, for which the N 3 /S 1 method is tested. The suite of benchmarks reproduces the classical Hertz contact problem [START_REF] Hertz | Üeber die berührung fester elastischer körper[END_REF][START_REF] Johnson | Contact mechanics[END_REF]: Sections 4.1 and 4.2 analyse the two and three-dimensional cases for a small deformation setting, whereas Section 4.3 considers the large deformation problem in 2D. The examples were performed using an in-house code based on the igatools library (see [START_REF] Pauletti | Igatools: An isogeometric analysis library[END_REF] for further details).

In the following example, to prevent that the contact zone is empty, we considered, only for the initial gap, that there exists contact if the g n ≤ 10 -9 .

Two-dimensional Hertz problem

The first example included in this section analyses the two-dimensional frictionless Hertz contact problem considering small elastic deformations. It consists in an infinitely long half cylinder body with radius R = 1, that it is deformable and whose material is linear elastic, with Young's modulus E = 1 and Poisson's ratio ν = 0.3. A uniform pressure P = 0.003 is applied on the top face of the cylinder while the curved surface contacts against a horizontal rigid plane (see Figure 1(a)). Taking into account the test symmetry and the ideally infinite length of the cylinder, the problem is modelled as 2D quarter of disc with proper boundary conditions.

Under the hypothesis that the contact area is small compared to the cylinder dimensions, the Hertz's analytical solution (see [START_REF] Hertz | Üeber die berührung fester elastischer körper[END_REF][START_REF] Johnson | Contact mechanics[END_REF]) predicts that the contact region is an infinitely long band whose width is 2a, being a = 8R 2 P (1 -ν 2 )/πE . Thus, the normal pressure, that follows an elliptical distribution along the width direction r, is p(r) = p 0 1 -r 2 /a 2 , where the maximum pressure, at the central line of the band (r = 0), is p 0 = 4RP/πa. For the geometrical, material and load data chosen in this numerical test, the characteristic values of the solution are a = 0.083378 and p 0 = 0.045812. Notice that, as required by Hertz's theory hypotheses, a is sufficiently small compared to R.

It is important to remark that, despite the fact that Hertz's theory provides a full description of the contact area and the normal contact pressure in the region, it does not describe analytically the deformation of the whole elastic domain. Therefore, for all the test cases hereinafter, the L 2 error norm and H 1 error semi-norm of the displacement obtained numerically are computed taking a more refined solution as a reference. For this bidimensional test case, the mesh size of the refined solution h ref is such that, for all the discretizations, 4h ref ≤ h, where h is the size of the mesh considered. Additionally, as it is shown in Figure 1(a), the mesh is finer in the vicinity of the potential contact zone. The knot vector values are defined such that 80% of the knot spans are located within 10% of the total length of the knot vector. In particular, the analysis of this example focuses on the effect of the interpolation order on the quality of contact stress distribution. Thus, in Figure 1(b) we compare the pressure reference solution with the Lagrange multiplier values computed at the control points for S0 elements, i.e. its constant values, and for S1 elements. The dimensionless contact pressure p/p 0 is plotted respect to the normalized coordinate r/a. For both, the results are very good: the maximum pressure computed and the pressure distribution, even across the boundary of the contact region (on the contact and non contact zones), are close to the analytical solution.

In Figure 2(a) and respectively 3(a), absolute errors in L 2 -norm and H 1 -semi-norm for the N 2 /S 0 and respectively N 3 /S 1 choice are shown. As expected, optimal convergence are obtained for the displacement error in the H 1 -semi-norm: the convergence rate is close to the expected 3/2 value. Nevertheless, the L 2 -norm of the displacement error presents suboptimal convergence (close to 2), but according to Aubin-Nitsche's lemma in the linear case, the expected convergence rate is lower than 5/2. On the other hand, in Figure 2(b) the L 2 -norm of the Lagrange multipliers error is presented, the expected convergence rate is 1. Whereas a convergence rate close to 0.6 is achieved when we compare the numerical solution and the Hertz's analytical solution, and close to 0.8 is achieved when we compare the numerical solution and the refined numerical solution. In Figure 3(b), we seem reach a ceiling when we compare the numerical solution and the Hertz's analytical solution and a convergence rate close to 1 is achieved when we compare the numerical solution and the refined numerical solution.

As a second example, we present the same test case but with significantly higher pressure applied P = 0.01. Under these load conditions, the contact area is wider (a = 0.15223) and the contact pressure higher (p 0 = 0.083641). It can be considered that the ratio a/R no longer satisfies the hypotheses of Hertz's theory.

In the same way as before, Figure 4 shows the stress tensor magnitude and computed contact pressure. Figure 5(a) and respectively Figure 6(a) show the displacement absolute error in L 2norm and H 1 -semi-norm for N 2 /S 0 method and respectively for N 3 /S 1 method. As expected, optimal convergence is obtained in the H 1 -semi-norm, (the convergence rate is close to 1.5) and, while, for the L 2 -norm we obtain a better rate (as expected by the Aubin-Nische's lemma) which can hardly be estimated precisely from the graph. On the other hand, in Figure 5(b) and 6(b) it can be seen that the L 2 -norm of the error of the Lagrange multipliers evidences a suboptimal behaviour: the error, that initially decreases, remains constant for smaller values of h. It may due to the choice of an excessively large normal pressure: the approximated solution converges, but not to the analytical solution, that is no longer valid. Indeed, when compared to a refined numerical solution (Figure 5(b) and 6(b)), the computed Lagrange multipliers solution converges optimally for N 2 /S 0 -method and sub-optimally for N 3 /S 1 -method. As it was pointed out above, for these examples the displacement solution error is computed respect to a more refined numerical solution, therefore, this effect is not present in displacement results. 

Three-dimensional Hertz problem

In this section, the three-dimensional frictionless Hertz problem is studied. It consists in a hemispherical elastic body with radius R that contacts against a horizontal rigid plane as a consequence of an uniform pressure P applied on the top face (see Figure 7(a)). Hertz's theory predicts that the contact region is a circle of radius a = (3R 3 P (1 -ν 2 )/4E) 1/3 and the contact pressure follows a hemispherical distribution p(r) = p 0 1 -r 2 /a 2 , with p 0 = 3R 2 P/2a 2 , being r the distance to the centre of the circle (see [START_REF] Hertz | Üeber die berührung fester elastischer körper[END_REF][START_REF] Johnson | Contact mechanics[END_REF]). In this case, for the chosen values R = 1, E = 1, ν = 0.3 and P = 5 • 10 -4 , the contact radius is a = 0.10235 and the maximum pressure p 0 = 0.0716. As in the two-dimensional case, Hertz's theory relies on the hypothesis that a is small compared to R and the deformations are small. Considering the problem axial symmetry, the test is reproduced using an octant of sphere with proper boundary conditions. Figure 8(a) shows the problem setup and the magnitude of the computed stresses. As in the 2D case, in order to achieve more accurate results in the contact region, the mesh is refined in the vicinity of the potential contact zone. The knot vectors are defined such as 75% of the elements are located within 10% of the total length of the knot vector. On the other hand, in Figure 8 the contact pressure is shown at control points for mesh sizes h = 0.4 and h = 0.2. As it can be appreciated, good agreement between the analytical and computed pressure is obtained in all cases. Due to the coarse reference mesh, it is not possible to present good curves of convergence and show the asymptotical behaviour.

Two-dimensional Hertz problem with large deformations

Finally, in this section the two-dimensional frictionless Hertz problem is studied considering large deformations and strains. For that purpose, a Neo-Hookean material constitutive law (an hyperelastic law that considers finite strains) with Young's modulus E = 1 and Poisson's ratio ν = 0.3, has been used for the deformable body.

As in Section 4.1, the performance of the N 2 /S 0 and N 3 /S 1 method are analysed and the problem is modelled as an elastic quarter of disc but modifying its boundary conditions: instead of pressure, a uniform downward displacement u y = -0.4 is applied on the top surface (see Figure 9). In this large deformation framework the exact solution is unknown: the error of the computed displacement and Lagrange multipliers are studied taking a refined numerical solution as reference. The large deformation of the body and computed contact pressure are presented in Figure 10.

As in the previous case optimal results are obtained for the computed displacement and Lagrange multipliers (see Figure 11).

Conclusions

In this work, we presented an optimal a priori error estimate of frictionless unilateral contact problems between a deformable body and a rigid one for an augmented lagrangian method. For the numerical point of view, we observe an optimality of this method for both variables, the displacement and the Lagrange multipliers. In our experiments, we used a NURBS of degree 2 for the primal space and B-Spline of degree 0 for the dual space as well as a NURBS of degree 3 for the primal space and B-Spline of degree 1 for the dual space. Thanks to this choice of approximation spaces, we observe a stability of the Lagrange multipliers, indeed no oscillation are observed, and a well approximation of the pressure in the two-and tree-dimensional case. In order to implement this method, we need to use our local gap. For simplification, the discretised contact contribution can be expressed as follows δW c,r = -

Γ C n λ K=1 λ n,K B K + r(Π λ g n ) K B K - nu A=1 δu A N A n dΓ - 1 r Γ C   n λ K=1 λ n,K B K + n λ K=1 λ n,K B K + r(Π λ g n ) K B K -   n λ κ=1
δλ n,κ B κ dΓ. Now, we can distinguish between the active part and the inactive part, it holds:

δW c,r = Γ C K,act λ n,K B K + r(Π λ g n ) K B K A δu A N A n dΓ - 1 r Γ C   K λ n,K B K - K,act λ n,K B K + r(Π λ g n ) K B K   κ δλ n,κ B κ dΓ, = K,act A Γ C λ n,K B K + r(Π λ g n ) K B K δu A N A n dΓ - 1 r K,inact κ Γ C λ n,K B K δλ n,κ B κ dΓ + K,act κ Γ C (Π λ g n ) K B K δλ n,κ B κ dΓ, = K,act A δu A Γ C λ n,K B K + r(Π λ g n ) K B K N A n dΓ - 1 r K,inact κ δλ n,κ Γ C λ n,K B K B κ dΓ + K,act κ δλ n,κ Γ C (Π λ g n ) K B K B κ dΓ, = K,act δu T Γ C λ n,K B K + r(Π λ g n ) K B K N dΓ - 1 r K,inact δλ T n Γ C λ n,K B K B λ dΓ + K,act δλ T n Γ C (Π λ g n ) K B K B λ dΓ.
The residual for Newton-Raphson iterative scheme is obtained as 

R r = R u + R u,r R λ + R λ,r =      Γ C K,act (λ n,K B K dΓ + r Γ C K,act ((Π λ g n ) K B K )N dΓ N λ,g - 1 r Γ C ( K,inact

  Analytical and numerical contact pressure with N2/S0 and N3/S1 methods.

Figure 1 :

 1 Figure 1: 2D Hertz contact problem for an applied pressure P = 0.003.

  Lagrange multipliers error.

Figure 2 :

 2 Figure 2: 2D Hertz contact problem with N 2 /S 0 method for an applied pressure P = 0.003. Absolute displacement errors in L 2 -norm and H 1 -semi-norm and Lagrange multipliers error in L 2 -norm, respect to analytical and refined numerical solutions.

Figure 3 :

 3 Figure 3: 2D Hertz contact problem with N 3 /S 1 method for an applied pressure P = 0.003. Absolute displacement errors in L 2 -norm and H 1 -semi-norm and Lagrange multipliers error in L 2 -norm, respect to analytical and refined numerical solutions.

  (a) Stress magnitude distribution for the undeformed mesh with N2/S0 method. Analytical and numerical contact pressure with N2/S0 and N3/S1 methods

Figure 4 :

 4 Figure 4: 2D Hertz contact problem for an applied pressure P = 0.01.

L 2

 2 -norm H 1 -semi-norm (a) Displacement error.
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 5 Figure 5: 2D Hertz contact problem with N 2 /S 0 method for an applied pressure P = 0.01. Absolute displacement errors in L 2 -norm and H 1 -semi-norm and Lagrange multipliers error in L 2 -norm, respect to analytical and refined numerical solutions.
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 6 Figure 6: 2D Hertz contact problem with N 3 /S 1 method for an applied pressure P = 0.01. Absolute displacement errors in L 2 -norm and H 1 -semi-norm and Lagrange multipliers error in L 2 -norm, respect to analytical and refined numerical solutions.

  (a) Stress magnitude distribution for the undeformed mesh.

  Analytical and numerical contact pressure for h = 0.15.

Figure 7 :

 7 Figure 7: 3D Hertz contact problem with N 2 /S 0 method for a higher pressure (P = 5 • 10 -4 ).

Figure 8 :

 8 Figure 8: 3D Hertz contact problem with N 2 /S 0 method for an applied pressure P = 5 • 10 -4 . Contact pressure solution at control points.

  (a) Stress magnitude distribution for the undeformed mesh with N2/S0 method.

Figure 9 :

 9 Figure 9: 2D large deformation Hertz contact problem with a uniform downward displacement u y = -0.4.

Figure 10 :

 10 Figure 10: 2D large deformation Hertz contact problem with a uniform downward displacement u y = -0.4.
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 22 -norm H 1 -semi-norm mult. L 2 -norm (a) N2/S0 method. -norm H 1 -semi-norm mult. L 2 -norm (b) N3/S1 method.

Figure 11 :

 11 Figure 11: 2D large deformation Hertz contact problem method with a uniform downward displacement u y = -0.4. Absolute displacement errors in L 2 -norm and H 1 -semi-norm and Lagrange multipliers error in L 2 -norm.

.

  The linearization and active set strategy yield∆δW c,r = δu T Γ C K,act ∆λ n,K B K + r(Π λ ∆g n ) K B K N dΓ -1 r δλ T n Γ C K,inact ∆λ n,K B K B λ dΓ + δλ T n Γ C K,act (Π λ ∆g n ) K B K B λ dΓ.

(a) Stress magnitude distribution for the undeformed mesh with N2/S0 method.

Acknowledgements

This work has been partially supported by Michelin under the contract A10-4087.

Appendix 1.

In this appendix, we provide the ingredients needed to fully discretise the problem [START_REF] Chouly | Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: Theory and numerical experiments[END_REF] as well as its large deformation version that we have used in Section 4. First we introduce the contact status, an active-set strategy for the discrete problem, and then the fully discrete problem. For the purpose of this appendix, we take notations suitable to large deformation and denote by g n the distance between the rigid and the deformable body. In small deformation, it holds g n (u) = u • n.

Contact status

Let us first deal with the contact status. The active-set strategy is defined in [START_REF] Hüeber | A primal-dual active set strategy for non-linear multibody contact problems[END_REF][START_REF] Hüeber | A primal-dual active set algorithm for three-dimensional contact problems with coulomb friction[END_REF] and is updated at each iteration of Newton. Due to the deformation, parts of the workpiece may come into contact or conversely may loose contact. This change of contact status changes the loading that is applied on the boundary of the mesh. This method is used to track the location of contact during the change in boundary conditions. An equivalent formulation of the contact status presented in [START_REF] Antoln | A priori error for unilateral contact problems with multiplier and IsoGeometric Analysis[END_REF], let K be a control point of the B-Spline space [START_REF] Coorevits | Mixed finite element methods for unilateral problems: convergence analysis and numerical studies[END_REF], let (Π h λ •) K be the local projection defined in [START_REF] Chouly | An Overview of Recent Results on Nitsche's Method for Contact Problems, Geometrically Unfitted Finite Element Methods and Application[END_REF] and in the same way as previously done:

Discrete Problem

Regarding the augmented Lagrange multiplier method, the contact contribution of the work is expressed as follows

We define the following matrix

The discretised of contact contribution can be expressed as follows

B λ B T λ,inact dΓ∆λ n,K .