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Abstract: P-type Mg doped CuCrO2 thin films have been deposited on fused silica substrates
by Radio-Frequency (RF) magnetron sputtering. The as-deposited CuCrO2:Mg thin films have
been annealed at different temperatures (from 450 to 650 ◦C) under primary vacuum to obtain the
delafossite phase. The annealed samples exhibit 3R delafossite structure. Electrical conductivity σ

and Seebeck coefficient S of all annealed films have been measured from 40 to 220 ◦C. The optimized
properties have been obtained for CuCrO2:Mg thin film annealed at 550 ◦C. At a measurement
temperature of 40 ◦C, this sample exhibited the highest electrical conductivity of 0.60 S·cm−1 with
a Seebeck coefficient of +329 µV·K−1. The calculated power factor (PF = σS2) was 6 µW·m−1·K−2

at 40 ◦C and due to the constant Seebeck coefficient and the increasing electrical conductivity
with measurement temperature, it reached 38 µW·m−1·K−2 at 220 ◦C. Moreover, according to
measurement of the Seebeck coefficient and electrical conductivity in temperature, we confirmed
that CuCrO2:Mg exhibits hopping conduction and degenerates semiconductor behavior. Carrier
concentration, Fermi level, and hole effective mass have been discussed.

Keywords: thermoelectric; oxides; delafossite; thin film; power factor; degenerated semiconductor;
hopping mode

1. Introduction

The thermoelectricity is a promising technique to overcome the issues in recovering waste heat
to electricity without using moving parts. Thermoelectric (TE) effect is defined as the conversion of
a temperature gradient directly into electricity and vice versa [1]. Thermoelectric generators have
several advantages: they are particularly reliable, maintenance free, and durable with long operating
life under extreme conditions [2].

The performance of the TE materials is described by the dimension less figure of merit ZT [1].

ZT =
σS2

(Ke + Kth)
× T (1)

In these equations, σ and S are respectively the electrical conductivity and the Seebeck
coefficient [3] at the given temperature T and Ke and Kth are respectively due to the electron transport
and the lattice phonon at the given temperature T. The enhancement efforts of ZT is very challenging
because of the σ, S, and Ke interdependence. Indeed, as the carrier density expands, the electrical
conductivity increases and at the same time it reduces the Seebeck coefficient and increases the
electronical thermal conductivity. To optimize TE materials, the Power Factor (PF = σS2) must be
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increased without increasing the global thermal conductivity. This can be done by improving the carrier
concentration and the mobility and/or reducing the lattice thermal conductivity Kth by introducing
scattering centers with point defects [4], interfaces [5], and nanostructuration [6].

The advantage of the thin films versus bulk materials is rarely guested with the PF. Only the
Figure of Merit (ZT) can reveal it. In fact some macroscopic disorder can lead to a significant reduction
of the thermal conductivity of thin films relative to that observed in bulk material [7–9]. As ZT takes
into account the thermal conductivity, thin films could have better TE properties than the bulk thanks
to their microstructures. Moreover, the low dimension system obtained in thin films could make a
significant band structure modification that could impact the Seebeck coefficient.

Transition metal oxides (TMOs) are a captivating class of materials due to their wide ranging
electronic, chemical, and mechanical properties. Furthermore, they are gaining increasing attention
for their thermoelectric (TE) properties due to their high temperature stability, tunable electronic and
phonon transport properties, and well-established synthesis techniques.

Delafossite type oxides CuIMIIIO2 with M = (Fe, Al, Ga, Cr . . . ) due to their large range
of properties and the abundance of their constituent elements in the nature, have been studied
for several applications such as transparent p-type conducting oxides (TCO) [10–17], transparent
electronic devices [18–25], dye-sensitized solar cells [26–29], and photoelectrodes [30] but also for
outstanding catalysis [31] and photo-catalysis [31–41], antibacterial [42], luminescence [43–45], gas and
temperature sensing [46–49], magnetic and electric [50–54], energy storage [55], oxygen storage [56],
water reduction [57], thermoelectricity and superconductivity [58] properties. In the oxide family, the
cation CuI is a monovalent metal and the cation MIII is a trivalent metal. Delafossite structure can be
described as a stack of cation CuI layer and MO6 octahedron layer along c axis. Each cation CuI is
linearly coordinated to two oxygens belonging to upper and lower MO6 octahedron. Even if Cu-based
delafossite type oxides receive most of the attention for their optoelectronic properties as a p-type
transparent semiconductor, they exhibit also interesting thermoelectric (TE) properties [59–67].

Among the Cu-based delafossites, CuCrO2 is currently of interest due to its attractive physical
properties for the applications mentioned above [68–78]. Hayashi et al. [69] studied TE properties
of CuCrO2 in bulk form with several dopants and reported that the Mg-doped samples showed
a higher electrical conductivity leading to a higher power factor (PF = 2.36 × 10−4 W·m−1·K−2

at 820 ◦C) than the undoped bulk. In comparison with CuCrO2 and CuCrO2:Mg studies carried
out on bulk materials [70,71,74,79,80], there is a lack of papers related to proper studies of the TE
properties of CuCrO2:Mg thin films, as for instance, the determination of PF. Most of the time, Seebeck
measurements presented in the bibliography are only used to characterize the fundamental physical
properties (type of charge carriers, transport mechanism) [16,73,81–85] especially because it is difficult
to determine the main charge carrier characteristics by conventional Hall measurements in this type of
material. In particular, we have measured the Seebeck coefficient at room temperature for 100 nm thick
films in order to determine the type of the main charge carrier in CuCrO2:Mg thin films optimized
for TCO properties [16]. In the present article, the work is focused on the determination of electrical
conductivities and TE properties (Seebeck coefficient and calculated power factor) in temperature
ranging from 40 to 220 ◦C for one set of CuCrO2 films annealed at various temperatures, with a fixed
thickness of 300 nm.

2. Materials and Methods

2.1. Preparation of Mg-Doped CuCrO2 (Target)

Polycrystalline CuCr0.97Mg0.03O2 powder was prepared by grinding and mixing the starting
commercial oxides, Cu2O, Cr2O3, and MgO with appropriate proportions. The stoichiometric oxide
mixture was annealed at 900 ◦C for 10 h in an ambient nitrogen atmosphere and cooled down to room
temperature. After it was reground, the mixture was reheated for a further 10 h period. The purity of
the phase was checked by X-Ray Diffraction (XRD).
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The polycrystalline delafossite powder has been pressed into a sputtering target of 10 cm in
diameter then sintered at 1200 ◦C for 10 h in air. The X-Ray Diffraction (XRD) analysis on a small
representative pellet showed only the 3R delafossite phase. (R-3m space group with a = 2.9755(2) Å
and c = 17.091(3) Å as determined by the Rietveld method).

2.2. Preparation of Mg-Doped CuCrO2 Thin Films

In order to deposit CuCrO2:Mg thin films, the target assembly was attached to an Alcatel A450 RF
magnetron sputtering chamber (Alcatel, France). Fifteen minutes of pre-sputtering with argon plasma
has been applied before starting the film deposition to remove the surface contamination. Pre-cleaned
fused silica substrates (25 mm × 25 mm, ≃1 mm thick) placed on a water-cooled sample holder were
used during the deposition. In order to avoid the reduction of the target, a low argon pressure [86] was
used during the sputtering process. The deposition parameters are summarized in the Table 1. Under
these conditions, as-deposited films with normalized thickness of 300 nm were elaborated. The X-ray
fluorescence (XRF) measurement (not shown here) carried out with a Bruker S2 apparatus showed
that the ratio was close to 1 Cu for 1 Cr in the film (with accuracy range of 5%) which is consistent
with the composition of the target (CuCr0.97Mg0.03O2).

The as-deposed films have been systematically annealed for 4 h under primary vacuum at various
temperatures ranging from 450 to 650 ◦C.

Table 1. Process parameters for the deposition of delafossite Mg-doped CuCrO2 by RF-sputtering.

Target material 3 at % Mg-doped CuCrO2
Substrate Fused quartz

Power (W·cm−2) 0.9
Magnetron Yes

Argon pressure P (Pa) 0.5
Target to substrate distance d (cm) 5

2.3. Characterization

The structural properties of the films were investigated by a α = 1◦ grazing incidence X-ray
diffraction (GIXRD) at room temperature. GIXRD was performed using a Siemens D5000 diffractometer
equipped with a Bruker Sol-X detector (Siemens, Pittsburgh, PA, USA). Copper radiations were used
as X-ray source (λCuKα1 = 1.5405 Å and λCuKα2 = 1.5445 Å). The microstructure of the films was
observed using a Nanoscope III Dimension 3000 Atomic Force Microscope (AFM). AFM surface views
were analyzed using the Gwyddion software. The band gap energy has been determined by the
measure of the total transmittance and the total reflectance in the 300 to 1100 nm wavelength range
using a Bentham PVE300 integrated spectrophotometer (Bentham Instruments Ltd., Berkshire, UK).

The electrical resistivity was measured using a four-point probe measurement unit (Signatone,
Gilroy, CA, USA).

A home-made measurement setup has been used for the Seebeck coefficient determination as a
function of temperature (Figure 1). Two independent heaters fitted to the thin film geometry have
been used to apply a thermal gradient along the thin film. Electrical contacts were done with a 25 µm
diameter aluminum wire bonder (HYBOND Model 626, Hybond, Escondido, CA, USA). The ohmic
type behavior (linearity of current vs. voltage curve) of the electrical contacts has been checked
systematically for all samples with a source meter (Keithley 2450, Tektronix, Beaverton, OR, USA) after
bonding step. During the experiment, the voltage was measured with a nanovoltmeter (Keithley 2182A,
Tektronix, Beaverton, OR, USA). Two carbon spots (emissivity coefficient of 0.97) were deposited on
the surface of the thin films by spraying carbon solution through a shadow mask to accurately measure
the surface temperature with an infrared camera. The two carbon spots were located at the same
isotherm position than the electrical contacts. The mean temperature (TMean) was considered as the
average between the temperature of the hot side (THot) and that of the cold side (TCold).
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Figure 1. Seebeck coefficient measurement setup.

The Seebeck coefficient S(TMean) at a given mean temperature can be calculated with

S(TMean) = Sref −
∆V

∆T
(2)

where Sref, ∆V, and ∆T are respectively Seebeck coefficient of the reference (Aluminum probe:
S = 3.5 µV·K−1), electric potential and temperature difference (THot − TCold) measured on the film.
The accuracy of the experimental setup was checked by using a bar of Ca3Co4O9 already measured
elsewhere with a ZEM3 commercial apparatus. The results were similar with a standard deviation
of 7%.

3. Results and Discussion

3.1. Structural and Microstructural Characterizations

The GIXRD patterns of CuCrO2:Mg thin films annealed for 4 h at various temperature in
the 450 to 650 ◦C temperature range under primary vacuum have been measured for all samples.
The as-deposited sample and the sample annealed at 450 ◦C were amorphous or nanocrystallized.
The samples annealed above 500 ◦C corresponded to the target pattern of CuCrO2 verifying the
rhombohedral R-3m space group [87] (Figure 2). The full width at half maximum (FWHM) for the
peak (012) decreased strongly with increasing annealing temperature (AT), up to 550 ◦C. For AT

above 550 ◦C, the FWHM value was stable. As the instrumental contribution and the micro-strain are
constant or negligible, it means that grain growth mainly occurred between 450 and 550 ◦C. The GIXRD
pattern of the sample annealed at 450 and 550 ◦C were shown as an example in the Figure 2. All the
characteristic Bragg peaks of the 3R delafossite phase are reported (PC-PDF file #39-0247). It confirms
that the experimental conditions used to elaborate the samples provided a pure CuCrO2:Mg phase.
The lattice parameters determined by profile matching with constant scale factor were a = 2.96(7) Å
and c = 17.14(5) Å.

In order to check the stability of the delafossite phase during the various measurements in
temperature, a GIXRD analysis was done after a thermal treatment at 240 ◦C under air atmosphere
for all samples. The result (Figure 2) shows similar patterns before (dark color) and after the thermal
treatment for thin film initially annealed at 450 and 550 ◦C (light color). Thus, there were no additional
phases formed during the physical characterization in temperature from room temperature to 220 ◦C
in air atmosphere.

The AFM analysis of the CuCrO2:Mg annealed at 450, 550, and 650 ◦C reveals the microstructure
of the thin films (Figure 3). They exhibit nanocrystallized surfaces. The results show a smooth surface
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for the 450 ◦C and 550 ◦C annealed films and for 650 ◦C annealed film, the grains are well-defined.
Hence, the AFM results are in perfect agreement with the GIXRD analysis.

Figure 2. XRD pattern of the target, GIXRD patterns registered at room temperature (α = 1◦) after
annealing treatment (at 550 and 450 ◦C) (dark color) and GIXRD patterns of the same annealed samples
registered after a thermal treatment at 240 ◦C under air atmosphere (light color).

 

Figure 3. AFM micrographs of CuCrO2:Mg thin films annealed at 450, 550, and 650 ◦C for 4 h under
primary vacuum.

3.2. Transport Properties

The inset of the Figure 4a shows the electrical conductivity σ, at three measuring temperatures, of
the 300 nm thick films as a function of the annealing temperature (AT). The as-deposited sample
had the lowest electrical conductivity (at room temperature σas-deposited = 6.10−3 S·cm−1). This
electrical conductivity measured at room temperature increased with the annealing temperature
from 450 to 550 ◦C and reached 0.51 S·cm−1 then decreased slightly for higher annealing temperatures.
Similar decrease of the electrical conductivity has already been observed by various authors and
attributed to the decrease of copper vacancies and oxygen interstitials at higher temperatures [75,88] or
microstructural changes [16]. In the literature, the electrical conductivity of CuCrO2:Mg films ranged
from 0.033 to 1.6 S·cm−1 [16,78,83,84,89,90]. For 305 nm thick CuCrO2:Mg films, Rastogi et al. [84]
found 0.1–0.2 S·cm−1 whereas, higher electrical conductivity of 0.6–1 S·cm−1 was obtained for 155 nm
thick films. Their results are consistent with the present study.
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Figure 4. (a) Electrical conductivity σ of the films as a function of the measuring temperature T while
heating (filled symbol) and cooling (empty symbol). Inset: Electrical conductivity σ of the films as a
function of annealing temperatures (AT) at three different measuring temperatures; (b) Arrhenius plot
of the electrical conductivity σ.

The Figure 4a,b shows the variation of the electrical conductivity of the CuCrO2:Mg films with
the measuring temperature. The electrical measurements showed that the variation of the electrical
conductivity was fully reversible and increased with temperature as with semiconducting oxides.

For a semiconductor, the relation of the electrical conductivity with the temperature can be written
in two ways considering that thermal energy is enough to activate the carriers (corresponding to the
classical conduction mode) or not (corresponding to the hopping mechanism). In the second case,
the thermal energy activates the small polarons and σ can be expressed as Equation (3). CuCrO2 is
known as a polaronic material where the transport mechanism is limited by small polaron hopping
(SPH) [72,91–94].

In the case of small polarons, the expression of electrical conductivity is given by Mott and
Davis [95]

σ =
Aσp

T
e
−

Eσp
kBT (3)

where Aσp is a constant, Eσp is the activation energy of polaronic conduction.
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In order to calculate the activation energy Eσp using SPH model, we plotted ln(σT) versus 1000/T

in the Figure 4b. The results showed a linear variation and the slope of the lines gave Eσp/kB. It is
found that the polaronic activation energy decreased when annealing was carried out above 500 ◦C
and reached a quasi-constant value close to 175 meV.

3.3. Seebeck Coefficient Measurement

The Figure 5a shows the Seebeck coefficient of the films as a function of the measuring
temperature. The positive values of Seebeck coefficient confirmed that the CuCrO2:Mg films were
p-type semiconductors for all annealing temperatures. The lowest Seebeck coefficient was obtained for
the highest electrical conductivity due to the carrier density variation. The measurement temperature,
from 40 to 220 ◦C, did not influence the Seebeck coefficient. In the literature, the Seebeck coefficient of
CuCrO2:Mg bulk is ranging between 200–500 µV·K−1 and does not vary a lot with temperature in the 77
to 827 ◦C range [69,70,79] which is coherent with the present Seebeck measurements. Tripathi et al. [82]
reported comparable value (≃+300 µV·K−1 at room temperature) for undoped CuCrO2 films. On the
other hand, Chikoidze et al. [83] published three times lower value of Seebeck coefficient (+130 µV·K−1

at 23 ◦C) for 4% Mg doped CuCrO2 thin film. Overall, trends are similar and the difference in values
could be explained by the difference in the measurement setup and the material type.

Figure 5. (a) Seebeck coefficient, S, of the films annealed at different temperatures as a function of
the measuring temperature, T. Inset: Seebeck coefficient, S, of the films at 40 ◦C as a function of the
annealing temperature, AT; (b) Jonker plot: the relationship of the Seebeck coefficient, S, to the electrical
conductivity σ for different annealing temperatures, AT.
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The invariance of Seebeck coefficient in temperature indicates that the hole density is constant
between 40 and 220 ◦C. Therefore, the increase in electrical conductivity is the consequence of the
increase in small polarons mobilities due to the hopping mechanism. In the classical conduction mode
within the saturation regime, the electrical conductivity would have decreased because of the carrier
mobility diminution (µ ∝ T

−3
2 ).

Jonker relation (Equation (4)) shows that Jonker plot S versus ln(σ) would have a slope
kB/q = ±86.17 µV·K−1 indicating the thermally activated non-degenerate semiconductor behavior
(free carrier).

S = ±
kB

q
(ln σ − ln σ0) (4)

The plotted curves of the films in the inset of the Figure 5b were far away from the Jonker line.
Consequently the Jonker plot S versus ln(σ) [96] showed a degenerate semiconductor behavior for the
whole samples. Chikoidze et al. [83] noticed the quasi invariance of the Seebeck coefficient with the
measurement temperature, which is consistent with the present results. Farrell et al. [72] also reported
degenerate behavior for Cu deficient CuCrO2 film.

3.4. Power Factor (PF)

The PF values were calculated from the electrical conductivity and the Seebeck coefficient
(PF = σS2). The Figure 6a shows the variation of the PF at 40 ◦C as a function of the annealing
temperature and the highest PF is obtained for samples annealed between 550 and 600 ◦C. The
Figure 6b shows the power factor (PF) for the CuCrO2:Mg films annealed at different temperatures,
as a function of the measuring temperature and gives a comparison with the data from the literature.
As the Seebeck coefficient was quasi constant with increasing temperature, the PF followed the
electrical conductivity variation. It increased with increasing measurement temperature. Around
220 ◦C, it reached 38 µW·m−1·K−2. CuCrO2:Mg films had a higher PF than the CuCrO2 bulk studied
by Ruttanapun et al. [80]. However, their PF were lower than the experimentally achieved PF of
CuCrO2:Mg bulk materials [69]. For example, Q. Meng et al. found 65 µW·m−1·K−2 at 40 ◦C for
CuCrO2:Mg bulk material [79] thanks to the high electrical conductivity. In comparison with the PF

obtained with bulk material, a slight improvement of the power factor of CuCrO2:Mg in the form of
thin film could still be achieved by optimizing the film nanostructuration. Moreover, the thickness
of the films deposited by RF-magnetron sputtering were 300 nm and showed columnar nanometric
grains [16] which implies a lower thermal conductivity due to phonon boundary scattering without
reducing the electrical conductivity.

Figure 6. Cont.
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Figure 6. (a) Power factor PF at 40 and 220 ◦C as a function of the annealing temperature AT; (b) Power
factor PF of annealed thin films as a function of the measuring temperature T and comparison with the
data from the literature.

The main advantage of the thin film compared to the bulk is noticeable with the figure of merit
ZT where the thermal conductivity is taken into account. Indeed, the lattice thermal conductivity in
thin films is generally lower than the bulk materials [2,7,8]. However, in this work, the values for ZT

have not been calculated because the thermal conductivity of CuCrO2:Mg in the form of thin films
could not be measured.

3.5. Optoelectrical Properties and Fermi Energy Level

The fundamental indirect band gap energy was determined by the measurements of the total
transmittance TT (specular and diffuse) and the total reflectance TR (not shown here). The Tauc’s
plot [97] gives the optical fundamental band gap from the linear extrapolation of the curve slope to
intercept the energy axis (Figure 7). In detail, the absorption coefficient α, was estimated from the
relation [98]

α =
1
d

ln

(

(1 − TR)2

TT

)

(5)

where d is the film thickness. The fundamental indirect band gap energy was determined using the
absorption coefficient α via the relation

(αhυ)m = A
(

hυ − Eg
)

(6)

where hν is the photon energy, Eg is the optical band gap, A is a constant called the band tailing
parameter and m = 1/2 for the fundamental indirect transition. Using the Tauc’s method, 2.73 eV was
obtained for the fundamental indirect transition (Figure 7). The obtained energy value is consistent with
the literature [84] and shows a wide band gap which avoids the simultaneous presence of the electron
and hole in their specific bands and drives to a high Seebeck coefficient even at high temperatures. A
similar indirect band gap value was obtained by Chikoidze et al. [83] and Kaya et al. [99].

The Fermi energy was calculated using the following Mott formula [100] for a degenerate electron
gas approximation

S ≈ −
π

2k2
BT

3qEF
(7)

In this case, the Fermi energy is taken from the valence band edge. At 40 ◦C, the Fermi energy
value was 0.022 ± 0.002 eV which is lower than the thermal energy (3kBT = 0.081 eV at 314 K) on
the Fermi distribution width. It leads to the conclusion that the samples did not display thermally
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activated characteristics, which is consistent for a degenerate semiconductor. The Fermi level can trace
the work function of the delafossite and give precious information about which metal can be used for
ohmic contact (to avoid the Schottky barriers) with the delafossite. This information is needed for the
thermoelectric, optoelectronic, and photocatalytic applications.

Figure 7. (αhν)1/2 vs. hν plot for the fundamental indirect optical band gap energy analysis.

3.6. Carrier Concentration and Hole Effective Mass

According to the Hubbard model [101] and Heike’s formula [102] adapted for degenerate
semiconductor with a carrier hopping mechanism, the Seebeck coefficient can be written as Equation (8)

S = +
kB

q

[(

g1

g2

)

[Cu+]

[Cu2+]

]

(8)

where g is the spin and orbital degeneracy and [Cu+]/[Cu2+] is the ratio of the ion concentrations.
At high temperature, due to the mixed valences of the copper (Cu+/Cu2+) in the CuCrO2:Mg, the

Seebeck coefficient which is the measure of the entropy of the carriers is given by the spin and orbital
degeneracy [73]. The Figure 8 shows the spin and orbital degeneracies of Cu+ (g1) and Cu2+ (g2) due
to Mg2+ doping compensation according to (Cu+

1−xCu2+
x)(Cr3+

1−xMg2+
x)O2 in the linear bonding

O–Cu–O (where the coordination number of Cu is 2). Thereby, from the measured Seebeck coefficient,
the concentration of Cu+ and Cu2+ ions have been estimated and they varied barely with the annealing
temperature (AT). The obtained values were [Cu+] = 0.995 and [Cu2+] = 0.005 for AT above 500 ◦C.

Using the unit cell volumes determined by the GIXRD measurements, the density of total copper
site dCu in the delafossite structure is estimated at (2.30 ± 0.02) × 1022 cm−3. The hole density which is
related to the Cu2+ concentration is equal to dCu × [Cu2+] = (1.17 ± 0.05) × 1020 cm−3.

The hole effective mass, m*, was calculated using the equation

m∗ =
ℏ2

2EF
(3π

2hs)
2/3

(9)

where ℏ is the reduced Planck constant and hs is the hole density.
The hole effective mass estimated for CuCrO2:Mg was 3.80 ± 0.2 m0 which is close to the

effective mass predicted theoretically for CuCrO2 by Scanlon et al. [103] (without spin-orbit coupling
m*th = 2.96 m0 and with spin-orbit coupling m*th = 4.53 m0).

The effective hole mass is rarely published for this type of material. However, it is requisite for
the optoelectronic application in particular for the determination of the hole mobility.
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Figure 8. Spin and orbital degeneracies of Cu+ and Cu2+ in the delafossite structure.

4. Conclusions

CuCrO2:Mg thin films have been elaborated by RF magnetron sputtering and annealed at
different temperatures between 450 and 650 ◦C under primary vacuum. The as-deposited film and
the film annealed at 450 ◦C were nanocrystalized, whereas the films annealed above 500 ◦C had a
delafossite structure. The AFM has shown a nanometric grains sizes and smooth surface at the optimal
annealing temperature. The higher electrical conductivity determined at 40 ◦C was 0.60 S·cm−1 for
the film annealed at 550 ◦C which had a Seebeck coefficient of +329 µV·K−1. We analyzed the small
polaron hopping conductivity mechanism and found a degenerate semiconductor behavior of the
CuCrO2:Mg thin films. Thanks to its constant Seebeck coefficient between 40 and 220 ◦C and high
fundamental indirect band gap energy, the power factor increased like the electrical conductivity when
the temperature was increased, and reached 38 µW·m−1·K−2 at 220 ◦C. CuCrO2:Mg thin films have
been studied for their TE properties and showed encouraging results. Their high and constant Seebeck
coefficient in changing temperatures and their stability in air atmosphere could be a great advantage
for an application of this material in high accuracy temperature measurement devices, miniaturized
devices in thin film configuration, and also transparent TE devices due to its TCO properties.
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