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Abstract—The beeping model is an extremely restrictive broad-
cast communication model that relies only on carrier sensing. We
consider two problems in this model: (∆+1)-vertex coloring and
maximal independent set (MIS), for a network of unknown size
n and unknown maximum degree ∆. Solving these problems
allows to overcome communication interferences, and to break
symmetry, a core component of many distributed protocols. The
presented results apply to general graphs, but are efficient in
graphs with low edge density (sparse graphs), such as bounded
degree graphs, planar graphs and graphs of bounded arboricity.
We present O(∆2 logn + ∆3) time deterministic uniform MIS
and coloring protocols, which are asymptotically time op-
timal for bounded degree graphs. Furthermore, we devise
O(a2 log2 n+a3 logn) time MIS and coloring protocols, as well as
O(a2∆2 log2 n+a3∆3 logn) time 2-hop MIS and 2-hop coloring
protocols, where a is the arboricity of the communication graph.
Building upon the 2-hop coloring protocols, we show how the
strong CONGEST model can be simulated and by using this
simulation we obtain an O(a)-coloring protocol. No results about
coloring with less than ∆ + 1 colors were known up to now in
the beeping model.

I. INTRODUCTION

The discrete beeping model was introduced by Cornejo
and Kuhn [1] to provide a convenient formal framework for
studying radio networks having severe restrictions on communi-
cation capabilities, yet where widely applicable protocols can be
designed and analytically proven in an efficient manner. Since
protocol executions in distributed computing are frequently
hard to grasp (even with simulations or experiments), having
formal models is crucial for both practical and theoretical
reasons. In the discrete beeping model, time is divided into
synchronous rounds, and in each round, a node can either
listen or transmit a unary signal (beep) to all its neighbors. The
possibility to directly transmit a beep to a node is defined by
a static communication graph, and nodes have absolutely no
knowledge of this graph. A beeping node receives no feedback,
while a silent one can only detect that either at least one of its
neighbors beeped or that all of them were silent. A listening
node does not receive the identifiers of its beeping neighbors, as
a beep is merely a detectable burst of energy. Protocols can use
the synchronous nature of the rounds to transmit information
through beeps, but doing so impacts the time complexity in a
quantifiable manner. This work studies how this difficulty can
be overcome.

‡ This work has been supported by the Israeli-French Maimonide research
project grant and by an Israeli Ministry of Science and Technology grant.

Applications of this model range from radio networks with
reduced network stacks [1], such as energy-limited sensor
networks, which can provide improved speed, low cost and
less transmission errors, to biological networks [2], where
the beeping model allows to study the efficiency of natural
protocols. Indeed, most biological systems communicate in
a primitive manner. Fireflies communicate through flashes of
light [3] and cells through the diffusion of specific chemical
markers [4].

Different applications will result in different communication
graphs. Graphs with low edge density are said to be sparse. The
maximum degree and the arboricity of a graph are measures
of its edge density, where low values indicate sparse graphs.
Contrarily to graphs with low maximum degree, low arboricity
graphs can be seen as graphs which are “globally” sparse
but may be “locally” dense. Many real-world networks are
sparse [5]. In particular, graphs embedded in some surface, for
example the plane, have low arboricity.

The distributed vertex coloring and maximal independent set
(MIS) problems are fundamental building blocks in protocol
design. The coloring problem consists in assigning colors
to nodes such that no two neighboring nodes (sharing an
edge in the communication graph) have the same color. The
MIS problem consists in choosing a set of nodes in the
communication graph such that no two nodes in the set are
neighbors, and such that any node not in the set has a neighbor
in that set. Solving these problems is important for dealing
with the interferences inherent to the beeping model. More
specifically, a coloring can be used to allocate resources that
cannot be shared by neighboring nodes. Nodes in an MIS
can act as cluster heads in order to coordinate actions, and
participate in a network backbone construction.

Serving as important primitives for protocol design in the
beeping model, MIS and coloring problems have received a
lot of attention (see Sect. I-B). Efficient probabilistic solutions
were proposed for general graphs. However, the more difficult
deterministic case, useful whenever random behavior is inap-
propriate or deterministic guarantees are required, has received
much less attention. In this work, we are interested in designing
deterministic protocols having efficient time complexity.

A. Preliminaries

Let [k] be the set {1, . . . , k}. For any two integers a, b
(∈ Z) and any positive integer k (∈ N>0), let a ≡ b mod k



denote the congruence relationship between a and b such that
a mod k = b mod k. The operator ‖ is used for the string
concatenation. For any positive integer k, l(k) is the length of
the binary representation of k, i.e., l(k) = 1 + blog2 kc. For
any function f : N>0 7→ N>0 and any positive integer k, fi(k),
where i ∈ [l(k)], denotes the ith most significant bit of f(k)’s
binary representation.

The communication network is represented by a simple
connected undirected graph G = (V,E), where V is the node
set and E the edge set. The network size |V | is also denoted
by n, the diameter by D and the maximum degree by ∆. For
a node v ∈ V , the neighbors of v are N (v) = {u ∈ V s.t.
(u, v) ∈ E} and its degree is deg(v) = |N (v)|. Nodes have
unique identifiers (ids). This property is essential in order to
break symmetry in deterministic protocols. The identifier of a
node u ∈ V , id(u), is an integer from [N ] where N = nc with
a constant c > 1. N is an upper bound on the total number
of nodes in G. The length of id(u) is denoted by l(u). Then,
the maximum length over all ids in G is lmax = maxu∈V l(u).
We have lmax=O(logN)=O(log n).
The distance between two nodes u and v in G is dist(u, v).
The square graph of G is the graph G2 = (V,Es), where
Es = {(u, v) | u, v ∈ V, dist(u, v) ≤ 2}. G[R] denotes the
subgraph of G induced by R ⊂ V . Its edges (EG[R]) are the
edges of G connecting two vertices in R. The arboricity of
G, denoted by a(G) or just a, is the minimum number of
disjoint forests into which the edge set E can be partitioned.
Equivalently, Nash-Williams [6] proved that arboricity is also
a measure of density, i.e., a = max

R⊆V,|R|≥2

|EG[R]|
|R|−1 .

B. Related Work
In [7], round complexity lower bounds are given for the MIS

and (∆ + 1)-coloring problems. These bounds are Ω(log n)
and Ω(∆ + log n) respectively. They were obtained assuming
randomized algorithms, and thus apply to both deterministic and
randomized ones. In the latter case, the solution or the running
time is guaranteed with high probability (w.h.p.). Moreover,
these bounds apply to a stronger variant of the beeping model
(with collision detection). In this variant, listening nodes can
distinguish between a single beep and the superposition of
multiple beeps (a collision).

In [1], the authors present the first coloring protocol for the
beeping model. It outputs a correct coloring after O(∆+log n)
rounds w.h.p. Following this paper, randomized MIS and
coloring protocols were designed for the beeping model
with collision detection, in a series of papers ([4], [8], [9]).
These protocols achieve optimal round complexity, but assume
collision detection. Moreover, the resulting colorings often
employ more than ∆ + 1 colors. These protocols can be
translated to the weaker beeping model (with no collision
detection) with an Ω(log n) multiplicative factor.

Schneider and Wattenhofer [10] solve deterministic MIS
in radio networks with collision detection. Although the term
”beeping model” does not appear in [10], the presented protocol
straightforwardly works in this model. It is time optimal for
growth-bounded graphs (GBG). These are graphs where, for

any given node v and integer r, the number of nodes in any
independent set (see definition in Sect. I-D) within distance r
of v is bounded by f(r), which is polynomial in r. However,
this property does not cover all bounded degree graphs, trees,
planar graphs, or more generally, sparse graphs.
The round complexities of different MIS and coloring protocols
are compared below (see respectively Figure 1 and 2). The
only deterministic protocols are those in [10] and in the present
paper. Some protocols require K, an upper bound on ∆.

Fig. 1: MIS protocols

Ref Time Comments
[8] O(log2 n) w.h.p. anonymous nodes
[10] O(log n) GBG, deterministic
Here O(∆2 log n+ ∆3) deterministic

Fig. 2: Coloring protocols

Ref Time Comments
[9] O(∆ log n+ log2 n) (w.h.p.) ∆ + log n colors
[9] O(K log2 n) (w.h.p.) K + 1 colors
[1] O(∆ + log n) (w.h.p.) O(K) colors
Here O(∆2 log n+ ∆3), deterministic ∆ + 1 colors

C. Protocol-related Definitions

In the beeping model, an execution proceeds in synchronous
rounds (there are synchronized local clocks and all nodes start
at the same time: synchronous start). In each round, nodes
synchronously execute the following steps:

1) Send: Each node beeps (instruction BEEP in protocols) or
listens (LISTEN in protocols). Beeps are transmitted to all
neighbors of the beeping node.

2) Receive: If a node beeped in the previous step, then it
learns no information from its neighbors. Otherwise, it knows
whether or not at least one of its neighbors beeped during
the previous step of the same round.

3) Process: Each node performs local computations.
One of the most common message passing models is the
CONGEST model of edge bandwidth B [11]. It is stronger
than the beeping model, as nodes communicate by sending
messages of maximum length B (commonly O(log n)) in a
round. Different messages can be sent to different neighbors
and nodes receive the full content of all incoming messages.

We adopt the classical definitions. The state of a node is
the vector of the values of its variables. A variable var of
a node v is explicitly associated to v using a subscript varv.
A configuration is a vector of the states of all nodes. An
execution proceeds in rounds and is defined by the sequence
of the configurations at the end of each round, starting from an
initial configuration. If the same configuration (resp. state of a
node) is repeated indefinitely at the end of each round, we say
that this configuration (resp. the state) is terminal. When such
a configuration is reached, it is said that the system/protocol



has terminated, or that termination has occurred. A problem is
given as a first order predicate over configurations. A protocol
is said to solve a problem if each execution terminates, and each
terminal configuration satisfies the predicate of the problem
specification. The round complexity (time complexity) of a
protocol is the number of rounds needed to reach a terminal
configuration in the worst case. A protocol is said to be uniform
in a parameter p if it does not depend on the value of p. It
is said to be locally termination detecting, or simply locally
terminating, if for any given node v, v detects if it has reached
a terminal state.

In the beeping model, protocols must specify what is done
in each round. Due to the nature of the communication model,
each action is performed on a sequence of consecutive rounds.
For instance, a node may have to wait for a round of silence, or
beep only every k rounds. At the code level, this type of action
is expressed by a loop. As it will appear later, in some complex
protocols, such loops are nested. For the sake of clarity, we
will name the sequence of rounds in the innermost loop the
L1-phase, the sequence of loops in the loop just above, the
L2-phase, and so on.
We extend previous definitions concerning protocols to Li-
phases, in particular uniformity and termination. We consider
terminal Li-phase states (states that no longer change in this Li-
phase), locally terminating Li-phases (any given node v detects
when it has reached a terminal Li-phase state) and uniform
Li-phases (when the range of the loop index is unknown).
The problem of detecting when a given Li-phase has ended
(terminated) for all nodes raises the question of synchronizing
the start of the following Li-phase.
We solve this problem by using Li-synchronization points,
represented by  i in the code. Upon reaching an Li-
synchronization point (after having reached a terminal Li-phase
state), any given node v waits for all of its neighbors to reach
a terminal Li-phase state before executing the following Li-
phase, if there is any. Li-synchronization points require locally
terminating Li-phases, so that any given node v can detect
when all of its neighbors have reached the synchronization
point. The method for detecting that was first introduced in
Förster et al. [12], with the ”Balanced Execution Technique”
(BET). However, BET only guarantees L1-synchronization
points. In the extended version of this paper [13], we extend
BET to guarantee Li-synchronization points for any i ≥ 1.
The extension, referred to as EBET, is crucial in the design of
complex uniform protocols in the beeping model.

We call a protocol a competition protocol when nodes are
“eliminated” round after round until the “surviving” nodes form
an independent set (possibly empty). In this paper, we only
consider competition protocols where the elimination process
is deterministic and depends on identifier comparison.

D. Problem Specifications

The predicates (over configurations) defining the problems
considered in the paper can be naturally obtained from the
definitions given below.
A set I ⊆ V of vertices is said to be an independent set if for

any u, v in I , u and v are not neighbors in G. An independent
set I is maximal (MIS) if any vertex in V \ I has a neighbor
in I . A 2-hop MIS of G is an MIS of its square graph G2.
A set J ⊆ V of vertices is said to be a (t, s)-ruling set [14], if
for any two vertices u, v ∈ J , dist(u, v) ≥ t, and for any vertex
v ∈ V \J , there exists a vertex u ∈ J such that dist(u, v) ≤ s.
With this definition, an MIS is a (2, 1)-ruling set. A forest is
said to be a (t, s)-ruling forest if the roots are a (t, s)-ruling
set and the trees are of depth at most s.
A c-coloring col is a function from V into a set of colors
[c] such that ∀(u, v) ∈ E col(u) 6= col(v). Notice that in a
c-coloring, nodes with the same color constitute an independent
set. It is thus possible to construct an MIS from them. A 2-hop
coloring of G is a coloring of its square graph G2.
Any given function colorD is a d-defective c-coloring [15]
if ∀v ∈ V , colorD(v) ∈ [c] and v has at most d neighbors
colored with colorD(v). We say that colorD has a defect of d.
An edge where both endpoints have different colors is said to
be a non defective edge, otherwise it is said to be a defective
edge. With this definition, a (proper) coloring is a 0-defective
coloring.

E. Contributions

The first contribution of this paper is a tool for analyzing
competition protocols: the labeled ”deterministic” competition
graphs (Sect. II). Using such graphs in protocol analysis is
inspired by [16]. Here we adapt this technique to the case of
deterministic competition protocols. This general tool may be
useful also in future studies of MIS and coloring.

The second and main contribution of the paper is a series
of uniform MIS and coloring protocols. First, we present
O(∆2 log n+∆3) deterministic uniform protocols for MIS and
(∆ + 1)-coloring, where ∆ is the unknown maximum degree
(Sect. III). These protocols are time optimal for bounded degree
graphs. They also scale well to graphs with polylogarithmic ∆.
Indeed, in these graphs, the time complexity is polylogarithmic
in regards to n, which is very efficient.
Then, we extend the previous protocols with time complexity
dependent on ∆, to protocols with time complexity dependent
on the arboricity a (Sect. IV). We get O(a2 log2 n+ a3 log n)
time MIS and (∆ + 1)-coloring uniform protocols. This results
in efficient polylogarithmic time complexity for the large
family of graphs where a = O(logc n). Finally, we extend
the previous protocols into O(a2∆2 log2 n+ a3∆3 log n) time
2-hop coloring and 2-hop MIS uniform protocols (Sect. V).
Given a 2-hop coloring, we prove that the CONGEST model
can be simulated with some multiplicative overhead (Sect. VI).
Using this simulation and the algorithm proposed in [17] for
the CONGEST model, we get an O((a2∆2 + aµ∆4) · log2 n+
a3∆3 log n) time O(a)-coloring protocol in the beeping model,
for any given positive constant µ < 1. To the best of our
knowledge, this is the first coloring protocol using less than
∆ + 1 colors in the beeping model. Please note that, due to the
space constraints, some details and many proofs are missing
in the current paper version and can be found in [13].



II. RULING SET PROTOCOL AND COMPETITION GRAPHS

Ruling sets serve as building blocks to construct complex
protocols. They have been used to compute MIS [14] and
colorings [18], [19]. In these papers, the ruling sets are used
to decompose the network, and nodes in the ruling set (the
“local leaders”) take care of solving the problem for the nodes
within a certain distance. In the beeping model, doing so is
more difficult. We show in the next section, how ruling sets
can still be used to design an efficient coloring protocol.

In this section, we introduce a competition protocol
(RulingSet - Protocol 1 in Sect. II-B) computing a
(2, 2 logN)-ruling set. This protocol can be considered as a
variant of the ruling set algorithm from [14]. That algorithm is
heavily recursive, requiring concurrent communications, which
are incompatible with the beeping model. Therefore, we adapt
it and provide a non-recursive competition protocol with a
similar behavior. To prove correctness (Sect. II-C), we use
competition graphs, which are directed graphs that serve to
model the behavior of competition protocols and help analyzing
them. They were first used in [16], but in association with a
non-deterministic elimination process. As we are interested in
deterministic protocols, we use the nodes’ identifiers to label
the edges of a competition graph with α-encodings (Sect. II-A),
and these values determine a deterministic elimination process.
The resulting labeled competition graphs allow to compute the
surviving nodes in a convenient way.

4 1 0 0 1 1 1 0 0 0
binary

The encoding starts with as many 1’s as the length
of the binary representation, followed by a 0.

α-encoding

Then, append binary representation from the second bit
onwards

Fig. 3: Description of α-encoding

A. α-encoding

We α-encode integers to design uniform competition pro-
tocols, as in Casteigts et al. [20]. This encoding allows to
compare integers (identifiers) bit by bit in a uniform manner.
Indeed, when using α-encodings (of integers from [N ]), such
protocols do not need to know the binary integers’ lengths
(depending on logN ) to compare them bit by bit. The α-
encoding of integer i is made up of two parts, as explained in
Figure 3. Comparing two α-encodings α(i) and α(j) consists
of first comparing the minimum number of bits necessary to
encode the integers, and if it is the same, comparing the binary
representations of i and j (the first bit is unnecessary, because
it is 1 and the length is already known).

Definition 1. Let i be a positive integer, bin its binary
representation and l(i) the length of bin. Let bin−1 be the
binary representation without the leading 1 and 1l(i) a binary

string of l(i) 1’s. The α-encoding of i, denoted by α(i), is
1l(i) ‖ 0 ‖ bin−1 (where ‖ denotes string concatenation).

α-encoding preserves the order between two integers.

Lemma 1. For any i, j ∈ N>0: i < j ⇔ α(i) ≺ α(j), where
≺ is the lexicographical order on α-encodings.

B. Uniform Competition Protocol for Computing a Ruling Set

Nodes use their unique identifiers for comparison and
survivors of the elimination process constitute the output set.
Each node v has a unique identifier id(v). The identifiers are
encoded on at most lmax bits, but lmax is unknown to the
nodes and thus the binary representations of the identifiers do
not necessarily have the same length. Every node v computes
the α-encoding α(id(v)) (or α(v) for short, by notation abuse)
and outputs a boolean value survivedv. We prove that the
output is a (2, 2 logN)-ruling set (Theorem 2).

Protocol 1 RulingSet
1: IN: id: Integer OUT: survived: Boolean value
2: survived := true, α := α(id) . Get α-encoding
3: for round r := 1 ; r ≤ l(α) ; r++ do . r is incremented after each iteration
4: if αr = 1 then BEEP . Consider the rth most significant bit
5: else
6: LISTEN
7: if beep heard then . If a neighbor has a higher identifier
8: survived := false
9: EndProtocol

10: EndProtocol . No beep heard

The following lemma is straightforward.

Lemma 2. RulingSet has a round complexity of
maxv∈V l(α(v)) = O(logN).

C. Correctness Analysis of Protocol 1

The output set of RulingSet is analyzed through a game,
which we refer to as the “elimination game”. This game
is enacted on an edge-labeled directed acyclic graph Gdag,
the labeled competition graph, constructed from the original
communication graph G and the nodes’ unique identifiers.
This construction process is adapted here to the RulingSet
protocol, but it applies to any competition protocol. Gdag =
(V,Edag, label), where Edag is the set of directed edges and
label an edge labeling function. Gdag is constructed from the
α-encodings of the ids, encoded on a maximum of 2lmax bits.
• Let (u, v) be an edge of G with α(u) � α(v). Then,

(u, v) is a directed edge in Gdag , directed from u to v.
• Let (u, v) be an edge of Gdag. For the smallest index
i ∈ [2lmax] such that αi(u) = 1 and αi(v) = 0, set
label(u, v) to i: the edge (u, v) is labeled (with) i.

For any edge e = (u, v) of Gdag , u is called the origin and
v the extremity of e. It is straightforward to prove that Gdag
is a directed acyclic graph.

The elimination game is played by the nodes of Gdag , round
by round, in the following way: on round r, all surviving nodes
with an outwards edge e labeled label(e) = r eliminate the
extremities of these edges. The game finishes when no more
node can be eliminated (thus after at most 2lmax rounds). A
node’s survival is stored as a boolean in the survived variable.
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Fig. 4: Example of Gdag construction

Definition 2. Let v be a vertex in Gdag . Let e be an incoming
edge. We say that e is acting if the origin of e is not eliminated
before round label(e), and non acting otherwise. If e = (u, v)
is an acting incoming edge, then u eliminates v at round
label(e) if and only if v has not already been eliminated.
We define the same notions for outgoing edges.

Definition 3. Let Π = (v1, . . . , vl) be a directed path in Gdag .
There is a unique label sequence Slab(Π) = (s1, . . . , sl−1) s.t.
∀r ∈ [l − 1], er=(vr, vr+1) and sr= label(er).

Results similar to the following lemma and theorem are
proven in [21] for a more limited case. Lemmas 3 and 4
are straightforward.

Lemma 3. Let Π = (v1, . . . , vl) be a directed path in Gdag.
Slab(Π) has no consecutive equal labels: ∀r∈ [l−1] sr 6=sr+1.

Theorem 1. Let v be any node from Gdag not surviving the
elimination game. There exists a surviving node u such that
dist(u, v) ≤ 2lmax, where lmax = O(logN) .

Proof. First, a path Π from a surviving node u to node v is
constructed, then we prove that Π’s length is at most 2lmax.
Π is constructed by induction. Node v did not survive, so there
exists an acting incoming edge. The acting incoming edge
(w, v) with the smallest label is added to Π. If w does not
survive the elimination game, the previous actions are repeated
and an acting incoming edge is added to Π. This is done until
a surviving node is reached. Since at least one node survives
the elimination game, Π’s construction is well-defined and
Π = (el, . . . , e1).
Now, let us prove by contradiction that l ≤ 2lmax. Suppose
l > 2lmax and focus on Slab(Π). Because the edge-labels are
integers from [2lmax] and consecutive labels are non equal
by Lemma 3, there exists an extremum sr indexed by r ∈
{2, . . . , 2lmax}. Thus there exists i ∈ {r − 1, r} such that
si > si+1. However, both ei and ei+1 are acting incoming
edges, by construction. Thus, the origin of ei is eliminated in
round si+1, which contradicts the fact that ei is acting. Hence,
we have a contradiction.

Lemma 4. Let I = {v ∈ V s.t. survivedv = true} at the
termination of RulingSet. Let S be the set of survivor nodes
of an elimination game played on Gdag . We have I = S.

Theorem 2. The output set I = {v ∈ V s.t. survivedv =
true} of RulingSet is a (2, 2 logN)-ruling set.

III. MIS AND VERTEX COLORING PROTOCOLS

Let us now present MIS and (∆+1)-coloring protocols with
O(∆2 logN+∆3) round complexity, where ∆ is the maximum
degree of the communication graph G. When ∆ = O(1), we
obtain an asymptotically optimal O(log n) round complexity
[10] . For polylogarithmic ∆, the protocol is still very efficient.
Nodes know the maximum degree ∆ at first, but this assumption
is dropped later on. Nodes know no polynomial upper bound
N on their total number.

The protocols presented here are based on computing and
refining defective colorings. Defective colorings were first used
to solve the distributed coloring problem in [22] and [23]. Here,
we refine the defective coloring differently from the previous
works. The exact method is explained below.

A. Non-uniform Protocols for MIS and (∆ + 1)-coloring

The (∆ + 1)-coloring protocol DegreeColoring (Protocol
2) refines the initial ∆-defective coloring until the coloring is
proper. DegreeColoring can be seen as an L4-phase. It has
∆ L3-phases: in each of these phases, the defect is reduced by
at least 1. Each L3-phase is made of ∆+1 coloring L2-phases,
followed by an additional color reduction L2-phase.
In each coloring L2-phase, nodes with a specific color com-
pute a (2, 2 logN)-ruling forest on the subgraph induced by
themselves, using RulingSet (Protocol 1) and Breadth First
Searches (BFS) - ColorByBFS function (see below). During
BFS, they recolor themselves with an even or odd available
color depending on the parity of their depth in the ruling forest.
Finally, all nodes communicate the changes in color and update
their set of unavailable colors. The following color reduction
L2-phase is made up of ∆ + 1 L1-phases. In each such L1-
phase, the range of colors used by all nodes is reduced by 1 (if
the range is greater than ∆ + 1). This is important because the
color range affects the round complexity, and that range can
increase exponentially if it is not reduced in each L3-phase.

Let us now present the functions used in a coloring
L2-phase. There are two functions, ColorByBFS and
BroadcastColors. ColorByBFS recolors each participating
node. The resulting coloring can be defective. The input
parameters are a boolean (inSet) indicating whether or not
the node is part of the ruling set, i.e., serving as BFS roots,
and a set of unavailable colors (U ). The roots initiate parallel
BFS. Other nodes compute their distance to the nearest root,
which is given by the BFS, and recolor themselves with an
available (not in U ) newColor, according to the parity of this
distance. The newColor values returned by ColorByBFS
are in [2∆ + 2]. This is because the set of unavailable colors
contains at most ∆ colors, and possibly all of the same parity.
Therefore, ColorByBFS chooses the smallest available odd
(resp. even) value amidst the first ∆+1 odd (resp. even) values.
BroadcastColors communicates the colors chosen by the
neighboring nodes. The function has four input parameters: the
node’s color (newColor), a boolean indicating whether or not it
should participate in the current invocation (changingColor),
a set of unavailable colors (U ) and the maximum degree ∆.
The color is transmitted through the round number.



function ColorByBFS(inSet, U ): newColor

1: beeping := false . |U | ≤ ∆, U ⊂ [2∆ + 2].
2: if inSet then beeping := true . Roots initiate BFS
3: for round r := 1 ; r++ do
4: if beeping then
5: BEEP . All nodes beep once. The root is r − 1 hops away.
6: newColor := min{k ∈ (N>0 \ U) | k ≡ r mod 2}
7: Return newColor . newColor ∈ [2∆ + 2]
8: else
9: LISTEN

10: if beep heard then beeping := true

function BroadcastColors(newColor, changingColor, U , ∆): U

1: for round r := 1 ; r ≤ 2∆ + 2 ; r++ do
2: if newColor = r and changingColor then BEEP
3: else
4: LISTEN
5: if beep heard then U := U ∪ {r} . More unavailable colors
6: Return U

Now, let us present the ColorReduction function invoked
in the color reduction L2-phase. Its input parameters are an
integer value given by a d-defective c-coloring (color), the
maximum degree ∆ and the maximum color c (in the coloring).
Nodes broadcast colors from [∆ + 1] in ∆ + 1 rounds, after
which, nodes with color = c change their color to the smallest
available color in [∆ + 1]. The output is the node’s new color
(color), given by a d-defective c′-coloring, with c′ = min(c−
1,∆ + 1).

function ColorReduction(color, ∆, c): color

1: U := ∅ . U stores unavailable colors
2: for round r := 1 ; r ≤ ∆ + 1 ; r++ do
3: if color = r then BEEP
4: else
5: LISTEN
6: if beep heard then U := U ∪ {r}
7: if color = c then color := min([∆ + 1] \ U)
8: Return color

In DegreeColoring, we only require L1-synchronization
points (for RulingSet and ColorByBFS), introduced in Sect.
I-C. Both functions are uniform in N , and thus are not explicitly
terminating (if executed alone). However, they are locally
terminating. Therefore we can use BET to perform neighboring
termination detection and make nodes start the next step of the
protocol synchronously. On the other hand, as the time lengths
of all L2, L3 and L4-phases (and ColorReduction calls) are
upper bounded by ∆ + 1, their termination is completely
synchronized at all nodes and we do not need L2, L3 and
L4-synchronization points.

Lemma 5. At the start (and end) of an L3-phase, color ∈
[∆ + 1].

Lemma 6. The defect of color is reduced by one per L3-phase.

Proof. Let color be d-defective at the start of L3-phase p3.
For any given node v, v has at most d defective edges. It is
easy to see that non-defective edges remain non-defective. In
a non-defective edge (v, u), let v be the node with the higher
color w.l.o.g. During L3-phase p3, v stores a set of unavailable
newColor values, including newColoru. As such, when v
executes ColorByBFS, newColorv 6= newColoru.

Protocol 2 DegreeColoring
1: IN: id: Identifier, ∆: Maximum degree OUT: color: Integer value
2: color := 1
3: // Each node removes at least one defective edge per L3-phase
4: for L3-phase p3 := 1 ; p3 ≤ ∆ ; p3++ do
5: U := ∅ . Stores newColor values already chosen during this phase
6: newColor := 0 . newColor ∈ [2∆ + 2] during L3-phase
7: // An L3-phase starts with ∆ + 1 coloring L2-phases
8: for coloring L2-phase p2 := 1 ; p2 ≤ ∆ + 1 ; p2++ do
9: if color = p2 then inSet := RulingSet(id)

10:  1 . L1-synchronization point
11: if color = p2 then newColor := ColorByBFS(inSet, U)
12:  1

13: U := BroadcastColors(newColor, (color = p2), U,∆)
14:  2 . This synchronization point is not needed (strictly explanatory)
15: color := newColor
16: // Followed by one L2-phase, which contains ∆+1 color reduction L1-phases
17: // Before the L2-phase, color ∈ [2∆ + 2]
18: for color reduction L1-phase p1 := 1 ; p1 ≤ ∆ + 1 ; p1++ do
19: color := ColorReduction(color,∆, 2∆+3− p1)
20:  1

21: // After all color reduction L1-phases, color ∈ [∆ + 1]
22:  3 . Not needed, for clarity only
23: EndProtocol

All endpoints of the defective edges of v, and v itself, execute
RulingSet and ColorByBFS in the same L2-phase. If
DistC(v) denotes v’s distance to the nearest BFS tree root
(RulingSet survivor), there is at least one endpoint u with
|DistC(u)−DistC(v)| = 1. Because of the difference in the
parity of these distances, u and v choose different values in
[2∆ + 2], and at least one edge becomes non-defective.

Theorem 3. DegreeColoring solves (∆ + 1)-coloring in
O(∆2 log n+ ∆3) rounds.

Given a (∆+1)-coloring, it is simple to compute an MIS in
∆ + 1 rounds. Nodes with the same color form an independent
set. Adding iteratively (at each round) nodes from each such
set to a common independent set results in an MIS. Thus, MIS
can also be solved in O(∆2 log n+ ∆3) rounds.

B. Uniform (∆ + 1)-coloring

Now, we wish to transform DegreeColoring into
UnifDegreeColoring, which is uniform in both ∆ and
n. The first step is to replace the functions used in
DegreeColoring by uniform functions, and to synchronize
them using synchronization points. Then, every non-uniform
stopping condition of a loop appearing in DegreeColoring
should be eliminated and replaced by a so called local
termination component. This component is an Li−2-phase
executed at the end of each iteration (Li−1-phase) of the loop
(Li-phase). It serves to detect if the executing node has finished
the ongoing loop. More formally, this component serves to
detect whether the executing node has reached a terminal Li-
phase state, and makes the Li-phase locally-terminating.

First, let us present UnifBroadcastColors, a uniform
version of BroadcastColors (since BroadcastColors re-
quires ∆). UnifBroadcastColors is an L2-phase, made of
consecutive L1-phases, each composed of 2 rounds. In the
first round, the executing node v beeps if it has not yet
communicated newColorv. Otherwise, it listens so it can
detect if all of its neighbors have already communicated
their newColor value, and if so, v terminates. In the second



round, we have the round behavior of BroadcastColors. In
such a way, we obtain a uniform function having the same
behavior as BroadcastColors. Moreover, in this particular
case, since all L1-phases contain exactly 2 rounds, it is also
locally synchronized, even without using EBET, and therefore
there is no need to indicate synchronization points explicitly.

function UnifBroadcastColors(newColor, changingColor, U ): U

1: for L1-phase p1 := 1 ; p1++ do . L1-phase consists of two rounds
2: // First round
3: if newColor >= p1 and changingColor then BEEP . Not finished yet
4: else
5: LISTEN
6: if no beep heard then Return U . If all neighbors beeped their colors
7: // Second round
8: if newColor = p1 and changingColor then
9: BEEP . Communicate your color

10: else
11: LISTEN
12: if beep heard then U := U ∪{p1} . Keep neighbors’ newColor values

Next, we design a uniform version of ColorReduction.
It is used in ReduceColors, a uniform version of the color
reduction L2-phase from DegreeColoring.
UnifColorReduction has two input parameters: the node’s
color (color), given by a d-defective c-coloring, and a set of
unavailable colors (U ). It also has two output parameters: the
node’s new color color, given by a d-defective c′-coloring
(with c′ = min(c − 1,∆ + 1)), and a boolean sameColor
indicating whether color changed. Every node v transmits its
color value to its neighbors by beeping in the first round of the
L1-phase indexed by colorv . Nodes with the highest color in
their neighborhood choose the smallest available color (colors
previously transmitted by neighbors are forbidden). If that color
is the node’s current color, then sameColor is assigned to
true. Other nodes do not change their color (and end with
sameColor equal to false). Here again, there is no need to
indicate synchronization points explicitly, since all L1-phases
contain exactly 2 rounds.
ReduceColors is an L4-phase. It has two input parameters:
the node’s color (color), given by a d-defective c-coloring, and
a set of unavailable colors (U ). It has a single output: the node’s
new color (color), given by a d-defective (∆ + 1)-coloring.
The main idea is to have the nodes with the highest color in
their neighborhood change their color to the smallest available
color (in [∆ + 1]). At some point, they can no longer improve
their color (finished is true). These nodes terminate, allowing
the other nodes in their neighborhood to change their color
value. Here, it is crucial to put L2-synchronization points after
the UnifColorReduction and UnifBroadcastColors calls,
because these functions are uniform. Thus, different nodes
can finish executing these functions at different times, i.e.,
not synchronously. As these functions are locally terminating,
EBET can be used to ensure the synchronization points.

Following this, let us describe the functions used for
UnifDegreeColoring’s local termination component. These
functions are used to detect when the executing node’s color
is proper, i.e., no neighbor has the same color. Then, the
executing node can exit the outermost loop and thus locally
terminate the protocol (see lines 24 to 29).

function UnifColorReduction(color, U ): color, sameColor

1: sameColor := false
2: for L1-phase p1 := 1 ; p1++ do . L1-phase consists of two rounds
3: // First round
4: if color = p1 then BEEP
5: else
6: LISTEN
7: if beep heard then U := U ∪ {p1}
8: // Second round
9: if color > p1 then BEEP

10: else
11: // Only a node with the highest color in its neighborhood hears no beep
12: LISTEN
13: if beep heard then Return (color, sameColor)
14: else
15: color := min([p1] \ U)
16: if color = p1 then sameColor := true
17: Return (color, sameColor)

function ReduceColors(color, U ): color

1: finished := false
2: while not finished do . At most c L3-phases
3: (color, finished) := UnifColorReduction(color, U)
4:  2

5: U := UnifBroadcastColors(color, finished, U)
6:  2 . Actually, also an L3-synchronization point
7: Return color

ColorCollision uses UniformCollisonBeep to detect
whether there are same color neighbors amongst executing
nodes. The function has two input parameters: an identifier
(id) and the node’s color (color). The output parameter is a
boolean indicating whether the node detected a collision with a
same color node (collision). In each L2-phase p2, nodes with
color p2 check for a collision by using UnifCollisionBeep.
If no neighboring node with the same color p2 exists, then no
collision is detected by the executing nodes.
UnifCollisionBeep detects whether there are any neighbors
amongst the currently executing nodes (a collision). The input
parameter is an identifier (id) and the output parameter is
a boolean indicating whether the node detected a collision
(collision). In each L1-phase, a node beeps in the first or the
second round, depending on whether the p1th most significant
bit of α(id) is 0 or 1. If a beep is heard, then there is a
collision. Two executing neighboring nodes always detect
a collision because they have different identifiers. A node
terminates if the phase index p1 is greater than the length of
the α-encoding of its id.

function UnifCollisionBeep(id): collision

1: collision := false
2: for L1-phase p1 := 1 ; p1++ do . L1-phase consists of two rounds
3: if p1 > l(α(id)) then Return collision
4: if αp1(id) = 0 then
5: BEEP ; LISTEN
6: if beep heard in the second round then collision := true
7: else
8: LISTEN ; BEEP
9: if beep heard in the first round then collision := true

Finally we describe UnifDegreeColoring. The main idea
is the same as in DegreeColoring: we refine the initial
∆-defective coloring until the coloring is proper. The main
differences are the local termination components. The L4-



function ColorCollision(id, color): collision

1: for L2-phase p2 := 1 ; p2++ do . At most ∆ + 1 L2-phases
2: if color = p2 then
3: collision := UnifCollisionBeep(id)
4: Return collision
5:  2

phase’s (L3 loop) local termination component is similar to
the local termination component in UnifBroadcastColors.
A node has finished an L4-phase if all of its neighbors have
chosen a new color. The protocol’s local termination component
is described previously. The additional Ut variable is used to
store unavailable colors that have already been chosen by
neighboring nodes which have terminated the protocol.

Protocol 3 UnifDegreeColoring
1: IN: id: Identifier OUT: color: Integer value
2: Ut := ∅ . Stores color values chosen for output by terminated neighbors
3: color := 1
4: // Each node removes at least one defective edge per L5-phase
5: for L5-phase p5 := 1 ; p5++ do
6: U := ∅ . Stores newColor values already chosen during this phase
7: newColor := 0 . newColor ∈ [2∆ + 2] during the L5-phase
8: // This L3 loop is an L4-phase
9: for coloring L3-phase p3 := 1 ; p3++ do

10: if color = p3 then inSet := RulingSet(id)
11:  1

12: if color = p3 then newColor := ColorByBFS(inSet, U ∪ Ut)
13:  1

14: U := UnifBroadcastColors(newColor, color = p3, U)
15:  2 . L2-synchronization point here, thus we have coloring L3-phases
16: // From here on, local termination component for L4-phase
17: if color > p3 then BEEP . Beep if new color still not chosen
18: else
19: LISTEN . Check if any neighbor is still choosing a new color
20: if no beep heard then Exit L3 loop
21:  4 . Crucial because some nodes end the L4-phase earlier than others
22: color := ReduceColors(newColor, Ut) . After, color ∈ [∆ + 1]
23:  4

24: // From here on, local termination component for L5 loop
25: collision := ColorCollision(color)
26:  3 . Because ColorCollision is an L3-phase
27: Ut := UnifBroadcastColors(color, collision = false, Ut)
28:  2 . Because UnifBroadcastColors is an L2-phase
29: if not collision then EndProtocol . Exit L5 loop

Theorem 4. MIS and (∆ + 1)-coloring can be solved in
O(∆2 log n+ ∆3) rounds with a protocol uniform in both
∆ and N .

IV. IMPROVEMENTS FOR GRAPHS WITH SMALL ARBORICITY

DegreeColoring is efficient for graphs with polylogarith-
mic maximum degree ∆. However, not all graphs have a
low maximum degree, and in these graphs, Protocol 3 is less
efficient. Using ideas from [24] and [25], it is possible to
design a (∆+1)-coloring protocol which is efficient on graphs
with low arboricity a (more specifically, with polylogarithmic
a). Notice that some important topologies like trees and planar
graphs have an arboricity of 1 and 3 respectively, while their
maximum degree can be arbitrarily large.

Theorem 5. MIS and (∆ + 1)-coloring can be solved with
O(a2 log2 n+a3 log n) round complexity in the beeping model,
where a is the arboricity of the communication graph.

To support this theorem, we design two coloring protocols
with the above round complexity: one is uniform in N but

not in a, and the other is uniform in a but not in N . It is
important to have a protocol uniform in a, since a may be harder
to obtain than an upper bound on N . The main component
of both protocols is the LimitedDegreeColoring function,
which colors all participating low-degree nodes, if it is given
an upper bound on the arboricity a. A node v is considered
to be a low-degree node if it has deg(v) ≤ (2 + ε) · a, for a
parameter ε > 0.
In the first protocol, uniform in N , LimitedDegreeColoring
is executed iteratively by uncolored nodes until all nodes are
properly colored. Since a is known and by a result in [25],
each invocation of the function colors a constant fraction of
the nodes of the communication graph. Colored nodes no
longer participate in subsequent LimitedDegreeColoring
calls. Using results from [25], it can be proven that executing
LimitedDegreeColoring O(logN) times (or more) colors all
nodes with O(a · logN) colors. As N is unknown, invocations
of LimitedDegreeColoring continue until the executing node
is colored properly (local termination component). When this
happens for all nodes, the O(a · logN)-coloring is transformed
into a (∆ + 1)-coloring by ReduceColors, as in Protocol 3.
In the second protocol (uniform in a), we compute an upper
bound on a. This is done by estimating a iteratively. At each it-
eration i, a is estimated to be 2i and LimitedDegreeColoring
is executed O(logN) times, given this estimation. After
O(log a) iterations, the estimation is at least as large as the ac-
tual arboricity. When this happens, LimitedDegreeColoring
executed O(logN) times provides a proper coloring (followed
by the color range reduction) as in the first protocol. Refer to
the extended version [13] for the details.

V. UNIFORM PROTOCOLS FOR 2-HOP MIS AND 2-HOP
(∆2 + 1)-COLORING

To obtain protocols for 2-hop MIS and 2-hop coloring,
we provide and use a general transformer, the SquareSim
protocol, allowing to ”simulate G2 over G”. Its formal
description appears in [13]. The idea is that nodes propagate
beeps for an extra round (and therefore contact nodes at distance
2), so that they can simulate a protocol on the square of the
communication graph, for a small time multiplicative over-
head. SquareSim provides two primitives SquareSim(true)
and SquareSim(false) to simulate in G, the BEEP and
LISTEN instructions invoked on graph G2.

Lemma 7. A protocol designed to be executed on G2 can be
simulated on G by replacing all BEEP instructions by calls
to SquareSim(true) and LISTEN instructions by calls to
SquareSim(false).

The maximum degree of the square communication graph is
∆2. By applying Lemma 7 to the previous protocols, we obtain
protocols for solving 2-hop coloring with (∆2 + 1) colors and
2-hop MIS. These protocols are very efficient on bounded
degree graphs, and efficient for graphs with polylogarithmic
∆. 2-hop coloring is an important tool in the beeping model,
used to break symmetry and to deal with the interferences. In
the next section, we show how this can be used to simulate



the stronger CONGEST communication model and obtain an
O(a)-coloring.

Corollary 1. 2-hop MIS and 2-hop (∆2 + 1)-coloring can be
solved in O(∆4 log n+ ∆6) rounds.

Instead of the maximum degree of the square of the given
graph, consider its arboricity. Using a result from [26], showing
that a(G2) ≤ 23 · a ·∆, we obtain Corollary 2, which provides
a more efficient result for graphs with small arboricity.

Corollary 2. 2-hop MIS and 2-hop (∆2 + 1)-coloring are
solved by the two protocols in Sect. IV with an O(a2∆2 log2 n+
a3∆3 log n) round complexity. One of them is uniform in N
but not in a, and the other is uniform in a but not in N .

VI. CONGEST MODEL SIMULATION AND O(a)-COLORING

By using a 2-hop coloring, nodes can simulate the trans-
mission of messages through the edges of the communication
graph, like in the CONGEST model with edge bandwidth
B (commonly O(logN)). We want to make sure that for any
given node v, a message can be sent or received along any edge
without interference, and that the provenance and destination of
the message can be deduced easily. Our simulation algorithm
is made of two components.
The first component is used to transmit a B bit message. If we
have no interference, a node can transmit B bits during 2B
rounds (in phases of two rounds, one round for transmitting
bit 1 and another one for bit 0).
The second component, and the core part of the simula-
tion, deals with the interferences inherent to the beeping
model. Here, a 2-hop c-coloring (for some constant c) is
required so that messages can be associated to a pair of
colors p = (colorProvenance, colorDestination), according
to their provenance and destination (c2 possibilities). The
simulation is composed of phases, each of c2 invocations of
the first component. In this way, transmitted bits never collide.
Lemma 8 summarizes this result.

Lemma 8. Given a 2-hop c-coloring, the CONGEST model
with edge bandwidth B can be simulated in the beeping model,
with an O(c2 ·B) multiplicative factor.

Finally, using the simulation of CONGEST, one can use the
result of Barenboim and Elkin [17] (given for CONGEST),
to obtain an O(a)-coloring in the beeping model. It is done
by first computing, in the beeping model, a 2-hop (∆2 + 1)-
coloring in O(a2∆2 log2 n+a3∆3 log n) rounds (Corollary 2).
Then the O(a)-coloring from [17] (with O(aµ log n) round
complexity) is combined with the CONGEST simulation,
using the (∆2 + 1)-coloring obtained before. By Lemma 8,
the resulting simulation of the O(a)-coloring protocol has
O(aµ∆4 log2 n) round complexity.

The final result is an O((a2∆2+aµ∆4)·log2 n+a3∆3 log n)
time O(a)-coloring protocol in the beeping model. Notice
that now by using this coloring algorithm, together with the
SquareSim protocol, to obtain a 2-hop O(a · ∆)-coloring
(see Sect. V), we reduce the time multiplicative factor when

simulating CONGEST algorithms. Consequently, one obtains
a more efficient simulation.
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