Joffroy Beauquier
email: beauquier@lri.fr

Janna Burman
email: burman@lri.fr

Fabien Dufoulon
email: dufoulon@lri.fr

Shay Kutten
email: kutten@ie.technion.ac.il

Fast Beeping Protocols for Deterministic MIS and (∆ + 1)-Coloring in Sparse Graphs

The beeping model is an extremely restrictive broadcast communication model that relies only on carrier sensing. We consider two problems in this model: (∆+1)-vertex coloring and maximal independent set (MIS), for a network of unknown size n and unknown maximum degree ∆. Solving these problems allows to overcome communication interferences, and to break symmetry, a core component of many distributed protocols. The presented results apply to general graphs, but are efficient in graphs with low edge density (sparse graphs), such as bounded degree graphs, planar graphs and graphs of bounded arboricity. We present O(∆ 2 log n + ∆ 3) time deterministic uniform MIS and coloring protocols, which are asymptotically time optimal for bounded degree graphs. Furthermore, we devise O(a 2 log 2 n+a 3 log n) time MIS and coloring protocols, as well as O(a 2 ∆ 2 log 2 n + a 3 ∆ 3 log n) time 2-hop MIS and 2-hop coloring protocols, where a is the arboricity of the communication graph. Building upon the 2-hop coloring protocols, we show how the strong CONGEST model can be simulated and by using this simulation we obtain an O(a)-coloring protocol. No results about coloring with less than ∆ + 1 colors were known up to now in the beeping model.

I. INTRODUCTION

The discrete beeping model was introduced by Cornejo and Kuhn [START_REF] Cornejo | Deploying wireless networks with beeps[END_REF] to provide a convenient formal framework for studying radio networks having severe restrictions on communication capabilities, yet where widely applicable protocols can be designed and analytically proven in an efficient manner. Since protocol executions in distributed computing are frequently hard to grasp (even with simulations or experiments), having formal models is crucial for both practical and theoretical reasons. In the discrete beeping model, time is divided into synchronous rounds, and in each round, a node can either listen or transmit a unary signal (beep) to all its neighbors. The possibility to directly transmit a beep to a node is defined by a static communication graph, and nodes have absolutely no knowledge of this graph. A beeping node receives no feedback, while a silent one can only detect that either at least one of its neighbors beeped or that all of them were silent. A listening node does not receive the identifiers of its beeping neighbors, as a beep is merely a detectable burst of energy. Protocols can use the synchronous nature of the rounds to transmit information through beeps, but doing so impacts the time complexity in a quantifiable manner. This work studies how this difficulty can be overcome. ‡ This work has been supported by the Israeli-French Maimonide research project grant and by an Israeli Ministry of Science and Technology grant.

Applications of this model range from radio networks with reduced network stacks [START_REF] Cornejo | Deploying wireless networks with beeps[END_REF], such as energy-limited sensor networks, which can provide improved speed, low cost and less transmission errors, to biological networks [START_REF] Navlakha | Distributed information processing in biological and computational systems[END_REF], where the beeping model allows to study the efficiency of natural protocols. Indeed, most biological systems communicate in a primitive manner. Fireflies communicate through flashes of light [START_REF] Guerraoui | Byzantine fireflies[END_REF] and cells through the diffusion of specific chemical markers [START_REF] Afek | Beeping a maximal independent set[END_REF].

Different applications will result in different communication graphs. Graphs with low edge density are said to be sparse. The maximum degree and the arboricity of a graph are measures of its edge density, where low values indicate sparse graphs. Contrarily to graphs with low maximum degree, low arboricity graphs can be seen as graphs which are "globally" sparse but may be "locally" dense. Many real-world networks are sparse [START_REF] Eppstein | Listing all maximal cliques in large sparse real-world graphs[END_REF]. In particular, graphs embedded in some surface, for example the plane, have low arboricity.

The distributed vertex coloring and maximal independent set (MIS) problems are fundamental building blocks in protocol design. The coloring problem consists in assigning colors to nodes such that no two neighboring nodes (sharing an edge in the communication graph) have the same color. The MIS problem consists in choosing a set of nodes in the communication graph such that no two nodes in the set are neighbors, and such that any node not in the set has a neighbor in that set. Solving these problems is important for dealing with the interferences inherent to the beeping model. More specifically, a coloring can be used to allocate resources that cannot be shared by neighboring nodes. Nodes in an MIS can act as cluster heads in order to coordinate actions, and participate in a network backbone construction.

Serving as important primitives for protocol design in the beeping model, MIS and coloring problems have received a lot of attention (see Sect. I-B). Efficient probabilistic solutions were proposed for general graphs. However, the more difficult deterministic case, useful whenever random behavior is inappropriate or deterministic guarantees are required, has received much less attention. In this work, we are interested in designing deterministic protocols having efficient time complexity.

A. Preliminaries

Let [k] be the set {1, . . . , k}. For any two integers a, b (∈ Z) and any positive integer k (∈ N >0), let a ≡ b mod k denote the congruence relationship between a and b such that a mod k = b mod k. The operator is used for the string concatenation. For any positive integer k, l(k) is the length of the binary representation of k, i.e., l(k) = 1 + log 2 k . For any function f : N >0 → N >0 and any positive integer k, f i (k), where i ∈ [l(k)], denotes the ith most significant bit of f (k)'s binary representation.

The communication network is represented by a simple connected undirected graph G = (V, E), where V is the node set and E the edge set. The network size |V | is also denoted by n, the diameter by D and the maximum degree by ∆. For a node v ∈ V , the neighbors of v are

N (v) = {u ∈ V s.t. (u, v) ∈ E} and its degree is deg(v) = |N (v)|.
Nodes have unique identifiers (ids). This property is essential in order to break symmetry in deterministic protocols. The identifier of a node u ∈ V , id(u), is an integer from [N] where N = n c with a constant c > 1. N is an upper bound on the total number of nodes in G. The length of id(u) is denoted by l(u). Then, the maximum length over all ids in G is l max = max u∈V l(u). We have

l max = O(log N) = O(log n). The distance between two nodes u and v in G is dist(u, v). The square graph of G is the graph G 2 = (V, E s), where E s = {(u, v) | u, v ∈ V, dist(u, v) ≤ 2}. G[R] denotes the subgraph of G induced by R ⊂ V . Its edges (E G [R]
) are the edges of G connecting two vertices in R. The arboricity of G, denoted by a(G) or just a, is the minimum number of disjoint forests into which the edge set E can be partitioned. Equivalently, Nash-Williams [START_REF] Nash-Williams | Decomposition of finite graphs into forests[END_REF] proved that arboricity is also a measure of density, i.e., a = max

R⊆V,|R|≥2 |E G [R]| |R|-1 .

B. Related Work

In [START_REF] Casteigts | Design Patterns in Beeping Algorithms: Examples, Emulation, and Analysis[END_REF], round complexity lower bounds are given for the MIS and (∆ + 1)-coloring problems. These bounds are Ω(log n) and Ω(∆ + log n) respectively. They were obtained assuming randomized algorithms, and thus apply to both deterministic and randomized ones. In the latter case, the solution or the running time is guaranteed with high probability (w.h.p.). Moreover, these bounds apply to a stronger variant of the beeping model (with collision detection). In this variant, listening nodes can distinguish between a single beep and the superposition of multiple beeps (a collision).

In [START_REF] Cornejo | Deploying wireless networks with beeps[END_REF], the authors present the first coloring protocol for the beeping model. It outputs a correct coloring after O(∆ + log n) rounds w.h.p. Following this paper, randomized MIS and coloring protocols were designed for the beeping model with collision detection, in a series of papers ([START_REF] Afek | Beeping a maximal independent set[END_REF], [START_REF] Scott | Feedback from nature: An optimal distributed algorithm for maximal independent set selection[END_REF], [START_REF] Casteigts | Design Patterns in Beeping Algorithms[END_REF]). These protocols achieve optimal round complexity, but assume collision detection. Moreover, the resulting colorings often employ more than ∆ + 1 colors. These protocols can be translated to the weaker beeping model (with no collision detection) with an Ω(log n) multiplicative factor.

Schneider and Wattenhofer [START_REF] Schneider | What is the use of collision detection (in wireless networks)?[END_REF] solve deterministic MIS in radio networks with collision detection. Although the term "beeping model" does not appear in [START_REF] Schneider | What is the use of collision detection (in wireless networks)?[END_REF], the presented protocol straightforwardly works in this model. It is time optimal for growth-bounded graphs (GBG). These are graphs where, for any given node v and integer r, the number of nodes in any independent set (see definition in Sect. I-D) within distance r of v is bounded by f (r), which is polynomial in r. However, this property does not cover all bounded degree graphs, trees, planar graphs, or more generally, sparse graphs. The round complexities of different MIS and coloring protocols are compared below (see respectively Figure 1 and2). The only deterministic protocols are those in [START_REF] Schneider | What is the use of collision detection (in wireless networks)?[END_REF] and in the present paper. Some protocols require K, an upper bound on ∆. O(log 2 n) w.h.p. anonymous nodes [START_REF] Schneider | What is the use of collision detection (in wireless networks)?[END_REF] O(log n) GBG, deterministic Here O(∆

2 log n + ∆ 3) deterministic Fig. 2: Coloring protocols Ref Time Comments [9] O(∆ log n + log 2 n) (w.h.p.) ∆ + log n colors [9] O(K log 2 n) (w.h.p.) K + 1 colors [1] O(∆ + log n) (w.h.p.) O(K) colors Here O(∆ 2 log n + ∆ 3), deterministic ∆ + 1 colors

C. Protocol-related Definitions

In the beeping model, an execution proceeds in synchronous rounds (there are synchronized local clocks and all nodes start at the same time: synchronous start). In each round, nodes synchronously execute the following steps: 1) Send: Each node beeps (instruction BEEP in protocols) or listens (LIST EN in protocols). Beeps are transmitted to all neighbors of the beeping node. 2) Receive: If a node beeped in the previous step, then it learns no information from its neighbors. Otherwise, it knows whether or not at least one of its neighbors beeped during the previous step of the same round. 3) Process: Each node performs local computations. One of the most common message passing models is the CONGEST model of edge bandwidth B [START_REF] Peleg | Distributed Computing: A Locality-Sensitive Approach, ser. Monographs on Discrete Mathematics and Applications[END_REF]. It is stronger than the beeping model, as nodes communicate by sending messages of maximum length B (commonly O(log n)) in a round. Different messages can be sent to different neighbors and nodes receive the full content of all incoming messages.

We adopt the classical definitions. The state of a node is the vector of the values of its variables. A variable var of a node v is explicitly associated to v using a subscript var v . A configuration is a vector of the states of all nodes. An execution proceeds in rounds and is defined by the sequence of the configurations at the end of each round, starting from an initial configuration. If the same configuration (resp. state of a node) is repeated indefinitely at the end of each round, we say that this configuration (resp. the state) is terminal. When such a configuration is reached, it is said that the system/protocol has terminated, or that termination has occurred. A problem is given as a first order predicate over configurations. A protocol is said to solve a problem if each execution terminates, and each terminal configuration satisfies the predicate of the problem specification. The round complexity (time complexity) of a protocol is the number of rounds needed to reach a terminal configuration in the worst case. A protocol is said to be uniform in a parameter p if it does not depend on the value of p. It is said to be locally termination detecting, or simply locally terminating, if for any given node v, v detects if it has reached a terminal state.

In the beeping model, protocols must specify what is done in each round. Due to the nature of the communication model, each action is performed on a sequence of consecutive rounds. For instance, a node may have to wait for a round of silence, or beep only every k rounds. At the code level, this type of action is expressed by a loop. As it will appear later, in some complex protocols, such loops are nested. For the sake of clarity, we will name the sequence of rounds in the innermost loop the L 1 -phase, the sequence of loops in the loop just above, the L 2 -phase, and so on. We extend previous definitions concerning protocols to L iphases, in particular uniformity and termination. We consider terminal L i -phase states (states that no longer change in this L iphase), locally terminating L i -phases (any given node v detects when it has reached a terminal L i -phase state) and uniform L i -phases (when the range of the loop index is unknown). The problem of detecting when a given L i -phase has ended (terminated) for all nodes raises the question of synchronizing the start of the following L i -phase. We solve this problem by using L i -synchronization points, represented by i in the code. Upon reaching an L isynchronization point (after having reached a terminal L i -phase state), any given node v waits for all of its neighbors to reach a terminal L i -phase state before executing the following L iphase, if there is any. L i -synchronization points require locally terminating L i -phases, so that any given node v can detect when all of its neighbors have reached the synchronization point. The method for detecting that was first introduced in Förster et al. [START_REF] Förster | Deterministic leader election in multi-hop beeping networks[END_REF], with the "Balanced Execution Technique" (BET). However, BET only guarantees L 1 -synchronization points. In the extended version of this paper [START_REF] Beauquier | Fast Beeping Protocols for Deterministic MIS and (∆+1)-Coloring in Sparse Graphs (Extended Version)[END_REF], we extend BET to guarantee L i -synchronization points for any i ≥ 1. The extension, referred to as EBET, is crucial in the design of complex uniform protocols in the beeping model.

We call a protocol a competition protocol when nodes are "eliminated" round after round until the "surviving" nodes form an independent set (possibly empty). In this paper, we only consider competition protocols where the elimination process is deterministic and depends on identifier comparison.

D. Problem Specifications

The predicates (over configurations) defining the problems considered in the paper can be naturally obtained from the definitions given below. A set I ⊆ V of vertices is said to be an independent set if for any u, v in I, u and v are not neighbors in G. An independent set I is maximal (MIS) if any vertex in V \ I has a neighbor in I. A 2-hop MIS of G is an MIS of its square graph G 2 . A set J ⊆ V of vertices is said to be a (t, s)-ruling set [START_REF] Awerbuch | Network decomposition and locality in distributed computation[END_REF], if for any two vertices u, v ∈ J, dist(u, v) ≥ t, and for any vertex v ∈ V \J, there exists a vertex u ∈ J such that dist(u, v) ≤ s. With this definition, an MIS is a (2, 1)-ruling set. A forest is said to be a (t, s)-ruling forest if the roots are a (t, s)-ruling set and the trees are of depth at most s.

A c-coloring col is a function from V into a set of colors [c] such that ∀(u, v) ∈ E col(u) = col(v).
Notice that in a c-coloring, nodes with the same color constitute an independent set. It is thus possible to construct an MIS from them. A 2-hop coloring of G is a coloring of its square graph G 2 . Any given function colorD is a d-defective c-coloring [START_REF] Barenboim | Distributed Graph Coloring: Fundamentals and Recent Developments[END_REF] if ∀v ∈ V , colorD(v) ∈ [c] and v has at most d neighbors colored with colorD(v). We say that colorD has a defect of d. An edge where both endpoints have different colors is said to be a non defective edge, otherwise it is said to be a defective edge. With this definition, a (proper) coloring is a 0-defective coloring.

E. Contributions

The first contribution of this paper is a tool for analyzing competition protocols: the labeled "deterministic" competition graphs (Sect. II). Using such graphs in protocol analysis is inspired by [START_REF] Hoffman | On a game in directed graphs[END_REF]. Here we adapt this technique to the case of deterministic competition protocols. This general tool may be useful also in future studies of MIS and coloring.

The second and main contribution of the paper is a series of uniform MIS and coloring protocols. First, we present O(∆ 2 log n+∆ 3) deterministic uniform protocols for MIS and (∆ + 1)-coloring, where ∆ is the unknown maximum degree (Sect. III). These protocols are time optimal for bounded degree graphs. They also scale well to graphs with polylogarithmic ∆. Indeed, in these graphs, the time complexity is polylogarithmic in regards to n, which is very efficient. Then, we extend the previous protocols with time complexity dependent on ∆, to protocols with time complexity dependent on the arboricity a (Sect. IV). We get O(a 2 log 2 n + a 3 log n) time MIS and (∆ + 1)-coloring uniform protocols. This results in efficient polylogarithmic time complexity for the large family of graphs where a = O(log c n). Finally, we extend the previous protocols into O(a 2 ∆ 2 log 2 n + a 3 ∆ 3 log n) time 2-hop coloring and 2-hop MIS uniform protocols (Sect. V). Given a 2-hop coloring, we prove that the CONGEST model can be simulated with some multiplicative overhead (Sect. VI). Using this simulation and the algorithm proposed in [START_REF] Barenboim | Deterministic distributed vertex coloring in polylogarithmic time[END_REF] for the CONGEST model, we get an O((

a 2 ∆ 2 + a µ ∆ 4) • log 2 n + a 3 ∆ 3 log n) time O(a)
-coloring protocol in the beeping model, for any given positive constant µ < 1. To the best of our knowledge, this is the first coloring protocol using less than ∆ + 1 colors in the beeping model. Please note that, due to the space constraints, some details and many proofs are missing in the current paper version and can be found in [START_REF] Beauquier | Fast Beeping Protocols for Deterministic MIS and (∆+1)-Coloring in Sparse Graphs (Extended Version)[END_REF].

II. RULING SET PROTOCOL AND COMPETITION GRAPHS

Ruling sets serve as building blocks to construct complex protocols. They have been used to compute MIS [START_REF] Awerbuch | Network decomposition and locality in distributed computation[END_REF] and colorings [START_REF] Schneider | Distributed coloring depending on the chromatic number or the neighborhood growth[END_REF], [START_REF] Schneider | Symmetry breaking depending on the chromatic number or the neighborhood growth[END_REF]. In these papers, the ruling sets are used to decompose the network, and nodes in the ruling set (the "local leaders") take care of solving the problem for the nodes within a certain distance. In the beeping model, doing so is more difficult. We show in the next section, how ruling sets can still be used to design an efficient coloring protocol.

In this section, we introduce a competition protocol (RulingSet -Protocol 1 in Sect. II-B) computing a (2, 2 log N)-ruling set. This protocol can be considered as a variant of the ruling set algorithm from [START_REF] Awerbuch | Network decomposition and locality in distributed computation[END_REF]. That algorithm is heavily recursive, requiring concurrent communications, which are incompatible with the beeping model. Therefore, we adapt it and provide a non-recursive competition protocol with a similar behavior. To prove correctness (Sect. II-C), we use competition graphs, which are directed graphs that serve to model the behavior of competition protocols and help analyzing them. They were first used in [START_REF] Hoffman | On a game in directed graphs[END_REF], but in association with a non-deterministic elimination process. As we are interested in deterministic protocols, we use the nodes' identifiers to label the edges of a competition graph with α-encodings (Sect. II-A), and these values determine a deterministic elimination process. The resulting labeled competition graphs allow to compute the surviving nodes in a convenient way. [START_REF] Afek | Beeping a maximal independent set[END_REF] 1 0 0 1 1 1 0 0 0 binary The encoding starts with as many 1's as the length of the binary representation, followed by a 0.

α-encoding

Then, append binary representation from the second bit onwards Fig. 3: Description of α-encoding

A. α-encoding

We α-encode integers to design uniform competition protocols, as in Casteigts et al. [START_REF] Casteigts | Deterministic leader election in O(D + log n) time with messages of size O(1)[END_REF]. This encoding allows to compare integers (identifiers) bit by bit in a uniform manner. Indeed, when using α-encodings (of integers from [N]), such protocols do not need to know the binary integers' lengths (depending on log N) to compare them bit by bit. The αencoding of integer i is made up of two parts, as explained in Figure 3. Comparing two α-encodings α(i) and α(j) consists of first comparing the minimum number of bits necessary to encode the integers, and if it is the same, comparing the binary representations of i and j (the first bit is unnecessary, because it is 1 and the length is already known). Definition 1. Let i be a positive integer, bin its binary representation and l(i) the length of bin. Let bin -1 be the binary representation without the leading 1 and 1 l(i) a binary string of l(i) 1's. The α-encoding of i, denoted by α(i), is 1 l(i) 0 bin -1 (where denotes string concatenation). α-encoding preserves the order between two integers. Lemma 1. For any i, j ∈ N >0 : i < j ⇔ α(i) ≺ α(j), where ≺ is the lexicographical order on α-encodings.

B. Uniform Competition Protocol for Computing a Ruling Set

Nodes use their unique identifiers for comparison and survivors of the elimination process constitute the output set. Each node v has a unique identifier id(v). The identifiers are encoded on at most l max bits, but l max is unknown to the nodes and thus the binary representations of the identifiers do not necessarily have the same length. Every node v computes the α-encoding α(id(v)) (or α(v) for short, by notation abuse) and outputs a boolean value survived v . We prove that the output is a (2, 2 log N)-ruling set (Theorem 2). The following lemma is straightforward.

Lemma 2. RulingSet has a round complexity of max v∈V l(α(v)) = O(log N).

C. Correctness Analysis of Protocol 1

The output set of RulingSet is analyzed through a game, which we refer to as the "elimination game". This game is enacted on an edge-labeled directed acyclic graph G dag , the labeled competition graph, constructed from the original communication graph G and the nodes' unique identifiers. This construction process is adapted here to the RulingSet protocol, but it applies to any competition protocol. G dag = (V, E dag , label), where E dag is the set of directed edges and label an edge labeling function. G dag is constructed from the α-encodings of the ids, encoded on a maximum of 2l max bits.

• Let (u, v) be an edge of G with α(u) α(v). Then, (u, v) is a directed edge in G dag , directed from u to v. • Let (u, v) be an edge of G dag . For the smallest index i ∈ [2l max] such that α i (u) = 1 and α i (v) = 0, set label(u, v) to i: the edge (u, v
) is labeled (with) i. For any edge e = (u, v) of G dag , u is called the origin and v the extremity of e. It is straightforward to prove that G dag is a directed acyclic graph.

The elimination game is played by the nodes of G dag , round by round, in the following way: on round r, all surviving nodes with an outwards edge e labeled label(e) = r eliminate the extremities of these edges. The game finishes when no more node can be eliminated (thus after at most 2l max rounds). A node's survival is stored as a boolean in the survived variable. Let v be a vertex in G dag . Let e be an incoming edge. We say that e is acting if the origin of e is not eliminated before round label(e), and non acting otherwise. If e = (u, v) is an acting incoming edge, then u eliminates v at round label(e) if and only if v has not already been eliminated. We define the same notions for outgoing edges.

Definition 3. Let Π = (v 1 , . . . , v l) be a directed path in G dag .
There is a unique label sequence S lab (Π) = (s 1 , . . . , s l-1) s.t. ∀r ∈ [l -1], e r = (v r , v r+1) and s r = label(e r).

Results similar to the following lemma and theorem are proven in [START_REF] Cole | Deterministic coin tossing with applications to optimal parallel list ranking[END_REF] for a more limited case. Lemmas 3 and 4 are straightforward.

Lemma 3. Let Π = (v 1 , . . . , v l) be a directed path in G dag . S lab (Π) has no consecutive equal labels: ∀r ∈ [l -1] s r = s r+1 .
Theorem 1. Let v be any node from G dag not surviving the elimination game. There exists a surviving node u such that dist(u, v) ≤ 2l max , where l max = O(log N) .

Proof. First, a path Π from a surviving node u to node v is constructed, then we prove that Π's length is at most 2l max . Π is constructed by induction. Node v did not survive, so there exists an acting incoming edge. The acting incoming edge (w, v) with the smallest label is added to Π. If w does not survive the elimination game, the previous actions are repeated and an acting incoming edge is added to Π. This is done until a surviving node is reached. Since at least one node survives the elimination game, Π's construction is well-defined and Π = (e l , . . . , e 1). Now, let us prove by contradiction that l ≤ 2l max . Suppose l > 2l max and focus on S lab (Π). Because the edge-labels are integers from [2l max] and consecutive labels are non equal by Lemma 3, there exists an extremum s r indexed by r ∈ {2, . . . , 2l max }. Thus there exists i ∈ {r -1, r} such that s i > s i+1 . However, both e i and e i+1 are acting incoming edges, by construction. Thus, the origin of e i is eliminated in round s i+1 , which contradicts the fact that e i is acting. Hence, we have a contradiction.

III. MIS AND VERTEX COLORING PROTOCOLS

Let us now present MIS and (∆ + 1)-coloring protocols with O(∆ 2 log N +∆ 3) round complexity, where ∆ is the maximum degree of the communication graph G. When ∆ = O(1), we obtain an asymptotically optimal O(log n) round complexity [START_REF] Schneider | What is the use of collision detection (in wireless networks)?[END_REF] . For polylogarithmic ∆, the protocol is still very efficient. Nodes know the maximum degree ∆ at first, but this assumption is dropped later on. Nodes know no polynomial upper bound N on their total number.

The protocols presented here are based on computing and refining defective colorings. Defective colorings were first used to solve the distributed coloring problem in [START_REF] Barenboim | Distributed (δ+1)-coloring in linear (in δ) time[END_REF] and [START_REF] Kuhn | Weak graph colorings: Distributed algorithms and applications[END_REF]. Here, we refine the defective coloring differently from the previous works. The exact method is explained below.

A. Non-uniform Protocols for MIS and (∆ + 1)-coloring

The (∆ + 1)-coloring protocol DegreeColoring (Protocol 2) refines the initial ∆-defective coloring until the coloring is proper. DegreeColoring can be seen as an L 4 -phase. It has ∆ L 3 -phases: in each of these phases, the defect is reduced by at least 1. Each L 3 -phase is made of ∆ + 1 coloring L 2 -phases, followed by an additional color reduction L 2 -phase. In each coloring L 2 -phase, nodes with a specific color compute a (2, 2 log N)-ruling forest on the subgraph induced by themselves, using RulingSet (Protocol 1) and Breadth First Searches (BFS) -ColorByBF S function (see below). During BFS, they recolor themselves with an even or odd available color depending on the parity of their depth in the ruling forest. Finally, all nodes communicate the changes in color and update their set of unavailable colors. The following color reduction L 2 -phase is made up of ∆ + 1 L 1 -phases. In each such L 1phase, the range of colors used by all nodes is reduced by 1 (if the range is greater than ∆ + 1). This is important because the color range affects the round complexity, and that range can increase exponentially if it is not reduced in each L 3 -phase.

Let us now present the functions used in a coloring L 2 -phase. There are two functions, ColorByBF S and BroadcastColors. ColorByBF S recolors each participating node. The resulting coloring can be defective. The input parameters are a boolean (inSet) indicating whether or not the node is part of the ruling set, i.e., serving as BFS roots, and a set of unavailable colors (U). The roots initiate parallel BFS. Other nodes compute their distance to the nearest root, which is given by the BFS, and recolor themselves with an available (not in U) newColor, according to the parity of this distance. The newColor values returned by ColorByBF S are in [2∆ + 2]. This is because the set of unavailable colors contains at most ∆ colors, and possibly all of the same parity. Therefore, ColorByBF S chooses the smallest available odd (resp. even) value amidst the first ∆+1 odd (resp. even) values. BroadcastColors communicates the colors chosen by the neighboring nodes. The function has four input parameters: the node's color (newColor), a boolean indicating whether or not it should participate in the current invocation (changingColor), a set of unavailable colors (U) and the maximum degree ∆. The color is transmitted through the round number. Proof. Let color be d-defective at the start of L 3 -phase p3. For any given node v, v has at most d defective edges. It is easy to see that non-defective edges remain non-defective. In a non-defective edge (v, u), let v be the node with the higher color w.l.o.g. During L 3 -phase p3, v stores a set of unavailable newColor values, including newColor u . As such, when v executes ColorByBF S, newColor v = newColor u . // An L3-phase starts with ∆ + 1 coloring L2-phases 8:

for coloring L2-phase p2 := 1 ; p2 ≤ ∆ + 1 ; p2++ do 9:

if color = p2 then inSet := RulingSet(id) 10:

1 L1-synchronization point 11:

if color = p2 then newColor := ColorByBF S(inSet, U) 12: color := newColor 16:

// Followed by one L2-phase, which contains ∆ + 1 color reduction L1-phases 17:

// Before the L2-phase, color ∈ [2∆ + 2] 18:

for color reduction L1-phase p1 := 1 ; p1 ≤ ∆ + 1 ; p1++ do 19:

color := ColorReduction(color, ∆, 2∆+3 -p1) 20: Given a (∆ + 1)-coloring, it is simple to compute an MIS in ∆ + 1 rounds. Nodes with the same color form an independent set. Adding iteratively (at each round) nodes from each such set to a common independent set results in an MIS. Thus, MIS can also be solved in O(∆ 2 log n + ∆ 3) rounds.

B. Uniform (∆ + 1)-coloring

Now, we wish to transform DegreeColoring into U nif DegreeColoring, which is uniform in both ∆ and n. The first step is to replace the functions used in DegreeColoring by uniform functions, and to synchronize them using synchronization points. Then, every non-uniform stopping condition of a loop appearing in DegreeColoring should be eliminated and replaced by a so called local termination component. This component is an L i-2 -phase executed at the end of each iteration (L i-1 -phase) of the loop (L i -phase). It serves to detect if the executing node has finished the ongoing loop. More formally, this component serves to detect whether the executing node has reached a terminal L iphase state, and makes the L i -phase locally-terminating.

First, let us present U nif BroadcastColors, a uniform version of BroadcastColors (since BroadcastColors requires ∆). U nif BroadcastColors is an L 2 -phase, made of consecutive L 1 -phases, each composed of 2 rounds. In the first round, the executing node v beeps if it has not yet communicated newColor v . Otherwise, it listens so it can detect if all of its neighbors have already communicated their newColor value, and if so, v terminates. In the second round, we have the round behavior of BroadcastColors. In such a way, we obtain a uniform function having the same behavior as BroadcastColors. Moreover, in this particular case, since all L 1 -phases contain exactly 2 rounds, it is also locally synchronized, even without using EBET, and therefore there is no need to indicate synchronization points explicitly. U nif ColorReduction has two input parameters: the node's color (color), given by a d-defective c-coloring, and a set of unavailable colors (U). It also has two output parameters: the node's new color color, given by a d-defective c -coloring (with c = min(c -1, ∆ + 1)), and a boolean sameColor indicating whether color changed. Every node v transmits its color value to its neighbors by beeping in the first round of the L 1 -phase indexed by color v . Nodes with the highest color in their neighborhood choose the smallest available color (colors previously transmitted by neighbors are forbidden). If that color is the node's current color, then sameColor is assigned to true. Other nodes do not change their color (and end with sameColor equal to false). Here again, there is no need to indicate synchronization points explicitly, since all L 1 -phases contain exactly 2 rounds.

ReduceColors is an L 4 -phase. It has two input parameters: the node's color (color), given by a d-defective c-coloring, and a set of unavailable colors (U). It has a single output: the node's new color (color), given by a d-defective (∆ + 1)-coloring. The main idea is to have the nodes with the highest color in their neighborhood change their color to the smallest available color (in [∆ + 1]). At some point, they can no longer improve their color (f inished is true). These nodes terminate, allowing the other nodes in their neighborhood to change their color value. Here, it is crucial to put L 2 -synchronization points after the U nif ColorReduction and U nif BroadcastColors calls, because these functions are uniform. Thus, different nodes can finish executing these functions at different times, i.e., not synchronously. As these functions are locally terminating, EBET can be used to ensure the synchronization points.

Following this, let us describe the functions used for U nif DegreeColoring's local termination component. These functions are used to detect when the executing node's color is proper, i.e., no neighbor has the same color. Then, the executing node can exit the outermost loop and thus locally terminate the protocol (see lines 24 to 29). ColorCollision uses U nif ormCollisonBeep to detect whether there are same color neighbors amongst executing nodes. The function has two input parameters: an identifier (id) and the node's color (color). The output parameter is a boolean indicating whether the node detected a collision with a same color node (collision). In each L 2 -phase p2, nodes with color p2 check for a collision by using U nif CollisionBeep. If no neighboring node with the same color p2 exists, then no collision is detected by the executing nodes. U nif CollisionBeep detects whether there are any neighbors amongst the currently executing nodes (a collision). The input parameter is an identifier (id) and the output parameter is a boolean indicating whether the node detected a collision (collision). In each L 1 -phase, a node beeps in the first or the second round, depending on whether the p1 th most significant bit of α(id) is 0 or 1. If a beep is heard, then there is a collision. Two executing neighboring nodes always detect a collision because they have different identifiers. A node terminates if the phase index p1 is greater than the length of the α-encoding of its id.

IV. IMPROVEMENTS FOR GRAPHS WITH SMALL ARBORICITY

DegreeColoring is efficient for graphs with polylogarithmic maximum degree ∆. However, not all graphs have a low maximum degree, and in these graphs, Protocol 3 is less efficient. Using ideas from [START_REF] Goldberg | Parallel symmetry-breaking in sparse graphs[END_REF] and [START_REF] Barenboim | Sublogarithmic distributed mis algorithm for sparse graphs using nash-williams decomposition[END_REF], it is possible to design a (∆ + 1)-coloring protocol which is efficient on graphs with low arboricity a (more specifically, with polylogarithmic a). Notice that some important topologies like trees and planar graphs have an arboricity of 1 and 3 respectively, while their maximum degree can be arbitrarily large.

Theorem 5. MIS and (∆ + 1)-coloring can be solved with O(a 2 log 2 n + a 3 log n) round complexity in the beeping model, where a is the arboricity of the communication graph.

To support this theorem, we design two coloring protocols with the above round complexity: one is uniform in N but not in a, and the other is uniform in a but not in N . It is important to have a protocol uniform in a, since a may be harder to obtain than an upper bound on N . The main component of both protocols is the LimitedDegreeColoring function, which colors all participating low-degree nodes, if it is given an upper bound on the arboricity a. A node v is considered to be a low-degree node if it has deg(v) ≤ (2 +) • a, for a parameter > 0.

In the first protocol, uniform in N , LimitedDegreeColoring is executed iteratively by uncolored nodes until all nodes are properly colored. Since a is known and by a result in [START_REF] Barenboim | Sublogarithmic distributed mis algorithm for sparse graphs using nash-williams decomposition[END_REF], each invocation of the function colors a constant fraction of the nodes of the communication graph. Colored nodes no longer participate in subsequent LimitedDegreeColoring calls. Using results from [START_REF] Barenboim | Sublogarithmic distributed mis algorithm for sparse graphs using nash-williams decomposition[END_REF], it can be proven that executing LimitedDegreeColoring O(log N) times (or more) colors all nodes with O(a • log N) colors. As N is unknown, invocations of LimitedDegreeColoring continue until the executing node is colored properly (local termination component). When this happens for all nodes, the O(a • log N)-coloring is transformed into a (∆ + 1)-coloring by ReduceColors, as in Protocol 3. In the second protocol (uniform in a), we compute an upper bound on a. This is done by estimating a iteratively. At each iteration i, a is estimated to be 2 i and LimitedDegreeColoring is executed O(log N) times, given this estimation. After O(log a) iterations, the estimation is at least as large as the actual arboricity. When this happens, LimitedDegreeColoring executed O(log N) times provides a proper coloring (followed by the color range reduction) as in the first protocol. Refer to the extended version [START_REF] Beauquier | Fast Beeping Protocols for Deterministic MIS and (∆+1)-Coloring in Sparse Graphs (Extended Version)[END_REF] for the details.

V. UNIFORM PROTOCOLS FOR 2-HOP MIS AND 2-HOP (∆ 2 + 1)-COLORING

To obtain protocols for 2-hop MIS and 2-hop coloring, we provide and use a general transformer, the SquareSim protocol, allowing to "simulate G 2 over G". Its formal description appears in [START_REF] Beauquier | Fast Beeping Protocols for Deterministic MIS and (∆+1)-Coloring in Sparse Graphs (Extended Version)[END_REF]. The idea is that nodes propagate beeps for an extra round (and therefore contact nodes at distance 2), so that they can simulate a protocol on the square of the communication graph, for a small time multiplicative overhead. SquareSim provides two primitives SquareSim(true) and SquareSim(f alse) to simulate in G, the BEEP and LIST EN instructions invoked on graph G 2 . Lemma 7. A protocol designed to be executed on G 2 can be simulated on G by replacing all BEEP instructions by calls to SquareSim(true) and LIST EN instructions by calls to SquareSim(f alse).

The maximum degree of the square communication graph is ∆ 2 . By applying Lemma 7 to the previous protocols, we obtain protocols for solving 2-hop coloring with (∆ 2 + 1) colors and 2-hop MIS. These protocols are very efficient on bounded degree graphs, and efficient for graphs with polylogarithmic ∆. 2-hop coloring is an important tool in the beeping model, used to break symmetry and to deal with the interferences. In the next section, we show how this can be used to simulate the stronger CONGEST communication model and obtain an O(a)-coloring.

Corollary 1. 2-hop MIS and 2-hop (∆ 2 + 1)-coloring can be solved in O(∆ 4 log n + ∆ 6) rounds.

Instead of the maximum degree of the square of the given graph, consider its arboricity. Using a result from [START_REF] Agnarsson | Coloring powers of planar graphs[END_REF], showing that a(G 2) ≤ 2 3 • a • ∆, we obtain Corollary 2, which provides a more efficient result for graphs with small arboricity.

Corollary 2. 2-hop MIS and 2-hop (∆ 2 + 1)-coloring are solved by the two protocols in Sect. IV with an O(a 2 ∆ 2 log 2 n+ a 3 ∆ 3 log n) round complexity. One of them is uniform in N but not in a, and the other is uniform in a but not in N .

VI. CONGEST MODEL SIMULATION AND O(a)-COLORING

By using a 2-hop coloring, nodes can simulate the transmission of messages through the edges of the communication graph, like in the CONGEST model with edge bandwidth B (commonly O(log N)). We want to make sure that for any given node v, a message can be sent or received along any edge without interference, and that the provenance and destination of the message can be deduced easily. Our simulation algorithm is made of two components. The first component is used to transmit a B bit message. If we have no interference, a node can transmit B bits during 2B rounds (in phases of two rounds, one round for transmitting bit 1 and another one for bit 0). The second component, and the core part of the simulation, deals with the interferences inherent to the beeping model. Here, a 2-hop c-coloring (for some constant c) is required so that messages can be associated to a pair of colors p = (colorP rovenance, colorDestination), according to their provenance and destination (c 2 possibilities). The simulation is composed of phases, each of c 2 invocations of the first component. In this way, transmitted bits never collide. Lemma 8 summarizes this result. Then the O(a)-coloring from [START_REF] Barenboim | Deterministic distributed vertex coloring in polylogarithmic time[END_REF] (with O(a µ log n) round complexity) is combined with the CONGEST simulation, using the (∆ 2 + 1)-coloring obtained before. By Lemma 8, the resulting simulation of the O(a)-coloring protocol has O(a µ ∆ 4 log 2 n) round complexity.

The final result is an O((a 2 ∆ 2 +a µ ∆ 4)•log 2 n+a 3 ∆ 3 log n) time O(a)-coloring protocol in the beeping model. Notice that now by using this coloring algorithm, together with the SquareSim protocol, to obtain a 2-hop O(a • ∆)-coloring (see Sect. V), we reduce the time multiplicative factor when simulating CONGEST algorithms. Consequently, one obtains a more efficient simulation.

Fig. 1

 1 Fig. 1: MIS protocols Ref Time Comments [8]O(log 2 n) w.h.p. anonymous nodes[START_REF] Schneider | What is the use of collision detection (in wireless networks)?[END_REF] O(log n) GBG, deterministic Here O(∆ 2 log n + ∆ 3) deterministic

Fig. 4 :

 4 Fig. 4: Example of G dag construction

Lemma 4 .

 4 Let I = {v ∈ V s.t. survived v = true} at the termination of RulingSet. Let S be the set of survivor nodes of an elimination game played on G dag . We have I = S. Theorem 2. The output set I = {v ∈ V s.t. survived v = true} of RulingSet is a (2, 2 log N)-ruling set.

Lemma 5 .Lemma 6 .

 56 Now, let us present the ColorReduction function invoked in the color reduction L 2 -phase. Its input parameters are an integer value given by a d-defective c-coloring (color), the maximum degree ∆ and the maximum color c (in the coloring). Nodes broadcast colors from [∆ + 1] in ∆ + 1 rounds, after which, nodes with color = c change their color to the smallest available color in [∆ + 1]. The output is the node's new color (color), given by a d-defective c -coloring, with c = min(c -1, ∆ + 1). function ColorReduction(color, ∆, c): color 1: U := ∅ U stores unavailable colors 2: for round r := 1 ; r ≤ ∆ + 1 ; r++ do 3: if color = r then BEEP 4if beep heard then U := U ∪ {r} 7: if color = c then color := min([∆ + 1] \ U) 8: Return colorIn DegreeColoring, we only require L 1 -synchronization points (for RulingSet and ColorByBF S), introduced in Sect. I-C. Both functions are uniform in N , and thus are not explicitly terminating (if executed alone). However, they are locally terminating. Therefore we can use BET to perform neighboring termination detection and make nodes start the next step of the protocol synchronously. On the other hand, as the time lengths of all L 2 , L 3 and L 4 -phases (and ColorReduction calls) are upper bounded by ∆ + 1, their termination is completely synchronized at all nodes and we do not need L 2 , L 3 and L 4 -synchronization points. At the start (and end) of an L 3 -phase, color ∈ [∆ + 1]. The defect of color is reduced by one per L 3 -phase.

Protocol 2 1 :

 21 DegreeColoring IN: id: Identifier, ∆: Maximum degree OUT: color: Integer value 2: color := 1 3: // Each node removes at least one defective edge per L3-phase 4: for L3-phase p3 := 1 ; p3 ≤ ∆ ; p3++ do 5: U := ∅ Stores newColor values already chosen during this phase 6: newColor := 0 newColor ∈ [2∆ + 2] during L3-phase 7:

1 13 : 2

 1132 U := BroadcastColors(newColor, (color = p2), U, ∆) 14:This synchronization point is not needed (strictly explanatory) 15:

3 Theorem 3 .

 33 After all color reduction L1-phases, color ∈ [∆ + 1] 22: Not needed, for clarity only 23: EndProtocol All endpoints of the defective edges of v, and v itself, execute RulingSet and ColorByBF S in the same L 2 -phase. If DistC(v) denotes v's distance to the nearest BFS tree root (RulingSet survivor), there is at least one endpoint u with |DistC(u) -DistC(v)| = 1. Because of the difference in the parity of these distances, u and v choose different values in [2∆ + 2], and at least one edge becomes non-defective. DegreeColoring solves (∆ + 1)-coloring in O(∆ 2 log n + ∆ 3) rounds.

2 5 :

 25 U := U nif BroadcastColors(color, f inished, U) 6:2 Actually, also an L3-synchronization point 7: Return color

Lemma 8 .

 8 Given a 2-hop c-coloring, the CONGEST model with edge bandwidth B can be simulated in the beeping model, with an O(c 2 • B) multiplicative factor. Finally, using the simulation of CONGEST, one can use the result of Barenboim and Elkin [17] (given for CONGEST), to obtain an O(a)-coloring in the beeping model. It is done by first computing, in the beeping model, a 2-hop (∆ 2 + 1)coloring in O(a 2 ∆ 2 log 2 n + a 3 ∆ 3 log n) rounds (Corollary 2).

 if beep heard then U := U ∪ {p1} Keep neighbors' newColor values Next, we design a uniform version of ColorReduction. It is used in ReduceColors, a uniform version of the color reduction L 2 -phase from DegreeColoring.

	function UnifBroadcastColors(newColor, changingColor, U): U
	1: for L1-phase p1 := 1 ; p1++ do	L1-phase consists of two rounds
	2:	// First round	
	3:	if newColor >= p1 and changingColor then BEEP Not finished yet
	4:	else	
	5:	LISTEN	
	6:	if no beep heard then Return U	If all neighbors beeped their colors
	7:	// Second round	
	8:	if newColor = p1 and changingColor then
	9:	BEEP	Communicate your color
	10:	else	
	11:	LISTEN	
	12:		

 Finally we describe U nif DegreeColoring. The main idea is the same as in DegreeColoring: we refine the initial ∆-defective coloring until the coloring is proper. The main differences are the local termination components. The L 4 -phase's (L 3 loop) local termination component is similar to the local termination component in U nif BroadcastColors. A node has finished an L 4 -phase if all of its neighbors have chosen a new color. The protocol's local termination component is described previously. The additional U t variable is used to store unavailable colors that have already been chosen by neighboring nodes which have terminated the protocol.

	function ColorCollision(id, color): collision
	1: for L2-phase p2 := 1 ; p2++ do	At most ∆ + 1 L2-phases
	2:	if color = p2 then
	3:	collision := U nif CollisionBeep(id)
	4:	Return collision
	5:	2	
	Protocol 3 U nif DegreeColoring
	1: IN: id: Identifier OUT: color: Integer value
	2: Ut := ∅	Stores color values chosen for output by terminated neighbors
	3: color := 1	
	4: // Each node removes at least one defective edge per L5-phase
	5: for L5-phase p5 := 1 ; p5++ do
	6:	U := ∅	Stores newColor values already chosen during this phase
	7:	newColor := 0	newColor ∈ [2∆ + 2] during the L5-phase
	8:	// This L3 loop is an L4-phase
	9:	for coloring L3-phase p3 := 1 ; p3++ do
	10:	if color = p3 then inSet := RulingSet(id)
	11:		
		2	L2-synchronization point here, thus we have coloring L3-phases
	16:	// From here on, local termination component for L4-phase
	17:	if color > p3 then BEEP	Beep if new color still not chosen
	18:	else	
	19:	LISTEN	Check if any neighbor is still choosing a new color
	20:	if no beep heard then Exit L3 loop
	21:	4	Crucial because some nodes end the L4-phase earlier than others
	22:	color := ReduceColors(newColor, Ut)	After, color ∈ [∆ + 1]
	23:	4	
	24:	// From here on, local termination component for L5 loop
	25:	collision := ColorCollision(color)
	26:	3		Because ColorCollision is an L3-phase
	27:	Ut := U nif BroadcastColors(color, collision = f alse, Ut)
	28:	2		Because U nif BroadcastColors is an L2-phase
	29:	if not collision then EndProtocol	Exit L5 loop
				function UnifCollisionBeep(id): collision
				1: collision := f alse
				2: for L1-phase p1 := 1 ; p1++ do	L1-phase consists of two rounds
				3:	if p1 > l(α(id)) then Return collision
				4:	if αp1(id) = 0 then
				5:	BEEP ; LISTEN
				6:	if beep heard in the second round then collision := true
				7:	else
				8:	LISTEN ; BEEP
				9:	if beep heard in the first round then collision := true

1 12: if color = p3 then newColor := ColorByBF S(inSet, U ∪ Ut) 13: 1 14: U := U nif BroadcastColors(newColor, color = p3, U) 15:

Theorem 4. MIS and (∆ + 1)-coloring can be solved in O(∆ 2 log n + ∆ 3) rounds with a protocol uniform in both ∆ and N .