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Abstract

A total k-coloring of a graph G is a coloring of vertices and edges
of G using colors of the set {1, . . . , k}. These colors can be used to
distinguish adjacent vertices of G. There are many possibilities of such
a distinction. In this paper we focus on the one by the full sum of

colors of a vertex, i.e. the sum of the color of the vertex, the colors
on its incident edges and the colors on its adjacent vertices.

This way of distinguishing vertices has similar properties to the
method when we only use incident edge colors and to the correspond-
ing 1-2-3 Conjecture .
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1 Introduction and terminology

Let G = (V,E) be a finite, undirected simple graph.
Karoński,  Luczak and Thomason [9] introduced and investigated a col-

oring of the edges of a graph with positive integers so that adjacent vertices
have different sums of incident edge colors. More precisely, let f : E →
{1, 2, . . . , k} be an edge coloring of G (such a coloring is also called a k-
coloring of G). For x ∈ V we define

σe(x) :=
∑

e∋x

f(e).

A k-coloring c of G is called neighbor sum distinguishing if σe(x) 6= σe(y)
whenever xy ∈ E. In other words, the vertex coloring σe induced by f in the
above described way must be proper.

The minimum integer k for which there is a neighbor sum distinguishing
coloring of a graph G will be denoted by χe(G). Clearly, such k does not
exist when G contains K2 as a component. Graphs without a connected
component isomorphic to K2 are called nice graphs.

The following elegant problem, known as the 1-2-3 Conjecture, was posed
in [9].

Conjecture 1. Let G be a nice graph. Then χe(G) ≤ 3.

Thus far it is known that χe(G) ≤ 5 for any nice graph G (see [8]).
If the initial coloring f is total i.e., f : V ∪E → {1, 2, . . . , k} (we call f a

total k-coloring then), we have many possibilities to choose palette of colors
i.e., the distinguishing elements we take into account. For instance, cf. [10],
for every vertex v we denote

σve(v) := f(v) +
∑

u∈N(v)

f(uv) = f(v) + σe(v),

where N(v) = {y ∈ V | vy ∈ E} denotes (the open) neighborhood of v. Thus,
σve(v) is the sum of incident colors of v and the color of v. We say that f

is a neighbor sum distinguishing total coloring of G if σve(u) 6= σve(v) for all
adjacent vertices u, v in G.
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Similarly as above, the minimum value of k for which there exists a neigh-
bor sum distinguishing total coloring of a graph G will be denoted by χve(G).

In [10] Przyby lo and Woźniak posed the following problem, known as the
1-2 Conjecture.

Conjecture 2. For every graph G we have χve(G) ≤ 2.

In this context, the best upper bound is due to Kalkowski [7] and equals
3.

Yet another possibility was considered by Flandrin et al. in [6] where, for
x ∈ V , the authors consider the following sum

σen(x) =
∑

e∋x

f(e) +
∑

y∈N(x)

f(y),

where f is a total k-coloring of G.
The value σen(x) is called an expanded sum at x. A total k-coloring f of

G is called neighbor expanded sum distinguishing if

σen(x) 6= σen(y)

whenever xy ∈ E(G). The corresponding invariant, i.e., the minimum value
of k for which such a neighbor expanded sum distinguishing total k-coloring
of G exists is denoted by χen(G).

The following conjecture is stated in [6].

Conjecture 3. For every graph G we have χen(G) ≤ 2.

In this paper we consider the seemingly last remaining extension of the
concept of Karoński,  Luczak and Thomason towards total colorings, namely,
we would like to distinguish vertices by full sums, defined for a vertex x by

σven(x) := f(x) +
∑

e∋x

f(e) +
∑

y∈N(x)

f(y),

where f is a total k-coloring of G. We call f a neighbor full sum distinguishing
total k-coloring of G then.

The corresponding parameter, expressing the minimum k admitting exis-
tence of such a coloring is denoted by χven(G). It is easy to see that no such
desired distinguishing coloring exists if a graph which is not nice.

In the following sections we provide some arguments in favor of the fol-
lowing conjecture.
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Conjecture 4. Let G be a nice graph. Then χven(G) ≤ 3.

Remark 5. It is easy to observe some similarities between 1-2-3 Conjecture
(Conjecture 1) and just formulated Conjecture 4.

Firstly, it is easy to see that χe(K3) = χven(K3) = 3. Thus, in general,
we need three colors in order to distinguish adjacent vertices in both cases.
Secondly, the notion of “nice” is is the same for the two variants ( i.e. neither
the parameter χe nor the parameter χven exist for graphs which are not nice).

On the other hand, there are also similarities between 1-2 Conjecture
(Conjecture 2) and Conjecture 3. In particular, the both corresponding pa-
rameters are well defined for all graphs.

Remark 6. In all of the above problems, we considered general colorings and
color sums. The problems differed in the considered palettes, i.e. elements of
the graph, which we took into account. If we limit ourselves to the elements
“close” to the given vertex, we have three options: the vertex itself, incident
edges and neighboring vertices.

By denoting (symbolically) these three options by v (vertex), e (edges)
and n (neighbors) we have the following seven options when it comes to
palettes. Denote the palette by P. If P = {v}, then the coloring corresponds
to the usual proper coloring of the vertices of a graph and has been intensively
studied since the beginning of the graph theory. The cases P = {e}, P =
{v, e} and P = {en} are discussed above. The case P = {n} corresponds to
the so-called lucky labellings and was introduced in [4]. In turn the case of
P = {v, n} is studied in [1].

Therefore, the case that we are considering in this paper (P = {v, e, n})
is the last, natural and not yet studied case. This is an additional motivation
for our research.

Notation. The four problems described above are only a modest part of
a family of problems concerning distinguishing vertices of a graph by col-
oring the edges, or vertices. In addition to the consideration of different
palettes, one can consider different types of colorings (proper or general),
one can distinguish all or only neighboring vertices, and the distinction can
take into account not only the sums of colors but also multisets or sets. Some-
times, the notation taking into account all these elements is used. In this
notation, parameters described above would be denoted by gndiΣ, tgndiΣ,
egndiΣ, fgndiΣ, respectively. Because all colorings we consider are general,
we distinguish only neighboring vertices and we always do this by means of
sums, we apply somewhat simpler notation. See Seamone [11] for a survey.
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2 Paths and cycles

We use Bondy and Murty’s book [2] for terminology and notation not defined
here.

Let Pn denote the path of order n.

Proposition 7. If n ≥ 4, then χven(Pn) = 2, and χven(P3) = 1.

Proof. Denote by x1, . . . , xn the consecutive vertices of the path Pn, n ≥
4. By odd (even) vertices we mean the vertices with odd (even) indices,
respectively. Let us put f(x1) = f(x3) = . . . = 1 on odd vertices, and f(x2) =
f(x4) = . . . = 2 on even vertices, and f(xixi+1) = 1 for i = 1, . . . , n−1. Then,
it is easy to see that σven(x1) = σven(xn) = 4, σven(x) = 7 for all inner odd
vertices, σven(x) = 6 for all inner even vertices. Thus, all adjacent vertices
are distinguished. Clearly, in the case of P3, one color is enough.

Let Cn denote the cycle of order n.

Proposition 8. For n ≥ 4, χven(Cn) = 2 and χven(C3) = 3.

Proof. If n is even then coloring vertices and edges of the cycle as in the
case of paths, we get a coloring distinguishing neighbors by full sums. So, let
n be odd and denote by x0, x1, . . . , xn−1 the consecutive vertices of the cycle
Cn, n ≥ 5.

We define f as follows:
f(x0) = 1,
f(x1) = 2,
f(xi) = 1 for i odd, i 6= 1,
f(xi) = 2 for i even, 2 ≤ i ≤ n− 1,
f(xixi+1) = 2 if i ∈ {0, 1},
f(xixi+1) = 1 for all remaining edges.
It can be verified that σven(x0) = 8, σven(x1) = 9, σven(x2) = 8,

σven(xi) = 7 for all remaining odd vertices, and σven(xi) = 6 for all re-
maining even vertices. Thus, the above defined function is a neighbor full
sum distinguishing total 2-coloring of Cn. For n = 3, it is easy to see that two
colors do not suffice to get such a coloring, while three are enough. Indeed,
it is sufficient to put 1 on vertices and 1,2,3 on edges of C3.
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3 Bipartite graphs

Observe first that if we color all edges and vertices with 1, then for every
vertex v we obtain σven(v) = 2 × d(v) + 1. If there are no adjacent vertices
of the same degree in G, then χven(G) = 1.

Theorem 9. If G is a connected bipartite graph of order n ≥ 3, then
χven(G) ≤ 2.

Proof. Let x be a vertex of the maximum degree ∆ of the graph G = (V,E).
By Propositions 7 and 8, we may assume that d(x) ≥ 3. We consider a
spanning tree T of a graph G obtained by the BFS-algorithm (breadth-first
search) rooted at x. First, we define a desired total coloring f for all vertices
and edges of G except these edges which belong to T , and only just then
choose colors for these remaining edges. At the end we might also be forced
to make some alterations concerning x and its incident edges.

We thus start by setting f(v) = 1 for every vertex v ∈ V r N(x) and
f(v) = 2 whenever v ∈ N(x). Moreover, we put f(e) = 1 for every edge
e ∈ E r E(T ). Note that all edges incident with x belong to E(T ).

Next we will be consecutively assigning colors to edges of T in such a way
that all vertices on spheres of even radius (greater than 0) centered in x will
have even full sums (in G) and all vertices on spheres of odd radius centered
in x will have odd full sums (note that the distances of any vertex v ∈ V from
x are the same in G and T ). For this goal we will be analyzing consecutive
vertices of T from subsequent spheres centered in x with decreasing radiuses.
We thus start from (all) vertices on the sphere with the largest radius (each
such vertex is a leaf of T ).

In general, suppose y (y 6= x) is a consecutive vertex we are about to
process, and that it belongs to Sk(x) - the sphere of radius k centered in
x i.e. the set of vertices of G distant by k from x. Observe that the facts
that T is a BFS-tree and G is bipartite imply that every edge e ∈ E joins
two neighboring spheres centered in x i.e. the vertices of each sphere are
independent. Then all edges yu with u ∈ Sk+1(x), if there are any, are already
colored. Let v be the unique predecessor of y in T , hence v ∈ Sk−1(x) and
yv is the only yet uncolored edge incident with y. Then we color the edge yv

with either 1 or 2 in such a way that σven(y) (in G) is even if k is even, or
odd otherwise.

We continue in the manner described above until we have colored all edges
of T . Note that afterwards, the only possible conflicts between full sums of
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adjacent vertices in G are between x and some of its neighbors. Then either
f already meets our requirements, or we have the same full sum in x and in
some y′ ∈ N(x). In the latter case however, by our construction, we have:

σven(x) = f(x) +
∑

u∈N(x)

f(u) +
∑

e∋x

f(e)

≥ f(x) + f(y′) + 2(∆ − 1) + (∆ − 1) + f(xy′)

= f(y′) + f(x) + (∆ − 1) + 2(∆ − 1) + f(xy′)

≥ f(y′) +
∑

u∈N(y′)

f(u) +
∑

e∋y′

f(e) = σven(y′), (1)

and hence σven(x) = σven(y′) implies that all edges incident with x, except
possibly for xy′, must be colored with 1. Then we change colors of the vertex
x and all its incident edges from 1 to 2 and vice versa. As a result, the parity
of the full sum at every neighbor of x will not change, while the full sum of x
will get larger than the ones corresponding to its neighbors, since afterwards
x (of degree ∆ ≥ 3) will have all neighbors colored with 2 and at most one
incident edge colored with 1, hence the obtained f : V ∪ E → {1, 2} will
distinguish neighboring vertices of G by full sums.

The proof above provides an algorithm in which the parities of full sums
in the independent sets making up a bipartition of G are different, with one
possible exception - a root of a BFS-tree. We can observe that such exception
might be unavoidable, as indeed there are bipartite graphs for which there
does not exist a total coloring f inducing odd full sums in one set of the
bipartition and even full sums in the other one. Namely, let G = (X, Y ;E)
be a bipartite graph with both sets X and Y of odd orders. And let every
vertex of G have odd degree. Then the sum of all full sums in G is even since

∑

v∈X∪Y

σven(v) = 2
∑

e∈E

f(e) +
∑

v∈X∪Y

(d(v) + 1)f(v).

On the other hand however, the sum of all full sums in G must be odd, if we
assume that all full sums are even in X and odd in Y , or vice versa.

An analogous algorithm works even more simply in the case of χen.

Theorem 10. If G is a connected bipartite graph of order n ≥ 1, then
χen(G) ≤ 2.
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Proof. For n ≤ 2, the thesis is straightforward. Otherwise, we use the same
initial coloring of the vertices, and then the same algorithm of coloring the
edges as in the proof of Theorem 9, but taking into account the parities of
σen(y) instead of σven(y) for every y ∈ V (G)r{x} (we do not have to assume
that ∆(G) ≥ 3 either). Then, by similar estimations as in (1), the sum at
x is larger than the sums at its neighbors, and thus all adjacent vertices are
distinguished by expanded sums in G.

4 Regular graphs and graphs with χ = 3

In [3] Chartrand et al. considered a general coloring of the edges of a graph
with the elements of [k] := {1, 2, . . . , k}. Such a coloring is an irregular
assignment if, for any two vertices x, y of G, the sum of colors of edges
incident to x differs from the sum of colors of edges incident to y. The
irregularity strength of a graph G, denoted by s(G), is the minimum number
k such that G has an irregular assignment from the set [k]. Let Kn denote
the complete graph on n vertices. In this case, there is no difference if
we distinguish all or only neighboring vertices. Therefore s(Kn) = χe(Kn).
In [3] the authors showed that s(Kn) = 3, for n ≥ 3. So, if we start with the
appropriate coloring for edges of Kn, and then put 1 on each vertex of this
graph, we obtain a neighbor full sum distinguishing total 3-coloring of Kn,
since, the sum of colors of the vertices belonging to the closed neighborhood
of any vertex of Kn is the same and equals n. So we cannot color the vertices
and the edges in a desired manner using just two colors (such a coloring would
imply the existence of an irregular assignment of Kn). Thus the following
proposition holds.

Proposition 11. For n ≥ 3, χven(Kn) = 3.

Let Kr(t) denote a complete r-partite graph with t vertices in each class
(r, t ≥ 1). Faudree et al. [5] proved that if G = Kr(t), r > 2 and t ≥ 1,
then s(Kr(t)) = 3. Since G is regular, it follows that G admits a neighbor
full sum distinguishing total 3-coloring.

Proposition 12. If r ≥ 3 and t ≥ 1, then χven(Kr(t)) ≤ 3.

In [9] the authors studied a coloring of the edges of the graph with the
elements of an abelian group.
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Theorem 13 ( [9]). Let (Γ,+) be a finite abelian group of odd order and G

a connected graph of order at least 3. If G is |Γ| colorable, then there exists
a neighbor sum distinguishing coloring of the edges of G with the elements of
Γ.

Corollary 14. Let G be a connected graph of order at least 3. If G is
(2k + 1)-colorable for k ≥ 1, then χven(G) ≤ 2k + 1.

Proof. Supose that G is (2k + 1)-colorable. By Theorem 13 there exists a
neighbor sum distinguishing coloring of the edges of G with the elements of
the group Z2k+1. Afterwards, put 0 on every vertex of G. It can be easily
seen that a total coloring with the elements of Z2k+1 obtained in this manner
distinguishes neighbors by full sums. It suffices now to replace 0 by 2k + 1
and apply the addition in N in order to obtain the desired total coloring.

Remark 15. Since we showed that χven(G) = 2 for a bipartite connected
graph G having at least three vertices and we will prove that this index is less
than or equal to 5 for any connected graph G of order at least 3, the above
corollary is interesting only for the class of graphs with chromatic number 3.

5 Split graphs

Let G = (S ∪K,E) be a split graph, i.e. a graph such that S is a stable set
(possibly empty) and K is a clique on k ≥ 1 vertices. We assume that K is
maximal, i.e. that every vertex in S is not adjacent with at least one vertex
in K.

Proposition 16. If G is a split graph of order n ≥ 3, then χven(G) ≤ 3.

Proof. First of all, we may always suppose that |K| ≥ 2 and that every
vertex of S has degree at least 1.

We also consider that K is maximal, i.e. every vertex in S is not con-
nected to at least one vertex in K.

If |K| = 2, i.e. K = {u, v} with uv ∈ E(G), then |S| ≥ 1 and each
vertex of S is adjacent either with u or with v exclusively. Without loss of
generality, we suppose that d(u) ≤ d(v). Then we color all the edges incident
to v, except uv, by 2, every vertex and all the edges incident to u by 1. Then
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σven(v) = 3(d(v) − 1) + 3,
σven(u) = 2(d(u) − 1) + 3.
Thus σven(v) > σven(u) and χven(G) ≤ 2.

Now, we suppose that |K| ≥ 3.
If |S| = 0, then G is a complete graph with at least 3 vertices. Then, by

Proposition 11, χven(G) = 3.
Suppose now that |S| ≥ 1. We first order the vertices v1, . . . , vk of K

in such a way that i > j implies that d(vi) ≥ d(vj). Then, we color the
edges and vertices of GK , the subgraph induced by K, in such a way that
χven(GK) = 3 and that i > j implies that σven(vi) > σven(vj) (in GK).
Finally, we put 1 on the vertices of S and the edges between S and K. It
is easy to see that if x ∈ S and y ∈ K, σven(x) < σven(y). Therefore, this
coloring is a neighbor full sum distinguishing 3-coloring.

Remark 17. It is easy to find split graphs which admit a neighbor full sum
distinguishing total 2-coloring.

For example, let G be the graph formed by adding a pendant edge to K3.
Then χven(G) = 2.

Question 18. Does there exist a simple characterization of split graphs which
admit a neighbor full sum distinguishing total 2-coloring?

6 χven ≤ 5

As already mentioned, in [8], Kalkowski et al. showed that for every graph
G without components isomorphic to K2 there exists a coloring of the edges
of G with the elements of {1, . . . , 5} such that the resulting vertex coloring
σe of G is proper. This implies at once the following corollary.

Corollary 19. If G is a connected regular graph of order at least 3, then
χven(G) ≤ 5.

Using the approach from [8] we will show that the same holds for all
connected graphs of order at least 3. As one may start constructing a total
coloring e.g. by choosing first arbitrary admissible vertex colors, this follows
by the following lemma, within which f denotes a total coloring of G.
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Lemma 20. Given any connected graph G = (V,E) of order at least 3
and any set {f(v) : v ∈ V } of integers assigned to its vertices, there exist
f(e) ∈ {1, 2, 3, 4, 5} for e ∈ E such that f is a neighbor sum distinguishing
total coloring of G.

Proof. Suppose we are given a connected graph G = (V,E) of order at least
3 and a set {f(v) : v ∈ V } of integers. Order the vertices of G into a sequence
v1, v2, . . . , vn so that d(vn) ≥ 2 and for every vertex vi with i < n there exists
an edge vivj ∈ E with j > i. Every such edge will be called a forward edge
of vi, while vj is a forward neighbor of vi, and the other way round, i.e., vivj
and vi will be referred to as a backward edge and a backward neighbor, resp.,
of vj. At every step of the coloring algorithm described below, we will denote
by fT (e) and σT (v) the up-to-date color of an edge e ∈ E and total sum of
a vertex v ∈ V , respectively. Initially we assign color 3 to every edge of G
(i.e., initially fT (e) = 3 for e ∈ E). With every consecutive vertex vi in the
sequence we will now subsequently associate a two element set

Wi ∈ W := {{a, a + 2} : a ≡ 0 (mod 4) or a ≡ 1 (mod 4)}

disjoint with the corresponding sets associated with its backward neighbors,
and make sure that ever since defining such set Wi, the total sum σT (vi) will
always belong to Wi for every vertex vi ∈ V (thus assuring its distinction
from the total sums of the backward neighbors of vi) - a possible exceptions to
this rule will only be admitted while analyzing the last vertex in the sequence
(see details below). To achieve this goal we will allow:

(i) subtracting or adding 2 (or doing nothing) to the color of every back-
ward edge vkvi of vi so that σT (vk) ∈ Wk afterwards,

(ii) subtracting or adding 1 to the color of the first forward edge of vi,

i.e. a forward edge vivj of vi with the least j. While applying the rules
above we will additionally require that after analyzing vi (and committing
admissible alterations of colors of the edges incident with vi) and choosing
appropriate Wi:

(iii) if cT (vivj) = 2 then σT (vi) = minWi, while if cT (vivj) = 4 then
σT (vi) = maxWi where vivj is the first forward edge of vi.

Note that the rules (i)-(iii) guarantee that the colors of all edges will belong
to the set {1, 2, 3, 4, 5} at the end of our algorithm.
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Suppose we begin our algorithm. For the first vertex v1 we do not need
to introduce any alterations, hence we have σT (v1) = f(v1) + 3d(v1), and we
choose (the only) 2-element set from W to which σT (v1) belongs and set it
as W1.

Assume now that we are about to analyze a vertex vi with 1 < i < n and
so far all our requirements are fulfilled and all rules have been obeyed. Denote
the number of backward neighbors of vi by d. Observe that since vi has at
least one forward neighbor, then via admissible alterations consistent with
(i) and (ii), we may obtain 2d + 3 distinct sums at vi, which are consecutive
integers. At most 2 of these cannot be achieved consistently with (iii). Thus
we are left with a set of at least 2d+1 options for σT (vi), containing elements
(not necessarily both) from at least d+1 2-element sets from W . At least one
of these 2-element sets is not associated with any of d backward neighbors
of vi. We arbitrarily choose one such set to be Wi, and perform alterations
on the edges incident with vi consistent with (i)-(iii) so that σT (vi) ∈ Wi

afterwards. We continue in the same manner until we reach the last vertex
in the sequence.

Finally we analyze vn. By (i) we may obtain d(vn) + 1 distinct sums
at vn, say a, a + 2, . . . , a + 2d(vn). If a ∈ {2, 3} (mod 4), we perform the
admissible alterations consistent with (i) so that σT (vn) = a. Then however,
σT (u) ∈ {0, 1} (mod 4) for every (backward) neighbor u of vn, which thus
cannot be in conflict with vn. Therefore, we may assume that a ∈ {0, 1}
(mod 4), and that not all neighbors of vn are associated with the same 2-
element list (if the later was not true, i.e. if the total sums of all neighbors
of vn belonged to the same W ∈ W , then as d(vn) ≥ 2, we would have at
least 3 available options for σT (vn), at least one of which would not belong
to W , hence we could again distinguish vn from all its neighbors). Let vl
be a neighbor of vn with σT (vl) ∈ W ′ ∈ W such that W ′ ∩ {a, a + 2} = ∅.
Then we apply (i) (if necessary) to all backward edges of vn so that each of
them except for vlvn has the smaller of the two admissible colors and vlvn -
the larger one. Then σT (vn) = a + 2 is distinct from all total sums of the
neighbors of vn. At the end, setting for all edges e ∈ E, f(e) = fT (e), we
obtain a desired total coloring f of G.

Corollary 21. If G is a connected graph of order at least 3, then χven(G) ≤ 5.
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neighbor expanded sum distinguishing index, Discuss. Math. Graph The-
ory 37 (2017) 29 - 37.

[7] M. Kalkowski, A note on 1,2-Conjecture, in Ph.D. Thesis, 2009.
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