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A total k-coloring of a graph G is a coloring of vertices and edges of G using colors of the set {1, . . . , k}. These colors can be used to distinguish adjacent vertices of G. There are many possibilities of such a distinction. In this paper we focus on the one by the full sum of colors of a vertex, i.e. the sum of the color of the vertex, the colors on its incident edges and the colors on its adjacent vertices.

This way of distinguishing vertices has similar properties to the method when we only use incident edge colors and to the corresponding 1-2-3 Conjecture .

Introduction and terminology

Let G = (V, E) be a finite, undirected simple graph.

Karoński, Luczak and Thomason [START_REF] Karoński | Edge weights and vertex colours[END_REF] introduced and investigated a coloring of the edges of a graph with positive integers so that adjacent vertices have different sums of incident edge colors. More precisely, let f : E → {1, 2, . . . , k} be an edge coloring of G (such a coloring is also called a kcoloring of G). For x ∈ V we define σ e (x) := e∋x f (e).

A k-coloring c of G is called neighbor sum distinguishing if σ e (x) = σ e (y) whenever xy ∈ E. In other words, the vertex coloring σ e induced by f in the above described way must be proper.

The minimum integer k for which there is a neighbor sum distinguishing coloring of a graph G will be denoted by χ e (G). Clearly, such k does not exist when G contains K 2 as a component. Graphs without a connected component isomorphic to K 2 are called nice graphs.

The following elegant problem, known as the 1-2-3 Conjecture, was posed in [START_REF] Karoński | Edge weights and vertex colours[END_REF].

Conjecture 1. Let G be a nice graph. Then χ e (G) ≤ 3.

Thus far it is known that χ e (G) ≤ 5 for any nice graph G (see [START_REF] Kalkowski | Vertex-coloring edge weightings: Towards the 1-2-3-conjecture[END_REF]). If the initial coloring f is total i.e., f : V ∪ E → {1, 2, . . . , k} (we call f a total k-coloring then), we have many possibilities to choose palette of colors i.e., the distinguishing elements we take into account. For instance, cf. [START_REF] Przyby Lo | On a 1,2 Conjecture, Discrete Math[END_REF], for every vertex v we denote

σ ve (v) := f (v) + u∈N (v) f (uv) = f (v) + σ e (v),
where N (v) = {y ∈ V | vy ∈ E} denotes (the open) neighborhood of v. Thus, σ ve (v) is the sum of incident colors of v and the color of v. We say that f is a neighbor sum distinguishing total coloring of G if σ ve (u) = σ ve (v) for all adjacent vertices u, v in G.

Similarly as above, the minimum value of k for which there exists a neighbor sum distinguishing total coloring of a graph G will be denoted by χ ve (G).

In [START_REF] Przyby Lo | On a 1,2 Conjecture, Discrete Math[END_REF] Przyby lo and Woźniak posed the following problem, known as the 1-2 Conjecture.

Conjecture 2. For every graph G we have χ ve (G) ≤ 2.

In this context, the best upper bound is due to Kalkowski [START_REF] Kalkowski | A note on 1,2-Conjecture[END_REF] and equals 3.

Yet another possibility was considered by Flandrin et al. in [START_REF] Flandrin | A note on neighbor expanded sum distinguishing index[END_REF] where, for x ∈ V , the authors consider the following sum

σ en (x) = e∋x f (e) + y∈N (x) f (y),
where f is a total k-coloring of G.

The value σ en (x) is called an expanded sum at x.

A total k-coloring f of G is called neighbor expanded sum distinguishing if σ en (x) = σ en (y)
whenever xy ∈ E(G). The corresponding invariant, i.e., the minimum value of k for which such a neighbor expanded sum distinguishing total k-coloring of G exists is denoted by χ en (G).

The following conjecture is stated in [START_REF] Flandrin | A note on neighbor expanded sum distinguishing index[END_REF].

Conjecture 3. For every graph G we have χ en (G) ≤ 2.

In this paper we consider the seemingly last remaining extension of the concept of Karoński, Luczak and Thomason towards total colorings, namely, we would like to distinguish vertices by full sums, defined for a vertex x by

σ ven (x) := f (x) + e∋x f (e) + y∈N (x) f (y),
where f is a total k-coloring of G. We call f a neighbor full sum distinguishing total k-coloring of G then.

The corresponding parameter, expressing the minimum k admitting existence of such a coloring is denoted by χ ven (G). It is easy to see that no such desired distinguishing coloring exists if a graph which is not nice.

In the following sections we provide some arguments in favor of the following conjecture. Firstly, it is easy to see that χ e (K 3 ) = χ ven (K 3 ) = 3. Thus, in general, we need three colors in order to distinguish adjacent vertices in both cases. Secondly, the notion of "nice" is is the same for the two variants ( i.e. neither the parameter χ e nor the parameter χ ven exist for graphs which are not nice).

On the other hand, there are also similarities between 1-2 Conjecture (Conjecture 2) and Conjecture 3. In particular, the both corresponding parameters are well defined for all graphs. Remark 6. In all of the above problems, we considered general colorings and color sums. The problems differed in the considered palettes, i.e. elements of the graph, which we took into account. If we limit ourselves to the elements "close" to the given vertex, we have three options: the vertex itself, incident edges and neighboring vertices.

By denoting (symbolically) these three options by v (vertex), e (edges) and n (neighbors) we have the following seven options when it comes to palettes. Denote the palette by P. If P = {v}, then the coloring corresponds to the usual proper coloring of the vertices of a graph and has been intensively studied since the beginning of the graph theory. The cases P = {e}, P = {v, e} and P = {en} are discussed above. The case P = {n} corresponds to the so-called lucky labellings and was introduced in [START_REF] Czerwiński | Lucky labelings of graphs, Inform[END_REF]. In turn the case of P = {v, n} is studied in [START_REF] Axenovich | A note on adjacent vertex distinguishing colorings number of graphs[END_REF].

Therefore, the case that we are considering in this paper (P = {v, e, n}) is the last, natural and not yet studied case. This is an additional motivation for our research.

Notation. The four problems described above are only a modest part of a family of problems concerning distinguishing vertices of a graph by coloring the edges, or vertices. In addition to the consideration of different palettes, one can consider different types of colorings (proper or general), one can distinguish all or only neighboring vertices, and the distinction can take into account not only the sums of colors but also multisets or sets. Sometimes, the notation taking into account all these elements is used. In this notation, parameters described above would be denoted by gndi Σ , tgndi Σ , egndi Σ , fgndi Σ , respectively. Because all colorings we consider are general, we distinguish only neighboring vertices and we always do this by means of sums, we apply somewhat simpler notation. See Seamone [START_REF] Seamone | The 1-2-3 conjecture and related problems: a survey[END_REF] for a survey.

Paths and cycles

We use Bondy and Murty's book [START_REF] Bondy | Graph Theory with Applications[END_REF] for terminology and notation not defined here.

Let P n denote the path of order n.

Proposition 7. If n ≥ 4, then χ ven (P n ) = 2, and χ ven (P 3 ) = 1.

Proof. Denote by x 1 , . . . , x n the consecutive vertices of the path P n , n ≥ 4. By odd (even) vertices we mean the vertices with odd (even) indices, respectively. Let us put f (x 1 ) = f (x 3 ) = . . . = 1 on odd vertices, and f (x 2 ) = f (x 4 ) = . . . = 2 on even vertices, and f

(x i x i+1 ) = 1 for i = 1, . . . , n-1.
Then, it is easy to see that σ ven (x 1 ) = σ ven (x n ) = 4, σ ven (x) = 7 for all inner odd vertices, σ ven (x) = 6 for all inner even vertices. Thus, all adjacent vertices are distinguished. Clearly, in the case of P 3 , one color is enough. Let C n denote the cycle of order n.

Proposition 8. For n ≥ 4, χ ven (C n ) = 2 and χ ven (C 3 ) = 3.
Proof. If n is even then coloring vertices and edges of the cycle as in the case of paths, we get a coloring distinguishing neighbors by full sums. So, let n be odd and denote by x 0 , x 1 , . . . , x n-1 the consecutive vertices of the cycle C n , n ≥ 5.

We define f as follows:

f (x 0 ) = 1, f (x 1 ) = 2, f (x i ) = 1 for i odd, i = 1, f (x i ) = 2 for i even, 2 ≤ i ≤ n -1, f (x i x i+1 ) = 2 if i ∈ {0, 1}, f (x i x i+1 ) = 1 for all remaining edges.
It can be verified that σ ven (x 0 ) = 8, σ ven (x 1 ) = 9, σ ven (x 2 ) = 8, σ ven (x i ) = 7 for all remaining odd vertices, and σ ven (x i ) = 6 for all remaining even vertices. Thus, the above defined function is a neighbor full sum distinguishing total 2-coloring of C n . For n = 3, it is easy to see that two colors do not suffice to get such a coloring, while three are enough. Indeed, it is sufficient to put 1 on vertices and 1,2,3 on edges of C 3 .

Bipartite graphs

Observe first that if we color all edges and vertices with 1, then for every vertex v we obtain σ ven (v) = 2 × d(v) + 1. If there are no adjacent vertices of the same degree in G, then χ ven (G) = 1.

Theorem 9. If G is a connected bipartite graph of order n ≥ 3, then χ ven (G) ≤ 2.
Proof. Let x be a vertex of the maximum degree ∆ of the graph G = (V, E). By Propositions 7 and 8, we may assume that d(x) ≥ 3. We consider a spanning tree T of a graph G obtained by the BFS-algorithm (breadth-first search) rooted at x. First, we define a desired total coloring f for all vertices and edges of G except these edges which belong to T , and only just then choose colors for these remaining edges. At the end we might also be forced to make some alterations concerning x and its incident edges.

We thus start by setting f (v) = 1 for every vertex v ∈ V N (x) and f (v) = 2 whenever v ∈ N (x). Moreover, we put f (e) = 1 for every edge e ∈ E E(T ). Note that all edges incident with x belong to E(T ).

Next we will be consecutively assigning colors to edges of T in such a way that all vertices on spheres of even radius (greater than 0) centered in x will have even full sums (in G) and all vertices on spheres of odd radius centered in x will have odd full sums (note that the distances of any vertex v ∈ V from x are the same in G and T ). For this goal we will be analyzing consecutive vertices of T from subsequent spheres centered in x with decreasing radiuses. We thus start from (all) vertices on the sphere with the largest radius (each such vertex is a leaf of T ).

In general, suppose y (y = x) is a consecutive vertex we are about to process, and that it belongs to S k (x) -the sphere of radius k centered in x i.e. the set of vertices of G distant by k from x. Observe that the facts that T is a BFS-tree and G is bipartite imply that every edge e ∈ E joins two neighboring spheres centered in x i.e. the vertices of each sphere are independent. Then all edges yu with u ∈ S k+1 (x), if there are any, are already colored. Let v be the unique predecessor of y in T , hence v ∈ S k-1 (x) and yv is the only yet uncolored edge incident with y. Then we color the edge yv with either 1 or 2 in such a way that σ ven (y) (in G) is even if k is even, or odd otherwise.

We continue in the manner described above until we have colored all edges of T . Note that afterwards, the only possible conflicts between full sums of adjacent vertices in G are between x and some of its neighbors. Then either f already meets our requirements, or we have the same full sum in x and in some y ′ ∈ N (x). In the latter case however, by our construction, we have:

σ ven (x) = f (x) + u∈N (x) f (u) + e∋x f (e) ≥ f (x) + f (y ′ ) + 2(∆ -1) + (∆ -1) + f (xy ′ ) = f (y ′ ) + f (x) + (∆ -1) + 2(∆ -1) + f (xy ′ ) ≥ f (y ′ ) + u∈N (y ′ ) f (u) + e∋y ′ f (e) = σ ven (y ′ ), (1) 
and hence σ ven (x) = σ ven (y ′ ) implies that all edges incident with x, except possibly for xy ′ , must be colored with 1. Then we change colors of the vertex x and all its incident edges from 1 to 2 and vice versa. As a result, the parity of the full sum at every neighbor of x will not change, while the full sum of x will get larger than the ones corresponding to its neighbors, since afterwards x (of degree ∆ ≥ 3) will have all neighbors colored with 2 and at most one incident edge colored with 1, hence the obtained f : V ∪ E → {1, 2} will distinguish neighboring vertices of G by full sums.

The proof above provides an algorithm in which the parities of full sums in the independent sets making up a bipartition of G are different, with one possible exception -a root of a BFS-tree. We can observe that such exception might be unavoidable, as indeed there are bipartite graphs for which there does not exist a total coloring f inducing odd full sums in one set of the bipartition and even full sums in the other one. Namely, let G = (X, Y ; E) be a bipartite graph with both sets X and Y of odd orders. And let every vertex of G have odd degree. Then the sum of all full sums in G is even since

v∈X∪Y σ ven (v) = 2 e∈E f (e) + v∈X∪Y (d(v) + 1)f (v).
On the other hand however, the sum of all full sums in G must be odd, if we assume that all full sums are even in X and odd in Y , or vice versa.

An analogous algorithm works even more simply in the case of χ en .

Theorem 10. If G is a connected bipartite graph of order n ≥ 1, then χ en (G) ≤ 2.

Proof. For n ≤ 2, the thesis is straightforward. Otherwise, we use the same initial coloring of the vertices, and then the same algorithm of coloring the edges as in the proof of Theorem 9, but taking into account the parities of σ en (y) instead of σ ven (y) for every y ∈ V (G) {x} (we do not have to assume that ∆(G) ≥ 3 either). Then, by similar estimations as in (1), the sum at x is larger than the sums at its neighbors, and thus all adjacent vertices are distinguished by expanded sums in G.

4 Regular graphs and graphs with χ = 3

In 

) = χ e (K n ).
In [START_REF] Chartrand | Irregular networks[END_REF] the authors showed that s(K n ) = 3, for n ≥ 3. So, if we start with the appropriate coloring for edges of K n , and then put 1 on each vertex of this graph, we obtain a neighbor full sum distinguishing total 3-coloring of K n , since, the sum of colors of the vertices belonging to the closed neighborhood of any vertex of K n is the same and equals n. So we cannot color the vertices and the edges in a desired manner using just two colors (such a coloring would imply the existence of an irregular assignment of K n ). Thus the following proposition holds.

Proposition 11. For n ≥ 3, χ ven (K n ) = 3.

Let K r (t) denote a complete r-partite graph with t vertices in each class (r, t ≥ 1). Faudree et al. [START_REF] Faudree | Irregular networks, regular graphs and integer matrices with distinct row column sums[END_REF] proved that if G = K r (t), r > 2 and t ≥ 1, then s(K r (t)) = 3. Since G is regular, it follows that G admits a neighbor full sum distinguishing total 3-coloring.

Proposition 12. If r ≥ 3 and t ≥ 1, then χ ven (K r (t)) ≤ 3.

In [START_REF] Karoński | Edge weights and vertex colours[END_REF] the authors studied a coloring of the edges of the graph with the elements of an abelian group.

Theorem 13 ( [START_REF] Karoński | Edge weights and vertex colours[END_REF]). Let (Γ, +) be a finite abelian group of odd order and G a connected graph of order at least 3. If G is |Γ| colorable, then there exists a neighbor sum distinguishing coloring of the edges of G with the elements of Γ.

Corollary 14. Let G be a connected graph of order at least 3.

If G is (2k + 1)-colorable for k ≥ 1, then χ ven (G) ≤ 2k + 1.
Proof. Supose that G is (2k + 1)-colorable. By Theorem 13 there exists a neighbor sum distinguishing coloring of the edges of G with the elements of the group Z 2k+1 . Afterwards, put 0 on every vertex of G. It can be easily seen that a total coloring with the elements of Z 2k+1 obtained in this manner distinguishes neighbors by full sums. It suffices now to replace 0 by 2k + 1 and apply the addition in N in order to obtain the desired total coloring.

Remark 15. Since we showed that χ ven (G) = 2 for a bipartite connected graph G having at least three vertices and we will prove that this index is less than or equal to 5 for any connected graph G of order at least 3, the above corollary is interesting only for the class of graphs with chromatic number 3.

Split graphs

Let G = (S ∪ K, E) be a split graph, i.e. a graph such that S is a stable set (possibly empty) and K is a clique on k ≥ 1 vertices. We assume that K is maximal, i.e. that every vertex in S is not adjacent with at least one vertex in K.

Proposition 16. If G is a split graph of order n ≥ 3, then χ ven (G) ≤ 3.

Proof. First of all, we may always suppose that |K| ≥ 2 and that every vertex of S has degree at least 1.

We also consider that K is maximal, i.e. every vertex in S is not connected to at least one vertex in K.

If |K| = 2, i.e. K = {u, v} with uv ∈ E(G), then |S| ≥ 1 and each vertex of S is adjacent either with u or with v exclusively. Without loss of generality, we suppose that d(u) ≤ d(v). Then we color all the edges incident to v, except uv, by 2, every vertex and all the edges incident to u by 1. Then

σ ven (v) = 3(d(v) -1) + 3, σ ven (u) = 2(d(u) -1) + 3. Thus σ ven (v) > σ ven (u) and χ ven (G) ≤ 2.
Now, we suppose that |K| ≥ 3.

If |S| = 0, then G is a complete graph with at least 3 vertices. Then, by Proposition 11, χ ven (G) = 3.

Suppose now that |S| ≥ 1. We first order the vertices v 1 , . . . , v k of K in such a way that i > j implies that d(v i ) ≥ d(v j ). Then, we color the edges and vertices of G K , the subgraph induced by K, in such a way that χ ven (G K ) = 3 and that i > j implies that σ ven (v i ) > σ ven (v j ) (in G K ). Finally, we put 1 on the vertices of S and the edges between S and K. It is easy to see that if x ∈ S and y ∈ K, σ ven (x) < σ ven (y). Therefore, this coloring is a neighbor full sum distinguishing 3-coloring.

Remark 17. It is easy to find split graphs which admit a neighbor full sum distinguishing total 2-coloring.

For example, let G be the graph formed by adding a pendant edge to K 3 . Then χ ven (G) = 2.

Question 18. Does there exist a simple characterization of split graphs which admit a neighbor full sum distinguishing total 2-coloring? 6 χ ven ≤ 5

As already mentioned, in [START_REF] Kalkowski | Vertex-coloring edge weightings: Towards the 1-2-3-conjecture[END_REF], Kalkowski et al. showed that for every graph G without components isomorphic to K 2 there exists a coloring of the edges of G with the elements of {1, . . . , 5} such that the resulting vertex coloring σ e of G is proper. This implies at once the following corollary.

Corollary 19. If G is a connected regular graph of order at least 3, then χ ven (G) ≤ 5.

Using the approach from [START_REF] Kalkowski | Vertex-coloring edge weightings: Towards the 1-2-3-conjecture[END_REF] we will show that the same holds for all connected graphs of order at least 3. As one may start constructing a total coloring e.g. by choosing first arbitrary admissible vertex colors, this follows by the following lemma, within which f denotes a total coloring of G.

Lemma 20. Given any connected graph G = (V, E) of order at least 3 and any set {f (v) : v ∈ V } of integers assigned to its vertices, there exist f (e) ∈ {1, 2, 3, 4, 5} for e ∈ E such that f is a neighbor sum distinguishing total coloring of G.

Proof. Suppose we are given a connected graph G = (V, E) of order at least 3 and a set {f (v) : v ∈ V } of integers. Order the vertices of G into a sequence v 1 , v 2 , . . . , v n so that d(v n ) ≥ 2 and for every vertex v i with i < n there exists an edge v i v j ∈ E with j > i. Every such edge will be called a forward edge of v i , while v j is a forward neighbor of v i , and the other way round, i.e., v i v j and v i will be referred to as a backward edge and a backward neighbor, resp., of v j . At every step of the coloring algorithm described below, we will denote by f T (e) and σ T (v) the up-to-date color of an edge e ∈ E and total sum of a vertex v ∈ V , respectively. Initially we assign color 3 to every edge of G (i.e., initially f T (e) = 3 for e ∈ E). With every consecutive vertex v i in the sequence we will now subsequently associate a two element set W i ∈ W := {{a, a + 2} : a ≡ 0 (mod 4) or a ≡ 1 (mod 4)} disjoint with the corresponding sets associated with its backward neighbors, and make sure that ever since defining such set W i , the total sum σ T (v i ) will always belong to W i for every vertex v i ∈ V (thus assuring its distinction from the total sums of the backward neighbors of v i ) -a possible exceptions to this rule will only be admitted while analyzing the last vertex in the sequence (see details below). To achieve this goal we will allow: (i) subtracting or adding 2 (or doing nothing) to the color of every backward edge v k v i of v i so that σ T (v k ) ∈ W k afterwards, (ii) subtracting or adding 1 to the color of the first forward edge of v i , i.e. a forward edge v i v j of v i with the least j. While applying the rules above we will additionally require that after analyzing v i (and committing admissible alterations of colors of the edges incident with v i ) and choosing appropriate W i :

(iii) if c T (v i v j ) = 2 then σ T (v i ) = min W i , while if c T (v i v j ) = 4 then σ T (v i ) = max W i where v i v j is the first forward edge of v i .
Note that the rules (i)-(iii) guarantee that the colors of all edges will belong to the set {1, 2, 3, 4, 5} at the end of our algorithm.

Suppose we begin our algorithm. For the first vertex v 1 we do not need to introduce any alterations, hence we have σ T (v 1 ) = f (v 1 ) + 3d(v 1 ), and we choose (the only) 2-element set from W to which σ T (v 1 ) belongs and set it as W 1 .

Assume now that we are about to analyze a vertex v i with 1 < i < n and so far all our requirements are fulfilled and all rules have been obeyed. Denote the number of backward neighbors of v i by d. Observe that since v i has at least one forward neighbor, then via admissible alterations consistent with (i) and (ii), we may obtain 2d + 3 distinct sums at v i , which are consecutive integers. At most 2 of these cannot be achieved consistently with (iii). Thus we are left with a set of at least 2d + 1 options for σ T (v i ), containing elements (not necessarily both) from at least d+1 2-element sets from W. At least one of these 2-element sets is not associated with any of d backward neighbors of v i . We arbitrarily choose one such set to be W i , and perform alterations on the edges incident with v i consistent with (i)-(iii) so that σ T (v i ) ∈ W i afterwards. We continue in the same manner until we reach the last vertex in the sequence.

Finally we analyze v n . By (i) we may obtain d(v n ) + 1 distinct sums at v n , say a, a + 2, . . . , a + 2d(v n ). If a ∈ {2, 3} (mod 4), we perform the admissible alterations consistent with (i) so that σ T (v n ) = a. Then however, σ T (u) ∈ {0, 1} (mod 4) for every (backward) neighbor u of v n , which thus cannot be in conflict with v n . Therefore, we may assume that a ∈ {0, 1} (mod 4), and that not all neighbors of v n are associated with the same 2element list (if the later was not true, i.e. if the total sums of all neighbors of v n belonged to the same W ∈ W, then as d(v n ) ≥ 2, we would have at least 3 available options for σ T (v n ), at least one of which would not belong to W , hence we could again distinguish v n from all its neighbors). Let v l be a neighbor of v n with σ T (v l ) ∈ W ′ ∈ W such that W ′ ∩ {a, a + 2} = ∅. Then we apply (i) (if necessary) to all backward edges of v n so that each of them except for v l v n has the smaller of the two admissible colors and v l v nthe larger one. Then σ T (v n ) = a + 2 is distinct from all total sums of the neighbors of v n . At the end, setting for all edges e ∈ E, f (e) = f T (e), we obtain a desired total coloring f of G.

Corollary 21. If G is a connected graph of order at least 3, then χ ven (G) ≤ 5.

Conjecture 4 .Remark 5 .

 45 Let G be a nice graph. Then χ ven (G) ≤ 3. It is easy to observe some similarities between 1-2-3 Conjecture (Conjecture 1) and just formulated Conjecture 4.
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