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Non-dispersal and density properties of infinite packings

Alexandre Delyon∗ Antoine Henrot† Yannick Privat‡

Abstract

This article is motivated by an optimization problem arising in Biology. interpreting the
eggs arrangements (packings) in the brood chamber as results from an optimization process,
we are led to look for packings that are at the same time the most possible dense and non-
dispersed. We first model this issue in terms of an elementary shape optimization problem
among convex bodies, involving there inradius, diameter and area. We then solve it completely,
showing that the solutions are either particular hexagons or a symmetric 2-cap body, namely
the convex hull of a disk and two points lined-up with the center of the disk.

Keywords: shape optimization, tiling domains, density of packings.

AMS classification: 52A40, 52A10, 49K30, 49Q10.

1 Introduction

This article is devoted to investigating optimal configurations of infinite packings in the two-
dimensional space IR2. Recall that a packing associated to a convex body K with non-empty
interior is an arrangement of non-overlapping copies of K. More precisely, denoting by K the set
of compact convex bodies of IR2, a infinite packing P (K) with pattern K is defined by

P (K) =
⋃
i∈IN

τi(K)

where I denotes either a finite or a countable set, and the mappings τi are affine isometries of IR2

such that int(τi(K)) ∩ int(τj(K)) = ∅ for all i 6= j.
Since we are interested in infinite packings, we will consider without loss of generality in what

follows that I = IN and we will denote by P(K) the set of all infinite packings of the plane with
pattern K.

A close notion that will be much discussed in the sequel is the one of tiling domains. Recall
that, as a consequence of the definition of packings, a convex K defines a tiling domain of the
plane whenever IR2 ∈ P(K).

In the whole article, the notation | · | will denote the Lebesgue measure in IR2.

Let us make the shape optimization problem we will deal with precise. The criterion to minimize
involves two geometrical functionals denoted d and D∞. Let us define them.
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• The first one models the density of a packing. We choose to defined it as follows, see Section
2.1 for a discussion and the link with another classical quantity for the density.

d(K) =
|K|
|KT | (1)

for every convex set K, where KT denotes the smallest convex set tiling the plane and
containing K (we refer to Section A for the proof that such a set exists). In some sense, the
quantity d(K) stands for a quantitative measure of the tiling ability of K. Roughly speaking,
we can consider that the highest d(K) is and the most tilling will be the convex set K. Notice
in particular that if K is tiling, then d(K) = 1.

• The second functional is defined by

D∞(K) =
2
√
|K|√

πDiam(K)
, (2)

for every convex set K, where Diam(K) denotes the diameter of K. As this will be highlighted
in the sequel, the quantity D∞(K) is a measure of non-dispersal of any packing associated to
the convex K. Indeed, this quantity is obtained by introducing the restriction of a packing
with pattern K to a disk with diameter R > 0, by comparing the diameter of this set with
the diameter of the disk, and by letting R tend to +∞. Hence, trying to minimize D∞(K)
will allow to obtain a convex K and an associated packing as ”compact” as possible.

Note that modelling issues and in particular the functionals choices will be discussed and com-
mented in Section 2.1.

Finally, for a given t ∈ [0, 1], we will consider in the sequel a convex combination of both
previous criteria. The resulting criterion, denoted Jt reads

Jt(K) = td(K) + (1− t) 1

D∞(K)
.

Let us define the admissible set. We will deal with three kinds of constraints:

(i) the considered sets will be compact and convex subsets of IR2,

(ii) to avoid that the shapes collapse, we impose to the considered convex sets to have a minimal
inradius r0. In what follows, we will denote by r(K) the inradius of any convex set K.

(iii) since the functionals we will deal with are invariant by homothety, it is relevant to assume
the area of the patterns prescribed, equal to a positive constant A.

We now introduce the complete shape optimization problem we will solve.

Let t ∈ [0, 1], r0 > 0 and A > πr2
0 be fixed and let Ar0,A denote the set of compact

convex sets having an inradius larger than r0 and an area equal to A, namely

Ar0,A = {K ∈ K | r(K) > r0 and |K| = A}.

The shape optimization problem we will consider reads

sup
K∈Ar0,A

Jt(K). (Pt)
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It is notable that this problem is also motivated by applied considerations. Some explanations
about the biological framework in which this problem naturally arises are provided at the end of
this section.

Let us roughly state hereafter the main results of this article. More detailed (and technical)
versions of these theorems are provided in Section 2.2

Our first result deals with generalities about tiling domains. it seems to us interesting in its
own

Theorem A. The (convex) tiling set with given diameter and inradius minimizing its area is a
p-hexagon, in other words a hexagon with two parallel opposite sides with same length. By duality,
one shows that the (convex) tiling set with given area and inradius maximizing its diameter is a
p-hexagon.

Our second result deals with the solution of Problem (Pt). For the sake of clarity, we state it
informally.

Theorem B. Under a smallness assumption on the ratio r2
0/A, the solutions of Problem (Pt) are

either a p-hexagon or a symmetric 2-cap body (the convex hull of a disk and two points lined-up
with the center of the disk), depending on the values of the parameter t.

Complete and extensive versions of these results are provided in Theorems 2 and 3.

We end this section by giving an interpretation of this problem in Biology. The shape opti-
mization problem (Pt) is related to the understanding of the eggs shape of a class of crustaceans,
subclass branchiopoda, called eulimnadia.

In a clutch, the eggs are placed in the brood chamber, which is located dorsally beneath the
carapace and which is closed by the abdominal processes. To understand eggs geometry, it appears
relevant to interpret the observed arrangements as the result of an optimization process. This way,
assuming that resulting shapes allow to the crustacean to incubate the largest number of eggs,
we look for configurations guaranteeing at the same time that shapes and arrangements make the
resulting packing the most ”dense” (this word meaning here the ”most tiling”, see the definition
of d(K)) and the most ”compact” (in the sense that the restriction of the packing to a given ball
with large radius will contain the largest number of elements). In a nutshell, denoting by K the
egg shape and assuming that the clutch contains the largest possible number of eggs, it is plausible
that eggs arrangements look at maximizing at the same time d(K) and D∞(K). We formalize this
idea by looking for patterns K maximizing a convex combination of these functionals, whence the
writing of Problem (Pt).

Structure of the article. This article is organized as follows. Section 2.1 is devoted to several
remarks about our motivations for considering Problem (Pt), as well as our functional and admis-
sible set choices. The main results of this article are gathered in Section 2.2. Section 3 is devoted
to the proof of Theorem 2, whereas Section 4 is devoted to the proof of Theorem 3.

2 Modelling and solving the optimization problem

2.1 Modelling issues and state of the art

Density of convex sets. Let K ∈ K and P (K) be a packing with pattern K. It is standard
(see [12]) to define the density of δ(P (K)) as

δ(P (K)) = lim inf
r→+∞

]{i ∈ IN | τi(K) ⊂ [−r/2, r/2]2}|K|
r2

. (3)
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For a fixed r > 0, the ratio ]{i ∈ IN | τi∈I(K) ⊂ [−r/2, r/2]2}|K|/r2 represents the rate of the area
occupied by the elements of the packing P (K) contained in [−r/2, r/2]2 with respect to the total
area of a square with side r. Letting r → +∞ makes this definition independent of the window in
which this rate is evaluated.

Figure 1: An example of a packing with ellipses, we can see the density as the ratio between the
blue area and the entire square

Having in mind to look for packings maximizing (among other criteria) the density functional,
it is relevant to introduce a criterion depending only on the pattern choice, by setting

d1(K) = sup
P (K)∈P(K)

δ(P (K)),

corresponding to the optimal density of a packing associated to the pattern K. This quantity is
called density of the convex K [12].

Notice that the following elementary properties about d1 are direct consequences of the defini-
tion.

Proposition 1. For every K ∈ K, one has d1(K) ∈ [0, 1]. Moreover,

1. if D is a disk, d1(D) = π
2
√

3
' 0.9 [5].

2. if K is a tiling domain, d1(K) = 1.

3. if K ∈ K and T is a convex tiling domain such that K ⊂ T then d1(K) > |K|
|T | [10].

The last property will be crucial in the sequel, since it allows to provide a lower bound for
d1. Roughly speaking, the main ingredient consists in considering a tilling domain T such that
K ⊂ T , the family of sets {τi(T )}i∈IN defining the associated packing. We then define a packing
with pattern K by placing a copy of K in each cell τi(T ), and to observe that the density of this
packing will be larger than |K|/|T |. Moreover, it has been shown that given a convex body K,
there exists a triangle T such that K ⊂ T and |K|/|T | > 2/3 (see [4] by M.A Fary in 1950 and [2]
by R.Courant in 1965). By considering parallelograms instead of triangles, Kuperberg obtained in
1982 in [10] the same conclusion, and this way the lower bound d1(K) > 3/4 for every convex body
K. This lower bound has been improved in 1990 by W. and G. Kuperberg in [9], where it is shown
that d1(K) >

√
3/2, by using a particular tiling hexagon. In 1995, K.R Doheny proved in [3] the

existence of r0 >
√

3/2 such that d1(K) > r0 for every convex body K. Up to our knowledge, the
exact value of the bound inf{D1(K), K ∈ K} remains unknown.
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Figure 2: A packing with ellipses in a tiling with rectangles. It is intuitive that the density of this
packing is equal to the ratio of the area of the ellipse over the area of the rectangle

Unfortunately, the precise value of d1(K) is almost never computable, even for simple choices
of K. More annoying, having in mind to consider it as criterion of an optimization problem,
the quantity d1(K) appears intricate to handle. These considerations lead us to consider as an
alternative and more workable definition of the density the functional d defined by (1) involving
the smallest convex tiling domain containing K. Obviously there holds d(K) 6 d1(K) for every
convex body K and it is notable that all the properties gathered in Proposition 1 above remain
satisfied with this new definition of density.

Non-dispersal properties of convex sets. Let us first model the notion of non-dispersion for
packings. We start from the observation that balls are the ”less dispersed” bodies, in the sense
that, among all nonempty convex sets, they minimize the ratio of the diameter by the square of
their area. this leads us to define the notion of ”non-dispersion” of packings by comparing their
diameter to the one of balls. More, precisely, we introduce, mimicking the definition of δ in (3):

D′∞(K) = inf
P∈P(K)

lim sup
R→∞

2R√
]{i, τi(K) ⊂ D(0, R)}Diam(K)

,

the lim sup being used in the definition to make D′∞(K) independent of the balls radii. More
precisely, given a packing P ∈ P(K) and R > 0, we consider a disk with radius R and evaluate the
number of copies of K within the disk. Note also that we take the square root of this integer in the
definition by observing that the maximal number of identical copies of a convex order of magnitude
in a disk with radius R is O(R2)1. Finally, the diameter of K appearing in the denominator is used
as a renormalization factor. This appears natural in view of defining an adimensional quantity.

First an elementary reasoning shows that, in a disk of radius R, there cannot be more than
πR2/|K| copies of K. As a consequence, we infer that

D′∞(K) >
2
√
|K|√

πDiam(K)
= D∞(K), (4)

for every K ∈ K, where D∞(K) is defined by (2). The following result provides fine estimates of
D′∞(K).

1Indeed, let us provide a sketch of argument. Let us consider a rectangle tiling the plane and containing the
convex body. We denote by L and ` its dimensions. If R >> L, the number of rectangles that can be packed within
a disk with radius R is O(πR2)/(L`) = O(R2). Therefore, the number of copies of a convex K that can be packed
within a disk is less than πR2/|K| = O(R2)
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Figure 3: (Left) The fifteen kinds of tiling pentagons (Source
https://commons.wikimedia.org/wiki/File:PentagonTilings15.svg). (Right) The three
kinds of tiling hexagon (Source http://mathworld.wolfram.com/HexagonTiling.html)

Theorem 1. Let K ∈ K . One has

2
√
|K|√

πDiam(K)
6 D′∞(K) 6

√
2√
3

2
√
|K|√

πDiam(K)
. (5)

Furthermore, if K is tiling, then one has D′∞(K) = D∞(K).

According to the result above, one has D′∞(K)/D∞(K) ∈ [1, 1.08). We infer that, in order
to consider workable quantities, it will be relevant in the sequel to consider D∞ as criterion of
non-dispersal.

Convex tiling domains. The previous remarks suggest that we take a short interest about
convex tiling domains. Notice that a convexity argument allows to show that a two-dimensional
convex domain which is tiling in IR2 is necessarily a polygon. More precisely, thanks to Euler’s
formulae, it is known that a polygon with more than six vertices cannot be tiling [1]. Moreover, any
triangle or quadrilateral tiles the plane, but there exist only three kinds of tiling hexagons. The
case of pentagons is more intricate. It has been recently solved in [11], by leading an exhaustive
search of all families of convex pentagons tiling the plane. In particular, the authors state that
there are no more than fifteen kinds of pentagons tiling the plane.

2.2 Solving the optimization problems

Notations. Recall that we use the following notations throughout this article:

|K| area of a convex body K
r(K) inradius of a convex body K
Diam(K) diameter of a convex body K
H∗r regular hexagon with inradius r

Let us now define particular convex sets that will play a crucial role in the sequel.
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Definition 1 (The hexagons HA,r and HD,r). Let r > 0 and A > 2
√

3r2. Let C be a circle centered
at the origin O with radius r and HA,r be the hexagon defined as follows:

(i) each side of HA,r is tangent to C.

(ii) Denoting by {Bi}i=1,...,6 the tangential points between HA,r and C and by θi the angle
̂BiOBi+1 (with the convention that B7 = B1), one has θ1 = θ4 = 4 arctan

(
2r20+
√
A2−12r40

4r20+A

)
θ2 = θ3 = θ5 = θ6 = π−θ1

2

It is notable that HA,r is a a p-hexagon, in other words a hexagon with two parallel opposite sides
with same length (see Fig 4).

Moreover, let D and r be two positive numbers. Noting that one has2

Diam(HA,r) =
1

3r

(
2A+

√
A2 − 12r4

)
,

one defines the hexagon HD,r by HD,r = HA(D),r, where A(D) is the unique solution of the equation

D = α(A(D), r) with α(A, r) =
1

3r

(
2A+

√
A2 − 12r4

)
. (6)

Furthermore, one has |HD,r| = 2rD − r
√
D2 − 4r2 (see Appendix C).

O

B1

B2
B3

B4
B5

B6

ϕ2ϕ3

ϕ4

ϕ5 ϕ6

θ1

Figure 4: The p-hexagon HA,r and its inscribed circle.

Definition 2 (The symmetric 2-cap bodies GD,r and GA,r). Let D and r be two positive numbers
such that D > 2r. We denote by GD,r the convex hull of a circle with radius r and two points
at a distance of D, lined up with the circle center (see Fig. 5). Such a convex set will be called
symmetric 2-cap body of diameter D and inradius r.

Similarly let A and r be two positive numbers. One defines the symmetric 2-cap body GA,r by
GA,r = GD(A),r, where D(A) is the unique positive solution of

A = r

(√
D(A)2 − 4r2 + 2r arcsin

(
2r

D(A)

))
.

2We refer to Appendix C for a proof of this claim.
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Remark 1. Let A, D, r, be three positive numbers. In [8], it is shown that for every convex set
with area A, inradius r and diameter D, one has

A > r

(√
D2 − 4r2 + 2r arcsin

(
2r

D

))
(7)

and this inequality is an equality if, and only if K = GD,r (and thus, A = |GD,r|). This inequality
can also be interpreted as follows: the convex set with diameter D and inradius r having the lowest
area is GD,r. By duality, this also means that the convex set with area A and inradius r having
the maximal diameter is the convex hull of a circle with radius r and two points, lined up with the
circle center

Figure 5: Left: the hexagon HA,r and its inscribed circle. Right: the symmetric 2-cap body GD,r

and its inscribed circle.

Remark 2. It follows easily from geometrical observations or simple computations that

• there exists a unique hexagon fulfilling the conditions of Definition 1, and this construction
can be led if, and only if A > 2

√
3r2;

• the hexagon HA,r is of area A and inradius r;

• the sides of HA,r are two by two parallels. In particular, HA,r is a p-hexagon (see Theorem
A for the definition).

Statement of the main results. In the following theorem, we state several sharp inequalities
for tiling domains of the plane. These results constitute key ingredients of the proof of Theorem 3.

Theorem 2. Let T be a tiling domain of IR2

1. There holds

|T | > 2
√

3r(T )2 and Diam(T ) >
4√
3
r(T ),

with equality if only if T is a regular hexagon.

2. One has

Diam(T ) 6
1

3r(T )

(
2|T |+

√
|T |2 − 12r(T )4

)
, (8)

with equality if, and only if T = HA,r

Remark 3. Let r > 0. As a byproduct of Theorem 2, using in particular that the mapping
[2
√

3r2,+∞) 3 A 7→ α(A, r) (where α is given by (6)) is increasing, we get that

• the (convex) tiling set with diameter D and inradius r minimizing its area is the hexagon
HD,r;
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• the (convex) tiling set with area A and inradius r maximizing its diameter is the hexagon
HA,r.

The first claim is a direct consequence of Theorem 2. The second point comes from the fol-
lowing observation: let A > 2

√
3r2 for some r > 0. Then, the map Fr : A 7→ α(A, r) =

1
3r

(
2A+

√
A2 − 12r4

)
is increasing and defines a bijection from [2

√
3r2,+∞) to [4/

√
3,+∞). Its

inverse mapping is F−1
r : [4/

√
3,+∞) 3 D 7→ 2rD − r

√
D2 − 4r2.

Now, let T be a tiling domain of IR2. According to the considerations above, the inequality (8)
is equivalent to Diam(T ) 6 Fr(T )(|T |), which rewrites F−1

r (Diam(T )) 6 |T |. This shows that the
inequality

2r(T ) Diam(T )− r(T )
√

Diam(T )2 − 4r(T )2 6 |T | (9)

holds true for every tiling domain of IR2. The expected conclusion follows.

Theorem 3. Let r0 and A be two positive numbers such that 2
√

3r2
0 < A.

Let us denote by X0 (' 3.1847) be the unique zero of the function X 7→
√
X2 − 4(14− 5X2) +

4X(X2 − 3) on [4/
√

3,+∞) and set

tA,r0 =

√
π/(2
√
A)√

π/(2
√
A) +Aγ0/r3

0

∈ (0, 1). (10)

with

γ0 =

(
2
√
X2

0 − 4−X0

)
√
X2

0 − 4(2X0 −
√
X2

0 − 4)2
' 0.0472. (11)

1. If t ∈ [0, tA,r0 ], the symmetric 2-cap body GA,r0 solves Problem (Pt);

2. Let us assume moreover that

r0 6 γ
√
A where γ =

1√
2X0 −

√
X2

0 − 4
∈ [0.5069, 0.5070]) (12)

and define

t∗A,r0 =

√
π

2
√
A

(Diam(GA,r0)−Diam(HA,r0))
√
π

2
√
A

(Diam(GA,r0)−Diam(HA,r0)) +A
(

1
|Diam(GA,r0

)| − 1
|Diam(HA,r0

)|

) (13)

One has t∗A,r0 > tA,r0 . Moreover, if t ∈ [0, t∗A,r0), the symmetric 2-cap body GA,r0 solves
Problem (Pt), and if (t∗A,r0 , 1], the p-hexagon HA,r0 solves Problem (Pt). If t = t∗A,r0 , the
two convex sets HA,r0 and GA,r0 solve Problem (Pt).

Remark 4 (Comment on the assumption (12)). The assumption 2
√

3r2
0 < A is natural since it is

a sufficient and necessary condition for ensuring the existence of the p-hexagon HA,r0 (see the first

item of Theorem 2). Note that writes also r0 6 γ̂
√
A with γ̂ ' 0.5373.

The assumption (12) appears a bit technical (although relevant from an applied point of view).
A refined analysis can show that if r0/

√
A ∈ (γ, γ̂), there exists t̃A,r0 > tA,r0 such that for t > t̃A,r0 ,

either the symmetric 2-cap body GA,r0 or the p-hexagon HA,r0 solves the problem (Pt).
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3 Proof of Theorem 2

Proving Theorem 2 is equivalent to determine the optimal value of the problems

inf{|K|, K ∈ T , r(K) > r0} and inf{Diam(K), K ∈ T , r(K) > r0}, (14)

and
sup{Diam(K), K ∈ T , r(K) > r0, |K| = A}, (15)

where T denotes the set of tiling domains in IR2. In what follows, we will solve a relaxed version
of these problem, namely

inf{|K|, K ∈ P6, r(K) > r0} and inf{Diam(K), K ∈ P6, r(K) > r0}, (16)

and
sup{Diam(K), K ∈ P6, r(K) > r0, |K| = A}, (17)

where P6 denotes the set of polygons of the plane having at most six sides, and show that the
solutions are tiling domains. As a consequence, and since the new admissible set contains the
previous one, the optimal values between the problems (14) and their relaxed version will coincide.

Before dealing with each problem separately, let us state some preliminary results allowing to
reduce the search of optimal domain to a simpler class. The arguments used in Step 1 below hold
indifferently for each problem of (16).

As a preliminary remark, notice that the two problems of (16) have a solution since P6 is
compact for the Hausdorff topology and the functionals K 7→ |K|, K 7→ r(K), K 7→ Diam(K)
restricted to convex sets are continuous for this topology, see [7, chapter 2].

Step 1. Restricting the set of admissible domains. The following lemmas are in order.

Lemma 1. For any problem of (16) and (17), there exists a solution K∗ that is a hexagon.

Proof. Let us assume by contradiction that K∗ has N sides, with N < 6. Consider two diametral
points D1 and D2 of K∗ and let M be any vertex of K∗ different from D1 and D2. Then, we
change K∗ into K̂∗ by removing the vertex M and creating two new vertices as follows: we cut
K∗ with a well-chosen hyperplane at a distance of M small enough so that the diameter and the
inner radius of K∗ are not modified.

• Minimizing the area: the area of K̂∗ is strictly lower than the area of K∗ which contradicts
the optimality of K∗. The conclusion follows.

• Minimizing the diameter: the diameter of K̂∗ being equal to the one of K∗, we infer that
it is possible to restrict our search to hexagons.

• Maximizing the diameter: consider the set tK̂∗ where t > 1 is chosen in such a way that
|tK̂∗| = |K∗|. Then, one has r(tK̂∗) = tr(K̂∗) = tr0 > r0 and Diam(tK̂∗) = tDiam(K̂∗) >
Diam(K̂∗), which contradicts the optimality of K∗. The conclusion follows.

Remark 5. It will follow from the proof that all the solutions of Problems (16) and (17) are
hexagons.

The proofs of the two next lemmas are exactly similar for each problems of (14) and (15). Since
this last problem is more constrained and in some sense, more intricate, we prove this lemma for
the problem of maximizing the diameter. An easy adaptation of the proof below shows the same
result for the issue of minimizing the area or the diameter.
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Lemma 2. Let K∗ be a solution of any problem of (16) and (17). Then, necessarily, r(K∗) = r0.

Proof. Let K∗ be a solution of Problem (17) and let us assume by contradiction that r(K∗) > r0.
Since K∗ is a convex polygon, there exists two vertices B and C of K∗ such that Diam(K∗) = BC.
For t ∈ [0, 1] let ρt be the stretching with ratio t and direction the axis (BC). Then, one has
|ρt(K∗)| = t|K∗| and Diam(ρt(K

∗)) = Diam(K∗). Noting that [0, 1] 3 t 7→ r(ρt(K
∗)) is a

continuous increasing function such that r(0) = 0 and r(1) = r(K∗), consider r ∈ (r0, r(K
∗)) and

t ∈ (0, 1] such that r(ρt(K
∗)) = r. Let Kt be the range of K∗ by the homothety centered at O,

the center of the incircle, with scale factor 1/
√
t > 1. Hence, one has |Kt| = |K∗|, Diam(Kt) =

Diam(K∗)/
√
t and r(Kt) = r(K∗)/

√
t > r0. It follows that Kt is a admissible hexagon and

moreover Diam(Kt) > Diam(K∗). We have then reached a contradiction.

BA

Figure 6: Illustration of the proof of Lemma 2: the hexagon K∗ (black), the hexagon ρt(K
∗) (blue)

and the hexagon Kt (red).

Lemma 3. Let K∗ be a solution of any problem of (16) and (17). Then, necessarily K∗ is tangent
at each side to any inscribed circle.

Proof. We argue by contradiction, by assuming that there exist an inscribed circle C and a side of
K∗ that does not meet. To reach a contradiction, we will show that one can transform K∗ into a
new admissible set K̂ having a strictly larger diameter.

Consider first the case where there exists a location of an inscribed circle C and a side [MM ′]
at positive distance of K∗ such that Diam(K∗) > MM ′. Assume without loss of generality the
existence of two vertices of K∗ different from M and reaching its diameter. This property will
allow to construct a new set K̃ from K∗ by slightly modifying the location of M , and such that
Diam(K̃) = Diam(K∗). Let N be the vertex of K∗ such that M is adjacent to N and M ′. Let
λ ∈ (0, 1) and Mλ = λN +(1−λ)M . For λ > 0 small enough, there holds (M ′Mλ)∩C = ∅. Hence,
denoting by K̃ be the hexagon obtained by replacing M by Mλ, one has r(K̃) = r(K∗). Moreover,
since K̃ ⊂ K∗ and , one has |K̃| < |K∗|. To get K̂, we now apply a homothety to K̃ where the
scale factor is chosen in such a way that |K̂| = |K∗| (see Fig. 7). We then have r(K̂) > r(K∗) and
Diam(K̂) > Diam(K∗), whence the contradiction.
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M ′

M

N

Mλ

M ′

M

N

Figure 7: Geometrical illustration of the method: construction of K̃ (left) and construction of K̂
(dotted line) from K̃ (right).

Consider now the complementary case where the diameter is realized by the only side [AB] of
K∗ which does not meet C tangentially. Denote by O be the center of C and by M the orthogonal
projection of O on (AB). Then, M belongs to the segment [AB] and the distance δ of M to C
is positive (by compactness). The new circle C′ obtained from C by translation of vector δ

~OM
OM is

tangent to (AB) (see Fig. 8). Let us prove that C′ ⊂ H. Let (A,~i,~j) be the orthonormal basis such

that ~i =
−−→
AB/AB and K∗ be contained in IR2

+. Then, ∂K∗\(AB) is parametrized by a positive
concave function f : [0, 1] 7→ IR+. For u ∈ [0, 1], let Du be the vertical axis with equation x = u.
Then, defining x1 = min{u ∈ [0, 1], Du ∩ C 6= ∅} and x2 = max{u ∈ [0, 1], Du ∩ C 6= ∅}, the region
R = {(x, y), x1 6 x 6 x2, 0 6 y 6 f(x)} is contained in K∗ with an easy convexity argument and
by construction, C′ ⊂ R. Hence, C′ ⊂ K∗. We are then led to the previous case, and we conclude
as previously.

BA x1 x2

δ

Figure 8: case where the diameter is realized by the only side [AB] of K∗ which does not meet C
tangentially.

By combining the three lemmas we have just proved, we will recast both problems of (16)
in a simpler way by using a convenient parametrization and some analytical arguments. For
homogeneity reasons and according to Lemma 2, we will assume from now on that r0 = 1, the
solutions for the general case being easily inferred from that case.

Let K∗ be a hexagon solution of a problem of (16). Since each problem is invariant under
rotation or translation of K, we will assume without loss of generality that the center of the
inscribed circle (which is uniquely located inside K∗, according to Lemma 3) is the origin O and

12



that one side of K∗ is included in the axis x = 1. Let {Bi}i=1..6 be the projections of O on each
side of K∗ with the convention that B1 is the projection of O on the side included in the axis
x = 1, and the other points are located by following the trigonometric sense.

Let {Ai}i=1..6 be the vertex of K∗ having positive coordinates in the basis (O;
−−→
OBi,

−−−−→
OBi+1),

let θi = ̂BiOBi+1 and ϕi = B̂iOAi, so that

6∑
i=1

θi = 2π and

6∑
i=1

ϕi = π.

Notice that 0 6 θi 6 π and since the two triangles BiOAi and AiOBi+1 are similar, one has
ϕi = θi/2 (see Fig. 9).

O B1

B2

B3

B4

B5

B6

A1

A2

A3

A4

A5

A6

θ1

ϕ1

Figure 9: Parametrization of hexagons

Using this parametrization, let us rewrite each optimization problem in terms of the variables
ϕi. Decomposing the hexagon K∗ into the six quadrilaterals OBiAiBi+1 (i = 1, . . . , 6) and each
quadrilateral into two similar triangles BiOAi and Bi+1OAi (whose area is equal to OBi.BiAi

2 =
tan(ϕi)

2 ), we get

|K∗| =
6∑
i=1

tanϕi.

Introduce the set

Θ0 =

{
Φ = (ϕ1, ..., ϕ6) ∈ [0, π/2]6,

6∑
i=1

ϕi = π

}
and ΘA =

{
Φ ∈ Θ0,

6∑
i=1

tanϕi = A

}
.

The two problems of (16) rewrite

min
Φ∈Θ0

6∑
i=1

tan(ϕi) and min
Φ∈Θ0

Diam(H(Φ)) (18)

whereas Problem (17) rewrites
max
Φ∈ΘA

Diam(H(Φ)), (19)

13



where H(Φ) denotes the hexagon tangent at each side to the unit circle, whose semi circle center
angles are the ϕi’s.

Step 2. Solving the two problems of (18). Let us consider the first problem of (18). The
proof is straightforward. Indeed, noting that the point-wise constraint ϕi 6 π/2 cannot be active,
it follows from the Karush-Kuhn-Tucker theorem the existence of a Lagrange multiplier λ ∈ IR
such that

1 + (tanϕi)
2 = λ

for all the non-zero angles ϕi. As a consequence, all the non-zero angles are necessarily equal.
Investigating hence separately the cases where three, four, five and six angles are non-zero yields
easily the expected result.

Let us now solve the second problem of (18). Let K be a hexagon and let us use the notations
of Fig 9. One has

min
Φ∈Θ0

Diam(H(Φ)) = min
K∈P6

max
(x,y)∈K2

|x− y| > min
K∈P6

max
i=1,2,3

AiAi+3.

Let us now solve the problem minK∈P6 maxi=1,...,3AiAi+3. We will show that the chain of
inequalities above is in fact a chain of equalities. We start by several remarks allowing to reduce
the problem. Notice that the preliminary remarks of Step 1 still hold for this problem. Consider
a solution denoted K∗, associated to Φ∗ ∈ Θ0.

• Let us assume without loss of generality that the maximum is reached by A1A4. Consider
the hexagons K̂i, i = 1, 2, obtained by symmetrizing the quadrilaterals A1A2A3A4 and
A4A5A6A1 with respect to the axis (A1A4). Assume by contradiction that A1, A4 and O are
not aligned. Then, it is obvious that either the inradius of K̂1 or the one of K̂2 is strictly
lower than 1. Assume that the inradius of K̂1 is strictly lower than 1. Then, applying a
well-chosen homothety to K̂1 provides a hexagon with inradius 1 having a diameter larger
than the one of K∗, which is absurd. Hence, A1, A4 and O are necessarily aligned and this
argument can be extended to any length reaching the maximum.

• In fact, one can show that the three lengths A1A4, A2A5 and A3A6 are equal. Indeed, in
the converse case, assume that A1A4 does not reach the maximum. We replace A1 and A4

by Â1 and Â4 that are the respective images of A1 and A4 by a homothety centered at the
middle of [A1A4] in such a way that Â1Â4 > A1A4, and the maximum remains unchanged.
This is a contradiction with the conclusion of Lemma 3.

As a result, one has necessarily A1A4 = A2A5 = A3A6 and moreover, the points O, Ai and
Ai+3 are aligned for i = 1, 2, 3. According to the considerations above, and since OAi = 1/ cosϕ∗i ,

i = 1, . . . , 6, one has ̂AiOAi+3 = π[2π], and

AiA
2
i+3 = OA2

i +OA2
i+3 =

(
1

cosϕ∗i
+

1

cosϕ∗i+3

)2

,

by using the Al-Kashi formula in the triangle AiOAi+3. Therefore, we infer that

min
Φ∈Θ0

Diam(H(Φ)) > min
K∈P6

max
i=1,2,3

AiAi+3 = max
i=1,2,3

(
1

cosϕ∗i
+

1

cosϕ∗i+3

)
.

Moreover, one has

max
i=1,2,3

1

cosϕ∗i
+

1

cosϕ∗i+3

>
1

3

6∑
i=1

1

cosϕ∗i
>

1

3
min
K∈P6

6∑
i=1

1

cosϕi
.
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For this last problem, let Φ̃ be a solution. Notice that one has necessarily ϕ̃i < π/2. Let us assume
that ϕ̃i is positive. Hence, it follows from the Karush-Kuhn-Tucker theorem the existence of a
Lagrange multiplier λ ∈ IR such that

− sinϕi
cos2 ϕi

= λ,

and therefore, all the non-zero angles must be equal. For N = 3, 4, 5, 6, assume that there are 6−N
zero angles and N nonzero angles (therefore equal to π/N according to the equality constraint).
One shows easily that

6∑
i=1

1

cos ϕ̃i
=

N

cos(π/N)
+ (N − 6) >

6

cos(π/6)
=

12√
3
.

This proves that the only solution of the problem minK∈P6

∑6
i=1

1
cos2 ϕi

is Φ̃ = π
6 (1, 1, 1, 1, 1, 1).

We infer from this reasoning that

min
Φ∈Θ0

Diam(H(Φ)) >
4√
3
.

We conclude by noting that this inequality is an equality as soon as Φ = Φ̃ (in other words,
whenever K∗ is a regular hexagon with inradius 1).

Step 3. Solving Problem (19). Assume that K∗ is the hexagon plotted on Fig. 9. The
diameter can be realized in three ways: (i) on a side, (ii) on a diagonal of the kind A1A4, or (iii)
on a diagonal of the kind A1A3. In what follows, we will first consider separately each of these
three cases and combine them in a second time to get the expected result. In the sequel, we will
denote by Φ∗ = (ϕ∗1, ..., ϕ

∗
6) a solution of (19) associated to a hexagon K∗.

Case (i): the diameter is realized by a side

Assume without loss of generality that the diameter of K∗ is given by A1A2 (this is always possible
by re-indexing the vertices). For Φ ∈ ΘA, denote by D1,2(Φ) the length A1A2 in the hexagon H(Φ).
One has D1,2(Φ) = tan(ϕ1) + tan(ϕ2), and we are therefore led to solve the optimization problem

max
Φ∈Θ

tan(ϕ1) + tan(ϕ2).

It is notable that for the hexagon K∗, one has necessarily 0 < ϕi < π/2. Indeed, the left inequality
is a direct consequence of Lemma 1, and the right one comes from the area constraint. According
to the Karush-Kuhn-Tucker theorem, there exists (λ, µ) ∈ IR2 such that

1 + tan2(ϕ∗1)
1 + tan2(ϕ∗2)

0
0
0
0

 = λ


1 + tan2(ϕ∗1)
1 + tan2(ϕ∗2)
1 + tan2(ϕ∗3)
1 + tan2(ϕ∗4)
1 + tan2(ϕ∗5)
1 + tan2(ϕ∗6)

+ µ


1
1
1
1
1
1


The two first equations yield (λ, µ) 6= (0, 0) and we easily infer that

ϕ∗1 = ϕ∗2 and ϕ∗3 = ϕ∗4 = ϕ∗5 = ϕ∗6.
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Denoting by ϕ the angle ϕ∗1 and by Ψ the angle ϕ∗3, it follows from the equality constraint on the
ϕi’s and from the area constraint that

ψ =
π

4
− ϕ

2
and 2 tan(ϕ) + 4 tan(ψ) = A.

Let t = tan(ϕ/2). Since

tan(ψ) = tan(
π

4
− ϕ

2
) =

1− tan(ϕ/2)

1 + tan(ϕ/2)
=

1− t
1 + t

,

the second equation rewrites 4
(

t
1−t2 + 1−t

1+t

)
= A, and hence

t2
(

1 +
A

4

)
− t+ 1− A

4
= 0.

Since A > 2
√

3, this equation has two real roots, and the largest one is

t =
1 +

√
A2

4 − 3

2(1 + A
4 )

.

We then get

max
Φ∈ΘA

D1,2(Φ) = D1,2(Φ∗) =
4t

1− t2 .

Figure 10: Hexagon maximizing D1,2(Φ) for A = 4
√

3

Case (ii): the diameter is realized by A1A4

Since OA1 = 1/ cosϕ1, OA4 = 1/ cosϕ4 and Â1OA4 = ϕ1 + 2ϕ2 + 2ϕ3 + ϕ4, one has

A1A
2
4 = OA2

1 +OA2
2− 2 cos(Â1OA4)OA1.OA4 =

1

cos2 ϕ1
+

1

cos2 ϕ4
− 2 cos(ϕ1 + 2ϕ2 + 2ϕ3 + ϕ4)

cosϕ1 cosϕ4
,

by using the Al-Kashi formula in the triangle A1OA4. For Φ ∈ ΘA, we introduce

D1,4(Φ) =
1

cos2 ϕ1
+

1

cos2 ϕ4
− 2 cos(ϕ1 + 2ϕ2 + 2ϕ3 + ϕ4)

cosϕ1 cosϕ4
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Notice that for all Φ ∈ Θ, one has

D1,4(Φ) 6
1

cos2 ϕ1
+

1

cos2 ϕ4
+

2

cosϕ1 cosϕ4
=

(
1

cosϕ1
+

1

cosϕ4

)2

= G(ϕ1, ϕ4)2, (20)

where G(x, y) = 1
cos(x) + 1

cos(y) for all x, y ∈ [0, π/2]2.

To solve the problem of maximizing D1,4 over ΘA, we will maximize Φ 7→ G(ϕ1, ϕ4)2 over
ΘA and use (20) to prove that both the optimal values and the maximizers of the aforementioned
problems coincide. Hence, we investigate the optimization problem

max
Φ∈ΘA

G(ϕ1, ϕ4).

With a slight abuse of notation, we denote by Φ∗ a solution to this problem. Reasoning similarly
as for the case (i), we first notice that one has necessarily ϕ∗i ∈ (0, π2 ). Applying the Karush-Kuhn-

Tucker theorem, we infer the existence of (λ, µ) ∈ IR2 such that

sin(ϕ∗
1)

cos2(ϕ∗
1)

0
0

sin(ϕ∗
4)

cos2(ϕ∗
4)

0
0


= λ


1 + tan2(ϕ∗1)
1 + tan2(ϕ∗2)
1 + tan2(ϕ∗3)
1 + tan2(ϕ∗4)
1 + tan2(ϕ∗5)
1 + tan2(ϕ∗6)

+ µ


1
1
1
1
1
1


By exploiting these equalities, we get successively that ϕ∗2 = ϕ∗3 = ϕ∗5 = ϕ∗6, µ = −λ(1 + tan2(ϕ2)),
and that ϕ∗1 and ϕ∗4 solve the equation

sin θ

cos2 θ
= λ(tan2 θ − tan2(ϕ∗2)). (21)

Notice that ϕ∗1 6= ϕ∗2. Indeed, in the converse case, one has ϕ∗1 = 0 = ϕ∗2 = ϕ∗3 = ϕ∗5 = ϕ∗6 and then
ϕ∗4 = π, which is absurd. Similarly, one has ϕ∗4 6= ϕ∗2. Equation (21) hence rewrites

sin θ

cos2 θ(tan2 θ − tan2(ϕ2))
= λ.

We claim that the function h defined by

h : θ ∈ [0, ϕ∗2[∪]ϕ∗2,
π

2
[7→ sin θ

cos2 θ(tan2 θ − tan2(ϕ∗2))
.

is one-to-one3. As a result, one has ϕ∗1 = ϕ∗4, and we infer that

ϕ∗1 = ϕ∗4 = 2 arctan

1 +
√

A2

4 − 3

2(1 + A
4 )

 and ϕ∗2 = ϕ∗3 = ϕ∗5 = ϕ∗6 =
π

4
− ϕ∗1

2
.

3Indeed, since h is negative on [0, ϕ2[ and positive on ]ϕ∗2, π/2[, we can deal separately with the intervals [0, ϕ∗2[

and ]ϕ∗2, π/2[. On [0, ϕ∗2[, one has h(θ) = sin θ 1+tan2 θ
tan2 θ−tan2(ϕ∗

2)
. It follows that h is the product of the positive

increasing sine function by θ 7→ 1+tan2 θ
tan2 θ−tan2(ϕ∗

2)
, which is negative decreasing. The conclusion follows.

On ]ϕ∗2, π/2[, one has h(θ) = 1
sin θ

(
1− tan2(ϕ∗

2)

tan2 θ

)−1

, and therefore, h is the product of two positive decreasing

functions, whence the result.
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Noticing that ϕ∗1 + 2ϕ∗2 + 2ϕ∗3 + ϕ∗4 = π and according to the previous considerations, it follows
that

max
Φ∈ΘA

D1,4(Φ) = D1,4(Φ∗) =

(
1

cosϕ∗1
+

1

cosϕ∗4

)2

= G2(ϕ∗1, ϕ
∗
4) = max

Φ∈ΘA

G2(ϕ1, ϕ4).

Moreover, the maximal value of A1A4 is 2/ cosϕ∗1.

Figure 11: Hexagon maximizing A1A4 for A = 4
√

3

Case (iii): the diameter is realized by A1A3

Using similar computations as for A1A4, we get

A1A
2
3 = D1,3(ϕ), with D1,3(ϕ) =

1

cos2 ϕ1
+

1

cos2 ϕ3
− 2 cos(ϕ1 + 2ϕ2 + ϕ3)

cosϕ1 cosϕ3
.

Following exactly the same lines as for the case (ii), and using the same notations, one shows
successively that

∀Φ ∈ ΘA, D1,3(Φ) 6 G2(ϕ1, ϕ3)

and
D1,4(Φ∗) = max

Φ∈ΘA

D1,4(Φ)) = max
Φ∈ΘA

G2(ϕ1, ϕ4) = max
Φ∈ΘA

G2(ϕ1, ϕ3)

As a consequence, there holds

max
Φ∈ΘA

D1,3(Φ)) 6 max
Φ∈ΘA

D1,4(Φ)

with equality if, and only if there exists Φ∗ ∈ Θ such that π = ϕ∗1 + 2ϕ∗2 + ϕ∗3. Because of the
first equality constraint on the angles ϕi, it follows that ϕ∗2 = ϕ∗4 + ϕ∗5 + ϕ∗6. Now, writing the
optimality conditions for the problem of maximizing D1,3 over ΘA as for the case (ii), we infer
that ϕ∗2 = ϕ∗4 = ϕ∗5 = ϕ∗6. Thus, these angles are necessarily equal to 0, which contradicts Lemma
1. This shows that the case (iii) cannot arise.

Comparison between the three cases

According to the previous analysis, one has A1A4 > A1A3 for any optimal set K∗. Notice moreover
that

max
Φ∈ΘA

A1A2 = 2 tan(Φ∗) and max
Φ∈ΘA

A1A4 =
2

cos(Φ∗)
with Φ∗ = 2 arctan

1 +
√

A2

4 − 3

2(1 + A
4 )

 .
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We then infer that the solution of Problem (19) corresponds to the case (ii).
Therefore, the optimization problem has a unique solution (whenever A > 2

√
3r2

0) given by the
hexagon with inner radius r0, which is tangent at every side to its inner circle, and such that the
semi circle center-angles are given by

ϕ∗1 = ϕ∗4 = 2 arctan

1 +
√

A2

4r40
− 3

2(1 + A
4r20

)

 and ϕ∗2 = ϕ∗3 = ϕ∗5 = ϕ∗6 =
π

4
− ϕ∗1

2
.

4 Proof of Theorem 3

Before solving Problem (Pt), we first investigate the following auxiliary problem:

max{d(K), |K| = A, r(K) = r, Diam(K) = D}, (22)

where (A,D, r) denote the triple of positive numbers.
To help the forthcoming analysis and since several cases must be distinguished, let us plot on

Fig. 12 some elements of the Blashke diagram for the diameter and inradius, the area being fixed.

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1

2

4

6

8

10

12

14

r

D

D = Diam(HA,r)

D = DIam(GA,r)

D = max(2r,A/2r)

1.82 1.84 1.86 1.88 1.9 1.92 1.94 1.96 1.98 2

3

4

5

6

7

r

D

D = Diam(HA,r)

D = DIam(GA,r)

D = max(2r,A/2r)

D = 4/
√
3r

1

2

3

4

Figure 12: Left: Blaschke Diagram for (r(K),Diam(K)) under the condition |K| = 4π. Right:
zoom on the right part of the diagram.

Remark 6. Let us comment on the construction of Fig. 12. The green boundary consists of two
parts. The first one is obtained by using that for every convex set K, one has

|K| < 2 Diam(K)r(K),

with equality if, and only if int(K) = ∅ (see [6]), and the (straight) right one is obtained by using
that Diam(K) > 2r(K) with equality if, and only if K is a ball. The red boundary is determined
by using the second item of Theorem 2. Finally, the blue boundary is obtained by using (7) in
Remark 1.

First, notice that, according to the so-called isodiametric inequality, one has r 6 Diam(K)/2 6√
A/π and Diam(K) 6 Diam(GA,r) for every convex body K having as inradius r and area A,

where the ice-cone GA,r has been introduced in Definition 2.
The main ingredient of the proof of Theorem 3 is the following lemma about the maximization

of the density functional d(·), whose proof is postponed at the end of this section for the sake of
clarity.
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Lemma 4. Let A > 0 and D > 0.

1. Let r ∈ (0,
√
A/2
√

3] and D = Diam(HA,r). One has

max{d(K), r(K) = r, Diam(K) 6 D, |K| = A} = 1.

2. Let r ∈ (0,
√
A/2
√

3) and D > Diam(HA,r) or (r,D) ∈ {(r,D) | r >
√
A/2
√

3 and D ∈
[4/
√

3r,Diam(GA,r)]}. Then, one has

max{d(K), r(K) = r, Diam(K) = D, |K| = A} =
A

|HD,r| .

3. Let (r,D) ∈ {(r,D) | r >
√
A/2
√

3 and D 6 min{4/
√

3r,Diam(GA,r)}}. Then, one has

max{d(K), r(K) = r, Diam(K) = D, |K| = A} =
A

|H∗r |
.

Let us come back to the solution of Problem (Pt).
Let us distinguish between several cases, depending on the possible values of r(K) and Diam(K).

For that purpose, let us notice that

sup
K∈Ar0,A

Jt(K) = max
16i64

sup
K∈Ai

r0,A

Jt(K);

with the following partition of Ar0,A:

A1
r0,A = {K ∈ Ar0,A | r(K) = r, r0 6 r 6

√
A/(2

√
3) and Diam(K) 6 DHA,r

)}

A2
r0,A = {K ∈ Ar0,A | r(K) = r, r0 6 r 6

√
A/(2

√
3) and Diam(K) ∈ (DHA,r

, DGA,r
)}

A3
r0,A = {K ∈ Ar0,A | r(K) = r, r >

√
A/(2

√
3) and Diam(K) ∈ (4/

√
3r,DGA,r

)}

A4
r0,A = {K ∈ Ar0,A | r(K) = r, r >

√
A/(2

√
3) and Diam(K) 6 4/

√
3r}.

where we introduce the notations DHA,r
= Diam(HA,r) and DGA,r

= Diam(GA,r), for the sake
of readability. Air0,A corresponds to the zone i in Figure 12.

Let us investigate each problem separately.

Solution of Problem supK∈A1
r0,A

Jt(K). Let r ∈ [r0,
√
A/(2

√
3)] and K ∈ A1

r0,A
such that

r(K) = r. According to Lemma 4, one has

Jt(K) 6 t+ (1− t)
√
πDHA,r

2
√
A

= t+ (1− t)
√
π

2
√
A

(
1

3r

(
2A+

√
A2 − 12r4

))
with equality whenever K = HA,r. Moreover, the mapping r 7→ 1

3r

(
2A+

√
A2 − 12r4

)
is decreas-

ing on (0,+∞). As a consequence, we infer that

max
K∈A1

r0,A

Jt(K) = Jt(HA,r) = t+ (1− t)
√
π

2
√
A

(
1

3r0

(
2A+

√
A2 − 12r4

0

))
,

and the maximum is reached by the p-hexagon HA,r0 .
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Solution of Problem supK∈A2
r0,A∪A3

r0,A
Jt(K). Let K ∈ A2

r0,A
and r = r(K) be such that

r ∈ [r0,
√
A/(2

√
3)]. According to Lemma 4, one has

Jt(K) 6 t
A

|HD,r| + (1− t)
√
πD

2
√
A

(23)

Let us first maximize the function in the right-hand side, by solving the problem

max
(D,r)∈Z

ψt,A(r,D) where ψt,A(r,D) = t
A

|HD,r| + (1− t)
√
πD

2
√
A
, (24)

with

Z = {(r,D) | r0 6 r 6
√
A/(2

√
3) and D ∈ (DHA,r

, DGA,r
) or r >

√
A/(2

√
3) and D > 4/

√
3r}.

This corresponds to deal with the zone 2 and 3 of Fig. 12. First, note that

dψt,A
dr

(r,D) =
−tA(2D

√
D2 − 4r2 −D2 + 8r2)

√
D2 − 4r2

(
2Dr − r

√
D2 − 4r2

)2 .
Moreover, if D2 6 8r2, we conclude directly that 2D

√
D2 − 4r2 − D2 + 8r2) is positive. in the

converse case, the sign of 2D
√
D2 − 4r2−D2 +8r2 is also the sign of 4D2(D2−4r2)− (D2−8r2)2,

namely 3D4 − 64r4. Notice that, in that zone, one has D > 4r/
√

3 > r
√

8/
√

3, which means

precisely that 3D4 − 64r4 > 0. In all cases, we then have 2D
√
D2 − 4r2 −D2 + 8r2 > 0, and we

infer that
dψt,A

dr (r,D) < 0. It follows that either D = DHA,r
or r = r0. The case D = DHA,r

has been investigated when solving Problem supK∈A1
r0,A

Jt(K) above. As a consequence, one has

necessarily r = r0 at the maximum.
It then remains to investigate the variations of the criterion with respect to the parameter D,

at r = r0. One has

d2ψt,A
dD2

(r0, D) = −
2At

(√
D2 − 4r2

0(14r2
0 − 5D2) + 4D(D2 − 3r2

0)
)

r0(D2 − 4r2
0)3/2(2D −

√
D2 − 4r2

0)3
.

Note that
√
D2 − 4r2

0(14r2
0−5D2)+4D(D2−3r2

0) = r3
0

(√
X2 − 4(14− 5X2) + 4X(X2 − 3)

)
with

X = D/r0. Recall that the function X 7→
√
X2 − 4(14−5X2)+4X(X2−3) has a unique zero X0 on

[4/
√

3,+∞). Moreover, a tedious but easy analysis yields that
√
X2 − 4(14−5X2)+4X(X2−3) > 0

on [4/
√

3, X0] and
√
X2 − 4(14− 5X2) + 4X(X2 − 3) < 0 elsewhere (see Fig 13).
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Figure 13: Plot of the function X 7→
√
X2 − 4(14− 5X2) + 4X(X2 − 3).

It follows that the mapping D 7→ d
dDψt,A(r0, ·) is decreasing on [4

√
3r0, X0r0] and increasing

on [X0r0,+∞). Its minimal value is

dψt,A
dD

(r0, X0r0) =
−Aγ0

r3
0

t+ (1− t)
√
π

2
√
A

where γ0 is defined by (11).

The minimal value of
dψt,A

dD (r0, ·) is then non-negative whenever t ∈ [0, tA,r0 ] and negative
whenever t ∈ (tA,r0 , 1], where tA,r0 is given by (10).

• If t ∈ [0, tA,r0 ], we infer from the above analysis that D 7→ ψt,A(r0, D) is increasing on
(DHA,r

, DGA,r
) and the maximum is achieved at D = DGA,r

.

• If t ∈ (tA,r0 , 1], the minimal value of
dψt,A

dD ψt,A(r0, ·) is negative. Notice moreover that

dψt,A
dD

(r0, 4r0/
√

3) = lim
D→+∞

dψt,A
dD

(r0, D) =
(1− t)√π

2
√
A

.

Combining these informations about
dψt,A

dD yields the existence4 of z1
t,r0,A

∈ [4/
√

3, X0) and

z2
t,r0,A

∈ [X0,+∞) such that the mapping D 7→ ψt,A(r0, ·) is increasing on (4/
√

3r0, z
1
t,r0,A

r0),

decreasing on (z1
t,r0,A

, z2
t,r0,A

) and increasing on (z2
t,r0,A

,+∞).

Now, using that Diam(HA,r0) = 1
3r0

(
2A+

√
A2 − 12r4

0

)
and that the mapping [2

√
3,+∞) 3

A 7→ 1
3r0

(
2A+

√
A2 − 12r4

0

)
is increasing, we claim that

A

r2
0

> 2X0 −
√
X2

0 − 4⇐⇒ DHA,r0
> X0r0

4Moreover, z1t,r0,A and z2t,r0,A are the two solutions of the equation dψt,A/dD(r0, r0z) = 0 with unknown z on

[4/
√

3,+∞)

2
√
z2 − 4− z

√
z2 − 4(2z −

√
z2 − 4)2

=
(1− t)

√
πr30

2tA3/2
.
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Since ψt,A(r0, ·) is decreasing on [X0r0, z
2
t,r0,A

] and increasing on (z2
t,r0,A

,+∞), we infer that,
under the smallness condition (12) on r0, one has successively

max
(D,r)∈Z

ψt,A(r,D) = max
D∈(DHA,r0

,DGA,r0
)
ψt,A(r0, D)

= max{ψt,A(r0, DHA,r0
), ψt,A(r0, DGA,r0

)}

To solve the problem arising in the right-hand side, let us introduce

∆r0,A(t) = ψt,A(r0, DGA,r0
)− ψt,A(r0, DHA,r0

).

One computes

∆r0,A(0) =

√
π

2
√
A

(DGA,r0
−DHA,r0

)

∆r0,A(1) = A

(
1

|DGA,r0
| −

1

|DHA,r0
|

)
.

Hence, since ∆r0,A is affine, ∆r0,A(0) > 0, ∆r0,A(1) < 0, we infer the existence of t∗A,r0 ∈ [0, 1]
such that

– on [0, t∗A,r0 ], max{ψt,A(r0, DHA,r0
), ψt,A(r0, DGA,r0

)} = ψt,A(r0, DGA,r0
);

– on (t∗A,r0 , 1], max{ψt,A(r0, DHA,r0
), ψt,A(r0, DGA,r0

)} = ψt,A(r0, DHA,r0
).

Notice that, by construction, one has ∆r0,A(t∗A,r0) = 0 leading to the expression (13) of t∗A,r0
and one has necessarily t∗A,r0 > tA,r0 according to the analysis of the case where t ∈ [0, tA,r0 ].

Let us come back to the solution of Problem supK∈A2
r0,A∪A3

r0,A
Jt(K). We proved that, under

the smallness assumption (12) on r0, GA,r0 and HA,r0 are the only possible solutions of Problem
max(D,r)∈Z ψt,A(r,D). Noting that (23) is an equality whenever K is either equal to GA,r0 , or
HA,r0 , we infer to the end that

max
K∈A2

r0,A∪A3
r0,A

Jt(K) =

{
Jt(GA,r0) if t ∈ [0, t∗A,r0 ]

Jt(HA,r0) if t ∈ (t∗A,r0 , 1].

Estimate of supK∈A4
r0,A

Jt(K). According to Lemma 4, one has

Jt(K) 6 t
A

|H∗r |
+ (1− t)

√
πD

2
√
A

= t
A
√

3

2r2
+ (1− t)

√
πD

2
√
A
. (25)

Since D 7→ tA
√

3
2r2 + (1− t)

√
πD

2
√
A

is increasing, we infer that the solutions of the problem

max
(r,D)∈Ẑ

t
A
√

3

2r2
+ (1− t)

√
πD

2
√
A

with

Ẑ = {(r,D) |
√
A/(2

√
3) 6 r 6

√
A/π and 2r 6 D 6 4/

√
3r}.
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satisfy necessarily D = 4r/
√

3. According to Lemma 4, we deduce successively that

max
K∈A4

r0,A

Jt(K) = max
(r,D)∈Ẑ

t
A
√

3

2r2
+ (1− t)

√
πD

2
√
A

6 max
K∈A2

r0,A∪A3
r0,A

Jt(K).

Moreover, we have proved that every solution of the last problem in the right-hand side must
satisfy r(K) = r0, proving that the last inequality is in fact strict.

This concludes the proof of Theorem 3.

Proof of Lemma 4. We investigate the three different cases:

1. For r ∈ (0,
√
A/2
√

3) (zone 1 of Fig. 12), since HA,r is admissible and since d(K) 6 1 for

every convex body K, the first equality is obvious, by choosing K = HA,r.

2. Let us deal with the zone 2 and 3 of Fig. 12. We first assume that r ∈ (0,
√
A/2
√

3) and

D > Diam(HA,r). Let K be a maximizer for the problem

max{d(K), r(K) = r, Diam(K) = D, |K| = A}.

Denoting by KT the smallest convex set tiling the plane and containing K, one has

Diam(KT ) > D, r(KT ) > r.

Then, by using Theorem 2 and by monotonicity of |HD,r| with respect to D and r, we have

|KT | > |HDiam(KT ),r(KT )| > |HD,r|,

As a consequence, we infer that

d(K) =
|K|
|KT | 6

A

|HD,r| .

Notice that the mapping A 7→ Diam(HA,r) is increasing on its definition set. Using this
remark and according to Remark 1, since D ∈ [Diam(HA,r),Diam(GA,r)], we have |GD,r| 6
A 6 |HD,r|. Moreover, there holds GD,r ⊂ HD,r by construction. Let us show that
(GD,r)T = HD,r. Since

Diam((GD,r)T ) > D and r((GD,r)T ) > r,

one has |(GD,r)T | > |HD,r|, showing that (GD,r)T = HD,r. Now, consider a convex set
K of area A chosen such that GD,r ⊂ K ⊂ HD,r. Then, since (GD,r)T = HD,r, one has
KT = HD,r by continuity and d(K) = A

|HD,r |. Therefore the supremum is reached, whence

the conclusion.

Let us now assume that (r,D) ∈ {(r,D) | r >
√
A/2
√

3 and D ∈ [4/
√

3r,Diam(GA,r)}.
Then, a convex set K with inradius r and area A cannot be tiling according to Theorem 2.
Nevertheless, one checks easily that the diameter of the hexagon HD,r is equal to D if, and
only if D > 4/

√
3r. Therefore, the same argument as below allows to conclude similarly.

24



3. If (r,D) ∈ {(r,D) | r >
√
A/2
√

3 and D 6 min{4/
√

3r,Diam(GA,r)}} (zones 4 of Fig. 12),

then the diameter of HD,r differs from D5.

We claim (see below for a proof) moreover that the regular hexagon H∗r is the tiling convex set
with inradius r and area A having the lowest diameter, or similarly that the regular hexagon
H∗r is the tiling convex set with inradius r and diameter D having the lowest area.

Let K be a convex set such that r(K) = r and Diam(K) = D, with (r,D) belonging to the
zone described above. One has Diam(KT ) > D and r(KT ) > r. As a consequence of the
claim above, one has necessarily Diam(KT ) > D(H?

r(KT )). Since KT is tiling, one has

|KT | > |HDiam(KT ),r(KT )| > |H∗r |.
according to Theorem 2 and the claim above. It follows that for every convex K in the
aforementioned zone of the Blaschke diagram, one has d(K) 6 A

|H∗
r |

.

Let K be a convex set of area A such that GDiam(KT ),r(KT ) ⊂ K ⊂ H∗r . We infer from the

previous analysis that KT = H∗r , and δ(K) = A/|H∗r |, so that it maximizes the density.

To conclude, it remains to prove the claim above. For a given r > 0, we investigate the
problem

inf{Diam(T ), T tiling and r(T ) > r}.
Notice first that, by mimicking the arguments used to prove Theorem 2, one shows that there
exists a solution T ∗ to this problem, and necessarily, r(T ∗) = r.

Moreover, according to Theorem 2, the solution of the more constrained problem

inf{Diam(T ), T tiling, r(T ) = r and |T | = A},
with A > 2

√
3r2, is the p-hexagon described in Definition 1. Then, by writing

inf{Diam(T ), T tiling and r(T ) > r} = inf
A>2

√
3r2

inf{Diam(T ), T tiling, r(T ) = r and |T | = A},

and using that the area of the p-hexagon introduced in Definition 1 is an increasing function
of the diameter (see Remark 3), we infer that T ∗ is such that |T ∗| = 2

√
3r2. In other words,

T ∗ = H∗r and we are done.

5 Conclusion and perspectives

In this paper, we solve several problems in convex geometry, paying attention to the class of plane
tiling domains. These problems were motivated by issues in biology related to the shape of eggs
os some crustaceans. Of course, the 3D situation is certainly more relevant but a complete mathe-
matical analysis, like in this paper, seems out of range. Nevertheless, some numerical simulations
will be done for this problem.

We foresee to investigate a related issue in a forthcoming paper, namely the precise determina-
tion of the Blaschke-Santalò diagram, see Figure 12 for the area, diameter and inradius (sometimes
known as the A,D, r problem).

Acknowledgement. The first and the third authors were partially supported by the Project
“Analysis and simulation of optimal shapes - application to life-sciences” of the Paris City Hall.
The authors warmly thank Nicolas Rabet for very stimulating discussions about modelling issues.

5Indeed, this is an easy consequence of the first item of Theorem 2.
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Appendix

A Existence of KT

Since the set of convex bodies contained in a compact D is itself compact for the Hausdorff topology
and since the restriction of the Lebesgue measure to this set is continuous [7], it is enough to show
that the set of convex tiling domains T with T > ε > 0 is closed for the Hausdorff topology.
To prove this claim, let (Tn)n∈IN be a sequence of convex tiling domains converging to T . Then
T is necessarily convex. Since Tn is tiling for every n, there exist a sequence (τn,i)i∈IN of affine
isometries such that R2 ⊂ ⋃i∈IN τn,i(Tn), in other words

∀R > 0, B(0, R) ⊂
⋃
i∈IN

τn,i(Tn)

Without loss of generality, we assume that the distance of τn,i(Tn) (i-th copy of Tn) to the
origin is non-decreasing.

Let D = sup(Diam(Tn)), A = sup(|Tn|), R > 0, N =
[
|B(0,R)|

ε

]
(the bracket notation standing

for the integer part) and IN = {0, ..., n}. Then, we claim that

∀n ∈ IN, B(0, R) ⊂
⋃
i∈IN

τn,i(Tn) ⊂ B(0, R+ 2D).

Decomposing τn,i as τn,i = rn,i+tn,i where rn,i is a rotation and tn,i is a translation assimilated
(with a slight abuse of notation) to a vector such that ‖tn,i‖ 6 R + 2D for all n ∈ N and i 6 N .
Applying a compactness argument yields the existence of τi and ϕ : IN 7→ IN such that τϕ(N),i → τi
for all i 6 N . Therefore, one has τϕ(n),i)(Tϕ(n)) → τi(T ) as n → +∞. Furthermore, since
int(τϕ(n),i(Tϕ(n))) ∩ int(τϕ(n),j(Tϕ(n))) = ∅ for i 6= j, we get int(τi(T )) ∩ int(τj(T )) = ∅ and⋃
i∈IN τϕ(n),i(Tϕ(n)) →

⋃
i∈IN τi(T ). Finally by stability of the inclusion for the Hausdorf metric,

one has B(0, R) ⊂ ⋃i∈IN τi(T ).
Using that the last inclusion holds true for every R > 0, we infer that T is a convex tiling

domain.

B Proof of Theorem 1

Let us first consider the case of tiling domains.

Case of tiling domains. Let K be a tiling domain and set D = Diam(K). There exists a family
{τi}i∈IN of isometries such that

IR2 =
⋃
i∈IN

τi(K).

For R > 2D, define

P (R) =
⋃

τi(K)⊂D(0,R)

τi(K).

Then, by maximality of the diameter, and since K is tiling, one has necessarily D(0, R−D) ⊂
P (R), and therefore ]{i, τi(K) ⊂ D(0, R)}|K| > π(R−D)2 and

2R√
]{i, τi(K) ⊂ D(0, R)}Diam(K)

6
2R
√
|K|√

π(R−D) Diam(K)
.
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Letting R→∞, we obtain

lim sup
R→+∞

2R√
]{i, τi(K) ⊂ D(0, R)}Diam(K)

6
2
√
|K|√

πDiam(K)
.

Finally, passing to the infimum over all packings yields

D′∞(K) 6
2
√
|K|√

πDiam(K)
.

The conclusion follows by combining this estimate with (4).

We now investigate the general case.

General case. In view of proving (5), we will use the following result due to Kuperberg’s in [9].

Proposition 2. Every convex set K ∈ K is contained in a tiling hexagon Kkup satisfying |Kkup|/|K| 6
2/
√

36.

Let K ∈ K and consider the tiling Kkup provided by Proposition 2. We define a packing of
K by placing adequately a copy of K in each cell of Kkup. Denoting by {τi}i∈IN the family of
isometries used to define this packing, we deduce that

D′∞(K) 6 lim sup
R→∞

2R√
]{i, τi(Kkup) ⊂ D(0, R)}Diam(K)

=
Diam(Kkup)

Diam(K)
lim sup
R→∞

2R√
]{i, τi(Kkup) ⊂ D(0, R)}Diam(K)

=
2
√
|Kkup|√

πDiam(K)
6

√
2√
3

2
√
|K|√

πDiam(K)
,

by using the computation above in the case of tiling sets and Proposition 2.
The expected conclusion follows.

C Diameter of HA,r and area of HD,r

To avoid any confusion with the notations we will use within this proof, let us denote temporarily
by d the diameter of the hexagon Hd,r we will consider. Let us introduce the points A, B, C, D
and O, as plotted on Figure 14.

6Moreover, Kkup is a p-hexagon, in other words a hexagon with two opposite parallel sides having the same
length. Recall that every p-hexagon tiles the plane.
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Figure 14: The hexagon Hd,r

The area |Hd,r| is equal to 4 times the area of the pentagon ACBDO, which is the sum of the
area of ACO and the area of CBDO, which is twice the area of the triangle BDO. Hence, one has

|Hd,r| = 4× (|ACO|+ 2|BDO|)

Let θ = ĈOD. On has sin θ = 2r/d. Then, we compute

|ACO| = dr

4
cos θ =

r

4
×
√
d2 − 4r2.

Consider the orthonormal basis (O;
−−→
OD
OD ,

−−→
OA
OA ). Then the coordinates of B are (r, r 1−cos(θ)

sin(θ) ) and

since θ = arcsin(2r/d), we get

|BDO| = r2

2

1−
√

1− 4r2

d2

2r
d

=
r

4
(d−

√
d2 − 4r2)

Finally, we get that |Hd,r| = 2rd−r
√
d2 − 4r2. By inverting the relation A = 2rd−r

√
d2 − 4r2

(whenever A > 2
√

3r2 and d > 2r), we get that

d = α(A, r) =
1

3r

(
2A+

√
A2 − 12r4

)
,

whence the expression of Diam(HA,r) with respect to the parameter A.
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