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GROWTH OF NORMALIZING SEQUENCES IN LIMIT THEOREMS

FOR CONSERVATIVE MAPS

SÉBASTIEN GOUËZEL

Abstract. We consider normalizing sequences that can give rise to nondegenerate limit
theorems for Birkhoff sums under the iteration of a conservative map. Most classical limit
theorems involve normalizing sequences that are polynomial, possibly with an additional
slowly varying factor. We show that, in general, there can be no nondegenerate limit
theorem with a normalizing sequence that grows exponentially, but that there are examples
where it grows like a stretched exponential, with an exponent arbitrarily close to 1.

Let T be a non-singular map on a measure space (X,m), and P a probability measure
which is absolutely continuous with respect to m. Given a measurable function f : X → R,
we say that its Birkhoff sums Snf =

∑n−1
k=0 f ◦T

k satisfy a limit theorem if there is a sequence
Bn → ∞ such that Snf/Bn converges in distribution with respect to P to a non-degenerate
real random variable Z (by non-degenerate, we mean that Z is not constant almost surely).
In this case, the asymptotic behavior of the sequence Bn and the limiting variable Z are
defined uniquely, up to scalar multiplication (see for instance [Bil95, Theorem 14.2]).

There are many examples of such non-degenerate limit theorems in the literature. Let us
only mention the following ones:

(1) Let Y0, Y1, . . . be a sequence of i.i.d. random variables which are in the domain
of attraction of a stable law Z of index α ∈ (0, 2], and are centered if integrable.
Then, for some slowly varying function L, one has the convergence (Y0 + · · · +
Yn−1)/(n

1/αL(n)) → Z. This can be recast in dynamical terms as follows. Let

X = R
N with the measure m = P

⊗N

Y0
and the left shift T . Define f(x0, x1, . . . ) = x0.

Then Snf is distributed as Y0+ · · ·+Yn−1, and Snf/(n
1/αL(n)) converges to Z. For

α = 2 and L(n) = 1, this is an instance of the classical central limit theorem.
(2) When T preserves m and m has infinite mass, one obtains different limits. Let α ∈

[0, 1) (we exclude α = 1 to avoid degenerate limit laws). The Darling-Kac theorem
gives examples of transformations T such that, for any function f which is integrable
and has non-zero average for m, then Snf/(n

αL(n)) converges in distribution with
respect to any probability measure P ≪ m to a Mittag-Leffler distribution of index α
(where L is a slowly varying function). See [Aar97, TZ06]. This has been extended to
functions with zero average by Thomine [Tho14], where the normalization becomes

(nαL(n))1/2 and the limit distribution is modified accordingly.
(3) In the same setting as in the second example, take a function f = 1E where E is a

set of infinite measure. Thus, Snf/n records the proportion of time an orbit spends
in E. Then one can devise such sets E for which Snf/n converges in distribution to
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generalized arcine laws Lα,β, depending on α and an additional parameter β ∈ (0, 1).
(We exclude β = 0 and β = 1 to ensure that Lα,β is nondegenerate). See [TZ06].

(4) Here is a nonergodic example. On S
1 × S

1, consider the map T (α, x) = (α, x +
α). Define a function f(α, x) = 1[0,r](x) − r, where r ∈ (0, 1) is fixed. Then,
with respect to Lebesgue measure, Snf/ log n converges in distribution to a Cauchy
random variable. This theorem is due to Kesten [Kes62]. It has been generalized
recently to higher dimension by Dolgopyat and Fayad [DF14, DF12]: in dimension
d, replacing the characteristic function of the interval by the characteristic function
of a nice subset C and adding a randomization over r, they obtain limit theorems
with normalizations n(d−1)/2d or (log n)d depending on the geometric characteristics
of C.

(5) It is possible to get any limiting distribution: Thouvenot and Weiss show in [TW12]
that, for any probability-preserving system T , and for any real random variable Z,
there exists a function f such that Snf/n converges in distribution to Z. Moreover,
if Z is nonnegative, one can also take f nonnegative if one is ready to replace the
normalizing sequence by nL(n) where L is slowly varying, see [AW16].

These examples show that the possible limit theorems are extremely diverse, even in
natural examples. However, in all these examples, the normalizing sequence is of the form
nαL(n), where α ∈ [0,∞) and L is a slowly varying sequence. All such α are realized in
some examples above. Our goal in this short note is to discuss how general this restriction
can be, and in particular the possible growth of a normalizing sequence.

It is easy to see that, in probability-preserving systems, a normalizing sequence has to
grow at most polynomially. This is proved in Proposition 1.1. Our main result is that, in
conservative systems, a normalizing sequence can not grow exponentially (Theorem 2.1),
but that it can grow almost exponentially: we exhibit examples of non-degenerate limit
theorems with normalizing sequence en

α

for any α ∈ (0, 1).

1. The case of probability-preserving systems

Proposition 1.1. Let T be a probability-preserving map on a space X, and f : X → R a

function such that Snf/Bn → Z for some normalizing sequence Bn → ∞, where Z is a real

random variable which is not almost surely 0. Then Bn+1/Bn → 1, and Bn grows at most

polynomially, i.e., there exists C such that Bn = O(nC).

The proof is closely related to the proof of the normalizing constant proposition in [AW16,
Page 5]

Proof. One has Snf/Bn−1 = Sn−1f/Bn−1 + f ◦ T n−1/Bn−1. Moreover, f ◦ T n−1/Bn−1 has
the same distribution as f/Bn−1 as the probability is T -invariant. Since Bn → ∞, one gets
that f ◦ T n−1/Bn−1 tends in probability to 0. Since Sn−1f/Bn−1 tends in distribution to
Z, we deduce that Snf/Bn−1 → Z. Since Snf/Bn → Z and Z is non-degenerate, it follows
from the convergence of type theorem (see [Bil95, Theorem 14.2]) that Bn/Bn−1 → 1.

Since Z is not concentrated at 0, there exist ε > 0 and α > 0 such that P(|Z| > ε) > 2α.
Then, for large enough n, we have

(1.1) µ(|Snf | > Bnε) > 3α.



GROWTH OF NORMALIZING SEQUENCES IN LIMIT THEOREMS FOR CONSERVATIVE MAPS 3

Consider also L such that P(|Z| > L) < α. Then, for large enough, we have µ(|Snf | <
LBn) > 1− α. Since the measure is invariant, we also have µ(|Snf |(T

nx) < LBn) > 1− α.
On the intersection of these two events, |S2nf | < 2LBn, and moreover this happens with
probability at least 1− 2α. Since |S2nf | > B2nε with probability at least 3α by (1.1), these
two events intersect, and we obtain B2nε 6 2LBn. This shows that there exists a constant
C with B2n 6 CBn.

We have shown that B2n 6 CBn and Bn+1 6 CBn, for some constant C. We deduce
that B2n+1 6 C2Bn and B2n 6 C2Bn. It follows by induction on r that, for n ∈ [2r, 2r+1),

one has Bn 6 C2rB1, which is bounded by 2B1 · n
2 logC/ log 2. This shows that Bn grows at

most polynomially. �

Remark 1.2. The proof shows that the polynomial growth exponent for Bn is bounded
solely in terms of the distribution of the limiting random variable Z.

Remark 1.3. The assumption that Bn → ∞ in Proposition 1.1 is merely for convenience.
Indeed, without this assumption, one still has that Bn+1/Bn tends to 1 along integers n
where Bn → ∞ (or Bn+1 → ∞), with the same proof. In particular, there exists a constant
D such that Bn+1 6 2Bn if Bn+1 > D. One deduces that Bn 6 D · C2r for n ∈ [2r, 2r+1),
by separating the case where Bn < D (for which one can stop directly, without using the
induction) and Bn > D (for which one uses the inductive assumption as in the proof of
Proposition 1.1). This shows again that Bn grows at most polynomially.

2. Subexponential growth for normalizing sequences in conservative systems

The proof of Proposition 1.1 relies crucially on the fact that the measure is invariant and
has finite mass. In the opposite direction, if one does not assume any kind of recurrence,
then one can get any behavior. For instance, consider the right shift on Z and define the
function f(k) = 2k. Then Snf(x)/2

n converges to 2x. This means that we get a limit
theorem, but which depends on the starting measure: Starting from δ0/3 + 2δ1/3 or from
2δ0/3 + δ1/3, say, we get two different limit distributions, for the normalizing sequence 2n.
For another silly example, on Z × {−1, 1}, let T (n, a) = (n + 1, a) and f(n, a) = a22

n

.

Then Snf/2
2n−1

converges in distribution with respect to P = (δ(0,1) + δ(0,−1))/2 towards a
Bernoulli random variable. These examples show that there is nothing interesting to say in
the nonconservative case.

When the map is conservative, on the other hand, we can use the conservativity to obtain
some rigidity. The next theorem shows in particular that there can be no nontrivial limit
theorem with a normalizing sequence 2n.

Theorem 2.1. Let T be a conservative map on the measure space (X,m). Consider a

probability measure P which is absolutely continuous with respect to m, and a measurable

function f . Assume that Snf/Bn converges in distribution with respect to P towards a

limiting random variable Z which is not almost surely 0. Then, for any ρ > 0, one has

Bn = o(eρn).

Remark 2.2. As a test case for the usability of proof assistants for current mathematical re-
search, Theorem 2.1 and its proof given below have been completely formalized and checked
in the proof assistant Isabelle/HOL, see the file Normalizing_Sequences.thy in [Gou18].
In particular, the correctness of this theorem is certified.
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The main intuition behind the proof of Theorem 2.1 is the following. Assume by contra-
diction that Bn+1 is much larger than Bn. Then

(2.1) Sn+1f(x)/Bn+1 = f(x)/Bn+1 + Snf(Tx)/Bn ·Bn/Bn+1.

The term f(x)/Bn+1 is small in distribution. Moreover, Snf/Bn is tight, so when multi-
plied by Bn/Bn+1 one should get something small, and get a contradiction with the fact
that the limit Z is not a Dirac mass at 0. There is a difficulty: in (2.1), there is an addi-
tional composition by T in Snf(Tx)/Bn. Still, this heuristic argument can be made into
a rigorous proof that Bn+1 6 Cmaxi6nBi, for some C > 0, in Lemma 2.3. This excludes
superexponential growth for Bn, but not exponential growth. To improve this bound, we
will take advantage of the opposite decomposition Sn+1f = Snf + f ◦T n, to obtain another
growth control in Lemma 2.5, that only holds along a subsequence of density 1 but in which
one loses a multiplicative constant L that only depends on the distribution of Z. The point
is that this estimate also applies to the system T j and the sequence Bjn for any j, replacing

in essence L with L1/j and making it arbitrarily close to 1. The theorem then follows from
the combination of these two lemmas.

An important tool in the proof is the transfer operator T̂ , i.e., the predual of the com-
position by T , acting on L1(m). It satisfies

∫

f · g ◦ T dm =
∫

T̂ f · g dm. We will use the
following characterizations of conservativity: for any nonnegative f , then

∑∞
n=0 f(T

nx) and
∑∞

n=0 T̂
nf(x) are both infinite for almost every x with f(x) > 0, see Propositions 1.1.6

and 1.3.1 in [Aar97].
We start with a lemma asserting that the growth from Bn to Bn+1 is uniformly bounded.

Lemma 2.3. Under the assumptions of Theorem 2.1, there exists C such that, for all n,

one has Bn+1 6 Cmax(B0, . . . , Bn).

The idea of the proof is that Snf(x)/Bn = Skf(x)/Bn + Sn−kf(T
kx)/Bn. The first

term is small if n is large and k is fixed, while the second term should be small with high
probability if Bn/Bn−k is large, as Sn−kf/Bn−k is distributed like Z with respect to P . The
difficulty is that there is a composition with T k, under which P is not invariant, so one can
not argue that Sn−kf(T

kx)/Bn−k is distributed like Z. But one can still take advantage of
the conservativity to make the argument go through.

Proof. Replacing m with m+P , we can assume without loss of generality that h = dP/dm
is bounded by 1. We can also assume that max(B0, . . . , Bn) tends to infinity, since the
conclusion is obvious otherwise. Multiplying f and Z by a constant, we can also assume
P(|Z| > 2) > 3α > 0 as Z is not concentrated at 0.

By conservativity,
∑K

k=1 h(T
kx) tends m-almost everywhere to +∞ on the set {h > 0},

and therefore P -almost everywhere. Therefore, we can fix K such that P (
∑K

k=1 h(T
kx) >

1) > 1− α.
Let δ > 0 be small enough so that Kδ < α. Let ε > 0 be small enough so that, for any

k 6 K and for any measurable set U with P (U) < ε, one has

(2.2)

∫

1U (x)T̂
kh(x) dP (x) < δ.

This is possible since the function T̂ kh(x) is integrable with respect to m (its integral is
∫

hdm = P (X) = 1), and therefore with respect to P as P 6 m.
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Let C > 0 be such that P(|Z| > C) < ε. We will show that Bn 6 Cmaxi<nBk for large
enough n, by contradiction. Assume instead that n is large and Bn > CBk for any k < n.
In particular, since max(B0, . . . , Bn−1) tends to infinity with n, this implies that Bn is very
large. With probability at least 3α, we have |Snf/Bn| > 2, as P(|Z| > 2) > 3α and Snf/Bn

tends in distribution to Z. Moreover, P (∀k 6 K, |Skf |/Bn 6 1) is arbitrarily close to 1, as
Bn is very large while K is fixed. In particular, it is > 1− α. This shows that the event

V =

{

x :
K
∑

k=1

h(T kx) > 1 and |Snf(x)/Bn| > 2 and ∀k ∈ [1,K], |Skf(x)|/Bn 6 1

}

has probability at least α, as it the intersection of three sets whose measures are at least 1−α
and 3α and 1−α. For x ∈ V , we have for any k ∈ [1,K] the inequality |Sn−kf(T

kx)|/Bn > 1,
and therefore |Sn−kf(T

kx)|/Bn−k > C. We get

α 6 P (V ) =

∫

1V (x) dP (x) 6

∫

(

K
∑

k=1

h(T kx)1|Sn−kf |/Bn−k>C(T
kx)

)

dP (x).

Writing dP = hdm and changing variables by y = T kx in the k-th term of the sum, we
obtain

α 6

K
∑

k=1

∫

h(y)1|Sn−kf |/Bn−k>C(y) · T̂
kh(y) dm(y)

=
K
∑

k=1

∫

1|Sn−kf |/Bn−k>C(y) · T̂
kh(y) dP (y).

As P(|Z| > C) < ε, we have P (|Smf |/Bm > C) < ε for large enough m. Then the property

of δ given in (2.2) ensures that
∫

1|Smf |/Bm>C(y) · T̂
kh(y) dP (y) 6 δ. This gives

α 6

K
∑

k=1

δ = Kδ.

This is a contradiction as Kδ < α by construction. �

If we could show that C in Lemma 2.3 can be taken arbitrarily close to 1, then Theorem 2.1
would follow directly. However, we do not know if this is true. What we will show instead is
that such an inequality is true along a sequence of integers of density 1. This will be enough
to conclude the proof. To proceed, we will need the following technical lemma, relying on
conservativity.

Lemma 2.4. Let T be a conservative dynamical system on the measure space (X,m). Con-

sider a finite measure P which is absolutely continuous with respect to m, and disjoint

measurable sets An. Then P (T−nAn) tends to 0 along a set of integers of density 1.

Proof. Replacing m by a finite measure which is equivalent to it, we can assume that m
is finite. Replacing P by P + m (which only makes the conclusion stronger), we can also
assume that P is equivalent to m. Finally, replacing m by P/P (X), we can even assume
that P = m, and that it is a probability measure.
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Let ε > 0. Let L be a large constant. Let T̂ be the transfer operator associated to T , i.e.,

the adjoint (for the measure m) of the composition by T . We have
∑k−1

j=0 T̂
j1(x) → ∞ almost

everywhere, by conservativity. In particular, one can find a set U with m(X \U) 6 ε/2 and

an integer K such that, for all x ∈ U , one has
∑K−1

j=0 T̂ j1(x) > L. This gives in particular
for all n

(2.3) m(T−nAn) 6 ε/2 +m(T−nAn ∩ U).

Let n > K. Since the sets An−i are disjoint, we have
∑K−1

i=0 1An−i
(T nx) 6 1. Integrating

this inequality, and applying the transfer operator T̂ i to the i-th term in the sum, we obtain

K−1
∑

i=0

∫

T̂ i1(x) · 1An−i
(T n−ix) dm(x) 6 1.

Let us sum this inequality over n ∈ [K,N − 1]. Changing variables p = n− i and discarding
the terms with p < K or p > N −K, we obtain

N−K
∑

p=K

∫

(

K−1
∑

i=0

T̂ i1(x)

)

1Ap(T
px) dm(x) 6 N.

Since
(

∑K−1
i=0 T̂ i1(x)

)

> L on U , this gives

N−K
∑

p=K

m(T−pAp ∩ U) 6 N/L.

Therefore, thanks to (2.3)

N−1
∑

p=0

m(T−pAp) 6 Nε/2 + 2K +

N−K
∑

p=K

m(T−pAp ∩ U) 6 Nε/2 + 2K +N/L.

If L is large enough, this is bounded by Nε for large N . We have proved that m(T−pAp)
tends to zero in Cesaro average. This is equivalent to convergence to zero along a density
one set of integers (see for instance [Wal82, Theorem 1.20]). �

We can take advantage of the previous lemma to obtain a bound on Bn+1/Bn which is only
true along a subsequence of density 1, but in which we only lose an explicit multiplicative
constant. The difference between this lemma and Lemma 2.3 is that the constant L below
does only depend on the distribution of Z, contrary to the constant C of Lemma 2.3. This
means that it will be possible to apply this lemma to an iterate T j of T with the same L,
replacing in essence L with L1/j and making it arbitrarily close to 1.

Lemma 2.5. Let T be a conservative dynamical system on the measure space (X,m). Con-

sider a probability measure P which is absolutely continuous with respect to m, and two

measurable functions f and g. Assume that (g+ Snf)/Bn converges in distribution with re-

spect to P towards a limiting random variable Z which is not concentrated at 0. Then there

exists L > 1 depending only on the distribution of Z such that Bn+1 6 Lmax(B0, . . . , Bn)
along a set of integers of density 1.
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Proof. Multiplying Z, f and g by a suitable constant if necessary, we can assume that
P(|Z| > 2) = 3α > 0. Choose L > 3 such that P(|Z| > L − 1) < α. Note that L
only depends on the distribution of Z. Let Mn = max(B0, . . . , Bn). Let us show that
{n : Bn+1 > LMn} has zero density. Let An = {x : |f(x)| ∈ (LMn, LMn+1)}. These sets
are disjoint as M is nondecreasing. Consider n such that Bn+1 > LMn.

Since (g + Snf)/Bn has a distribution close to that of Z, one has P (|(g + Snf)/Bn| <
L) > 1− α. Therefore, P (|(g + Snf)/Bn+1| < 1) > 1− α since Bn+1 > LBn. On the other
hand, P (|(g + Sn+1f)/Bn+1| ∈ [2, L− 1]) > 3α − α = 2α. Hence,
(2.4)

P {x : |(g(x) + Snf(x))/Bn+1| < 1 and |(g(x) + Sn+1f(x))/Bn+1| ∈ [2, L− 1]} > α.

On this event, f ◦ T n/Bn+1 = (g + Sn+1f)/Bn+1 − (g + Snf)/Bn+1 has an absolute value
in (1, L), i.e., f(T nx) ∈ (Bn+1, LBn+1). Since Bn+1 > LMn, this shows that x ∈ T−nAn.
Hence, the event in (2.4) is contained in T−nAn. Since the probability of T−nAn tends to
0 along a set of density 1 by Lemma 2.4, this shows that the inequality Bn+1 > LMn can
only hold along a set of density 0. �

We can now conclude the proof of Theorem 2.1.

Proof of Theorem 2.1. Let j > 0 and k ∈ [0, j). We claim that, along a subsequence of
density 1, we have

(2.5) Bnj+k 6 Lmax(Bk, Bj+k, . . . , B(n−1)j+k),

where L = L(Z) is given by Lemma 2.5. Indeed, consider the conservative dynamical system

T̃ = T j , the function f̃ = (Sjf)◦T
k, and the function g̃ = Skf . Denoting by S̃ the Birkhoff

sums for the transformation T̃ , we have g̃ + S̃nf̃ = Snj+kf . Therefore, (g̃ + S̃nf̃)/Bnj+k

converges in distribution to Z. Lemma 2.5 then implies (2.5).
Define Mn = max(B0, B1, . . . , B(n+1)j−1). Along a subsequence of density 1, all the

inequalities (2.5) hold for k ∈ [0, j). We get that Mn+1 6 LMn along a subsequence
of density 1. Moreover, Lemma 2.3 shows that Mn+1 6 CjMn for all n. We obtain
Mn 6 Ln · (Cj)o(n)M0. Therefore, for large enough n, we have Mn 6 L2nM0. In particular,
for any m ∈ [nj, (n + 1)j), we get

Bm 6 Mn 6 L2nM0 6 L2m/jM0.

The exponential growth rate of the term on the right hand side, in terms of m, can be made
arbitrarily small by taking j large enough. �

3. An example with a stretched exponential normalizing sequence

Let us now describe an example showing that Theorem 2.1, which excludes the exponential
growth of normalizing sequences, is almost sharp. Indeed, for any α < 1, we construct a
conservative dynamical system (more specifically a Markov chain, which preserves an infinite
measure) and a function f such that Snf/e

nα

converges in distribution to a non-degenerate
limit.

Let

(3.1) pn = c/(n(log n)2)
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for n > 2 and p0 = p1 = 0, where c is adjusted so that p is a probability distribution. We
consider a recurrent Markov chain on a set A for which the excursion away from a reference
point 0 has length n with probability pn, and for which one can define the height of a point,
i.e., how many steps away from 0 it is.

The simplest such example is on the set A = {0}∪ {(n, i) : n > 1, i ∈ [1, n− 1]} in which
one jumps from 0 to (n, 1) with probability pn, from (n, i) to (n, i + 1) with probability 1
if i < n − 1, and from (n, n − 1) to 0 with probability 1. The height of (n, i) is i. One
can also realize such an example on A = N, with jumps from n to 0 with probability qn
and from n to n+1 with probability 1− qn, where qn is defined inductively by the relation
pn+1 = (1− q0) · · · (1− qn−1)qn. The height of n is just n in this example.

Let X be the space of possible trajectories of the Markov chain, m the corresponding
(infinite) measure on trajectories, π : X → A the projection associating to a trajectory
its starting point, and T the shift map forgetting the first point of the trajectory. It is
conservative as the Markov chain is recurrent. Abusing notations, if g is a function on A,
we will write g(x) for g(πx). For instance, h(x) will denote the height of the starting point
of the trajectory x.

Let P be the Markov measure on paths starting from 0. Then, with respect to P , the
height h(T nx) is by definition distributed like h(Xn) where Xn is the random walk starting
from 0. Since pn in (3.1) tends very slowly to 0, one expects most excursions away from 0
to be extremely long, so that h(Xn) should be of the order of magnitude of n with large
probability. This is true, but we will need the following more precise estimate.

Lemma 3.1. When k → ∞ and n− k → ∞, one has

P (h(T nx) = k) ∼
1

(log k) · (n− k)
.

Proof. Denote by Yi the distribution of the length of the i-th excursion away from 0 of
the random walk. These variables are independent, and share the same distribution Y
given by P(Y = s) = ps. Then Xn is at height k exactly if there is an index j such that
Y1 + · · · + Yj = n− k and moreover Yj+1 > k. Since the distribution of the excursion after
n− k is independent of the fact that n− k was reached by such a sum, we get

P (h(T nx) = k) = P(Y > k) · P(∃j, Y1 + · · ·+ Yj = n− k).

The last event in this equation is a renewal event. Local asymptotics of renewal probabilities
are known for p distributed as in (3.1): by [Nag11] (see also [AB16]), one has when s → ∞

P(∃j, Y1 + · · · + Yj = s) ∼
P(Y = s)

P(Y > s)2
.

Since P(Y > s) ∼ c/ log s, we obtain

P (h(T nx) = k) ∼
c

log k
·
c/(n − k)(log(n− k))2

(c/ log(n− k))2
=

1

(log k) · (n− k)
. �

Lemma 3.2. Let β ∈ (0, 1). When n tends to infinity,

P (h(T nx) ∈ [n− nβ, n)) → β.
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Proof. Let us first note that, with high probability, k = h(T nx) is bounded away from 0 and
n. Indeed, if C > 0 is fixed, the approximations for the probabilities in Lemma 3.1 satisfy

n−C
∑

k=n/2

1

(log k) · (n− k)
∼

1

log n

n−C
∑

k=n/2

1

n− k
∼

1

log n

n/2
∑

m=C

1

m
→ 1.

Thanks to Lemma 3.1, this shows that the contribution of this range of values of h(T nx) has
probability close to 1. Therefore, we may without loss of precision replace P (h(T nx) = k)
with the approximating probabilities given in this lemma, and even by 1/((log n) · (n− k)).

Therefore,

P (h(T nx) ∈ [n− nβ, n)) ∼
1

log n

n−1
∑

k=n−nβ

1

n− k
=

1

log n

nβ
∑

m=1

1

m
∼

log(nβ)

log n
= β. �

Let α ∈ (0, 1). Let s(n) = e(n+1)α − en
α

> 0. It is equivalent to s̃(n) = αnα−1en
α

at
infinity, so we could use s̃ instead of s in what follows, but the point of the construction
is clearer with s. Define a function f by f(x) = s(h(x)) > 0. In this way, the sum of the
values of f along an excursion up to height k − 1 is ek

α

− 1.

Theorem 3.3. The sequence Snf(x)/e
nα

converges in distribution with respect to P towards

a non-trivial random variable, equal to 0 with probability α and to 1 with probability 1− α.

Proof. Let ε > 0. We claim that, if h(T nx) ∈ [n−n1−α−ε, n) (which happens asymptotically
with probability 1−α−ε by Lemma 3.2) then Snf(x)/e

nα

is close to 1. Moreover, we claim
that, if h(T nx) ∈ [n − n1−ε, n − n1−α+ε] (which happens asymptotically with probability
(1 − ε) − (1 − α + ε) = α − 2ε by Lemma 3.2) then Snf(x)/e

nα

is close to 0. As the
probabilities of these two events almost add up to one (up to 3ε), this shows the desired
convergence in distribution by letting ε tend to 0.

It remains to prove the claims. For this, consider k = n− nβ for some β. Then

kα = nα(1− nβ−1)α = nα − αnα+β−1(1 + o(1)).

Therefore,

(3.2)
ek

α

enα = e−αnα+β−1(1+o(1)) →

{

0 if β > 1− α,

1 if β < 1− α.

Let us now prove the claims. Assume first that h(T nx) ∈ [n− n1−α−ε, n). Then the sum

of the values of f along the last excursion up to time n − 1 is equal to
∑h(Tnx)−1

j=0 s(j) =

eh(T
nx)α −1. By (3.2) with β < 1−α−ε, we deduce that this sum divided by en

α

is close to
1. We should then add the contributions of the first excursions. Since their total length is
bounded by n1−α−ε, the maximal height they could have reached is n1−α−ε, and their total

contribution is at most n · e(n
1−α−ε)α . This is negligible. This proves the first claim.

The second claim, for h(T nx) ∈ [n − n1−ε, n − n1−α+ε], is proved analogously. Indeed,
by (3.2) with β > 1 − α + ε, the contribution of the last excursion is negligible. And the

contribution of the other excursions is bounded by nen
(1−ε)α

and is also negligible. This
concludes the proof. �
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Remark 3.4. In our example, the sequence pn = c/(n(log n)2) tends very slowly to 0.
If one tries to build a less extreme example, by taking pn = c/nγ for some γ > 1, then
the construction fails. Indeed, one can check that in this case h(T nx) is distributed over
the whole interval [0, n] (instead of being very concentrated around n). More precisely,
h(T nx)/n converges in distribution to a random variable with support equal to [0, 1] (this
follows from direct computations, or from the arcine law for waiting times [TZ06]). Then

eh(T
nx)α/en

α

converges in distribution to 0, giving a degenerate limit theorem.

Remark 3.5. The above example is quite flexible. For instance, instead of obtaining the
limit αδ0 + (1 − α)δ1, one can obtain any limiting distribution Z which is equal to 0 with
probability α and to Z ′ with probability (1 − α) where Z ′ is an arbitrary real random
variable, with an ergodic conservative map, as follows. We describe it in the setting of the
random walk on N above, with return probabilities qn from n to 0. Replace the space N of
the random walk with N × R, with the following transition probabilities. Jump from (n, t)
to (n + 1, t) with probability 1 − qn, and from (n, t) to {0} × R with probability qn ⊗ PZ′

where PZ′ is the distribution of Z ′. If one starts from P = δ0⊗PZ′, then the first component
of this new random walk is distributed like the original random walk on N, and the second
component is always distributed like Z ′, with independence every times the walk returns to
0. Define a function g(n, t) = ten

α

, and let f(x) = g(Tx) − g(x). Then the Birkhoff sum
Snf(x) is equal to tek

α

− g(x) if π(T nx) = (k, t). The proof of Theorem 3.3 then shows that
Snf/e

nα

converges to Z.

Remark 3.6. One can also construct an example where Snf/Bn converges to a nontrivial
distribution, but Bn+1/Bn does not tend to 1. Consider the same example as in Theo-
rem 3.3, but where the probabilities pn are nonzero only for even n: there is a periodicity
phenomenon in this Markov chain, of which we will take advantage. Define g(n) = en

α

for
even n, and g(n) = en

α

/2 for odd n. Let f(x) = g(Tx) − g(x). Then Snf/Bn converges in
distribution with respect to P towards Z = αδ0+(1−α)δ1, where Bn = en

α

for even n and
Bn = en

α

/2 for odd n. In this example, if one denotes by Q the measure on trajectories
starting at 1, then Snf/Bn does not converge to Z with respect to Q, while it does with
respect to P , whereas P and Q are both absolutely continuous with respect to the invariant
infinite measure m. This phenomenon does not happen for probability-preserving maps, by
Eagleson’s Theorem [Eag76]. This shows that Eagleson’s Theorem is only valid in full gener-
ality for probability-preserving maps, and not for conservative maps in general. Zweimüller
has proved in [Zwe07] that Eagleson’s Theorem holds for Birkhoff sums in conservative maps
under an additional assumption of asymptotic invariance, which in our setting translates to
the fact that f ◦ T n/Bn converges to 0 in distribution. Indeed, this is not the case in the
previous counterexample.
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