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Jacquard: A Large Scale Dataset for Robotic Grasp Detection

Amaury Depierre1,2, Emmanuel Dellandréa2 and Liming Chen2

Abstract— Grasping skill is a major ability that a wide
number of real-life applications require for robotisation. State-
of-the-art robotic grasping methods perform prediction of
object grasp locations based on deep neural networks which
require huge amount of labeled data for training and prove
impracticable in robotics. In this paper, we propose to generate
a large scale synthetic dataset with ground truth, which we
refer to as the Jacquard grasping dataset. Specifically, the
proposed Jacquard dataset builds on a subset of ShapeNet with
its numerous shape objects and features at a scale of millions
varied object grasping positions for a large diversity of more
than 11k objects. Beyond the simulation of the grasping scene
with the underlying object, the ground truth for a successful
grasping position is also based on tentatives of a simulated
grasping robot. We carried out experiments using an off-the-
shelf CNN, with three different evaluation metrics, including
real grasping robot trials. The results show that Jacquard
enables much better generalization skills than a human labeled
dataset thanks to its diversity of objects and grasping positions.
For the purpose of reproducible research in robotics, we are
releasing along with the Jacquard dataset a web interface for
researchers to evaluate the successfulness of their grasping
position detections using our dataset.

I. INTRODUCTION

Despite being a very simple and intuitive action for a hu-
man, grasp planning is quite a hard task for a robotic system.
Detecting potential grasp for a parallel plate gripper from
images involves segmenting the image into objects, under-
standing their shapes and mass distributions and eventually
sending coordinates to the robot’s actuator. As the whole
trajectory of the arm and its end position depend on these
coordinates, precision is critical and an error of one pixel
in the prediction can make the difference between success
and failure of the grasping. Because of these difficulties
and despite the progress made recently, performance for this
task is still far from what we could expect for real-case
applications.

State-of-the-art methods to predict a grasping position for
a parallel plate gripper from visual data rely on deep neural
networks trained either to directly predict a grasp [1] or to
evaluate the quality of previously generated candidates and
select the best one [2]. These methods rely on supervised
training based on labeled data, which may be obtained
through one of the following techniques: human labeling,
physical trials with a robot [3] [4], analytic computation
where a model is used to predict the effect of external forces
applied on the model [5] and physics simulation for which
the grasp is performed in a computer simulation of the real
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Fig. 1. Jacquard dataset contains a large diversity of objects, each
with multiple labeled grasps on realistic images. Grasps are drawn as 2D
rectangles on the image, darker sides indicate the position of the jaws.

world [6]. The first two methods, despite being the most
accurate, are very time-consuming and therefore cannot be
easily used to generate very large datasets. The last two,
on the other hand, can be used quite easily to generate
millions of labeled data, but generally require to match the
CAD model to the position of the object in the image to be
efficient.

In this paper, we present an approach to automatize
the generation of labeled images for robotic grasping by
simulating an environment as close as possible of a physical
setup. With this environment, we created the Jacquard dataset
containing more than one million unique grasp locations on
a large diversity of objects as shown on Fig. 1. We also
introduce a novel criterion, namely simulated grasp trial
(SGT), to judge the goodness of a grasp location prediction
based on physic grasp simulation. This criterion comes in
contrast to the distance-based metrics traditionally used for
the evaluation of grasp prediction and sticks with the fact that
a single object can depict a large number of grasping posi-
tions, including those which are not necessarily previously
annotated. Using three different evaluation metrics, including
SGT and assessment through a real grasping robot trials,
we show that this novel dataset, despite being synthetic, can
be used to train a deep neural network (DNN), for grasp
detection from a simple image of the scene and achieve much



better prediction of grasp locations, in particular for unseen
objects, than the same DNN when it is trained using a grasp
dataset with human labeled data.

This paper is organized as follows. Section II overviews
the related work. Section III states the grasp detection
problem. Section IV presents the method used to gener-
ate Jacquard dataset. Section V discusses the experimental
results using the Jacquard dataset in comparison with the
Cornell dataset. Section VI concludes the paper.

II. RELATED WORK

Early research in grasp prediction assumed the robot to
have a perfect knowledge of its environment and aimed to
plan grasps based on a 3D model of the object [7] [8]. Using
this technique, Goldfeder & al. [9] created the Columbia
Grasp Database, containing more than 230k grasps. With this
type of approach, the notion of image is not present, only
the CAD models of the gripper and objects are used. At test
time, a query object is matched with an object within the
database and a grasp is generated using the similarity of the
CAD models. With this approach, both the model and the
position of the object have to be known at test time, which
is generally not the case for real-world applications.

Recent development of deep learning [10] and more
particularly of the Convolutional Neural Networks (CNN)
have inspired many researchers to work directly on images
instead of 3D CAD models. The simultaneous apparition
of cheaper sensors as the Kinect, also helped by providing
additional depth information to the RGB image. This led
to the development of datasets based on physical trials. In
[3] a Baxter robot has been used to collect 50k data while
in [4] the authors collected over 800k datapoints (image,
grasp position and outcome) using 14 robotic arms running
during two months. In both cases, a CNN was successfully
trained from the collected data to detect grasp positions.
However, these approaches are very time consuming and can
not be fully automatized: human intervention is still needed
to position the objects in front of the robot. Moreover, images
only have one grasp annotation while several other positions
could be good grasp locations as well.

To overcome the issue of time-consuming data generation,
Mahler & al. [2] created Dexnet-2.0, a synthetic dataset with
6.7 millions depth images annotated with the success of the
grasp performed at the center of the image. They trained
a Grasp Quality CNN with these data and achieved a 93%
success rate when predicting the outcome of a grasp. The
GQ-CNN has good performance, but it can not be trained
end-to-end to predict grasp positions: it only takes grasp
candidates generated by another method as an input and rank
them.

In [11], Johns & al. used a similar approach: they
simulated grasp attempts on 1000 objects and trained a
neural network to predict a score over a predefined grid of
possible positions for the gripper. The network’s input was a
depth image, but they did not release their data publicly.
In comparison, our Jacquard dataset contains more than
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Fig. 2. Parametrization of a grasp for a parallel-plate gripper. A grasp
is described as a five dimensional vector: two values for the position of
the center, two for its size and one for its orientation with respect to the
horizontal axis. Green sides represent the inner sides of the parallel jaws,
yellow sides show the opening of the gripper.

11k objects with both RGB and realistic depth information
created through stereo-vision.

The dataset most similar to our work is the Cornell Grasp-
ing Dataset 1. It is composed of 885 RGB-D images of 240
different objects with 8019 hand-labeled grasp rectangles.
As shown in [1], this dataset enables the training of a neural
network to detect grasps in images. However a dataset with
885 images is quite small compared to the ones traditionally
used in deep learning and may lead to bad performance when
generalizing on different images or object configurations.
Human labeling can also be biased to grasps that are easily
performed with a human hand but not necessarily with a
parallel plate gripper. Our proposed dataset is more than 50
times bigger with more various objects and grasps sizes and
shapes. A summary of the properties of public grasp datasets
can be found in table I.

III. GRASP DETECTION PROBLEM

In this work, we are interested in finding a good grasp
from a RGB-D image of a single object laying on a plane.
A grasp is considered good when the object is successfully
lifted and moved away from the table by a robot with a
parallel-plate gripper. As shown on Fig. 2, a grasp can be
described as:

g = {x, y, h, w, θ}

where (x, y) is the center of a rectangle, (h,w) its size
and θ its orientation relative to the horizontal axis of the
image. This representation differs from the seven-dimension
described in [12] but Lenz & al. show in [13] that it works
well in practice. The main advantage of this representation

1http://pr.cs.cornell.edu/grasping/rect_data/
data.php
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TABLE I
SUMMARY OF THE PROPERTIES OF PUBLICLY AVAILABLE GRASP DATASETS

Dataset Number of
objects Modality Number of

images
Multiple gripper

sizes
Multiple grasps

per image
Grasp

location
Number of

grasps
Automatized
generation

Levine & al. [4] - RGB-D 800k No No Yes 800k No
Mahler & al. [2] 1500 Depth 6.7M No No No 6.7M Yes
Cornell 240 RGB-D 1035 Yes Yes Yes 8019 No
Jacquard (ours) 11k RGB-D 50k Yes Yes Yes 1M Yes

is that the grasp can be simply expressed in the image coor-
dinates’ system, without any information about the physical
scene. When the grasp is performed by a real robot, h and
w are respectively fixed and bounded by the shape of the
gripper.

IV. JACQUARD DATASET

To solve the problem of data starvation, we designed a
new method to get images and ground truth labels from CAD
models through simulation. Then we applied this process to a
subset of ShapeNet [14], namely ShapeNetSem, resulting in
a new dataset with more than 50k images of 11k objects and
1 million unique successful grasp positions annotated. We
will make these data available to the research community.
The main pipeline we used for data generation is illustrated
on Fig. 3. Physics simulation were performed using pyBullet
library [15] and images were rendered with Blender [16].

A. Scene creation

The scenes are all created in the same way. A plane with
a white texture is created, the texture being randomly rotated
and translated to avoid constant background. Then we select
an object from a pool of CAD models. As the objects in
ShapeNet have a wide range of scales, we rescale the model
so the longest side of its bounding box has a length between
8 and 90 cm. We also give the object a mass depending on
its size (80 g for a 8 cm object and 900 g for a 90 cm one)
before dropping it from a random position and orientation
above the plane. Once the object is in a stable position, the
scene configuration is saved.

This scene description is sent to two independent modules:
one to render the images and one to generate the grasp
annotations. For the Jacquard dataset, we created up to
five scenes for each object. This number can be arbitrary
increased if necessary.

B. Image rendering

RGB and true depth images are rendered with Blender.
To be as close as possible to real scene images, instead
of adding Gaussian noise to the perfect depth image as in
[11], we rendered two more RGB synthetic images with a
projected pattern and applied an off-the-shelf stereo-vision
algorithm on them, giving a noisy depth. This approach has
been showed to produce depth images very close to real
ones in [17]. A binary mask separating the object and the
background is also created.

C. Annotation generation

To generate grasp annotations, we used the real-time
physics library pyBullet. As for the rendering module, the ob-
ject model is loaded into the pyBullet environment, however,
to speed up calculations, collisions are not computed directly
on the mesh but on a volumetric hierarchical approximate
convex decomposition [18] of it. Different grippers with
parallel-jaws are simulated. They all have a max opening
of 10 cm and a jaw size in {1, 2, 3, 4, 6} cm. The different
jaw sizes for the gripper combined with the varied scales of
objects ensure that our simulated gripper can perform grasps
in a wide range of different configurations.

Grasp annotations are generated in three steps. First, we
generate thousands of random grasp candidates covering the
whole area under the camera. Then, all these grasp candidates
are tested through rigid body simulation using a gripper with
a jaw size of 2 cm. And finally all the successful positions of
the previous step are tested again with all the gripper sizes.
The result is a set of successful grasp locations, each having
between 1 and 5 jaw sizes.

To perform simulated grasps, the approach vector is set to
the normal at the center of the grasp and the orientation
and opening of the gripper are defined by the rectangle
coordinates as described in section III. A grasp is considered
successful if the object is correctly lifted, moved away and
dropped at a given location by the simulated robot. Once
all the random candidates have been tested, a last pass is
performed on good grasps to remove the ones which are too
close from each other. This last step is necessary to ensure
that all the grasps are annotated only once.

As the number of possible grasps for one image is
very large, we used a non-uniform probability distribution:
candidates are generated more frequently in most promising
areas. Theoretically, candidates could be generated with a
uniform distribution, but in this case many grasps would
fall in an empty area without the object. For the Jacquard
dataset, we used a simple heuristic looking for aligned
edges in the image and generating the probability distribution
from the density of such edges. However, our experiments
showed us that any reasonable heuristic lead to a similar
final grasps distribution in the image, at the cost of more
random trials. With this method, we can reduce the number
of grasp attempts necessary to annotate a scene by orders
of magnitudes, while keeping a diversity in grasp locations.
Such a diversity is very important for deep learning oriented
methods.
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Fig. 3. The pipeline we used to generate annotated images from 3D models. Random grasps are generated from a probability map obtained with a simple
heuristic algorithm before being tested in the simulation environment. In the rendering part, a synthetic camera renders the different images.

D. Assessment criterion of successful grasp predictions

With the Cornell Grasp Dataset, the criterion used to
determine whether a grasp prediction is correct or not is
a rectangle-based metrics. With this criterion, a grasp is
considered to be correct if both:

• The angle between the prediction and the ground-truth
grasp is smaller than a threshold (a typical value is 30◦)

• The intersection over union ratio between the prediction
and the ground-truth grasp is over a threshold (typically
25%)

This criterion can however produce a lot of “visually”
false-positives, i.e., grasps that, from our human expertise,
look bad, but that the rectangle metrics predicts as good,
as well as false-negatives, i.e., grasps that, from our human
expertise, look good, but that the rectangle metrics predicts
bad. Fig. 4 shows some examples of misclassification.

With the Jacquard dataset, we propose a new criterion
based on simulation, subsequently called simulated grasp
trial-based criterion (SGT). Specifically, when a new grasp
should be evaluated as successful or not, the corresponding
scene is rebuilt in the simulation environment and the grasp
is performed by the simulated robot, in the exact same
conditions as during the generation of the annotations. If
the outcome of the simulated grasp is a success, i.e., the
object is successfully lifted and moved away by the simulated
robot using the predicted grasp location, the prediction is
then considered as a good grasp. This novel SGT criterion
is much closer than the rectangle metrics to real-world
situations where a single object can have many successful
grasp locations, including successful grasp locations which
are not previously annotated. For the purpose of reproducible
research, we are releasing along with the dataset a web
interface allowing researchers to send test requests on our
dataset and receive the corresponding grasp evaluations.

Fig. 4. Example of misclassifications with the rectangle metrics. Prediction
is in yellow and green, ground truth is in red and purple. Top row shows
false positives, bottom row shows false negatives.

V. EXPERIMENTS AND RESULTS

In order to evaluate the effectiveness of the proposed
simulated Jacquard grasp dataset, we carried out two series
of experiments: 1) cross-dataset grasp prediction with the
Cornell and Jacquard datasets (section V-B); 2) evaluation
of grasp predictions using a real grasping robot (section V-
C). We start by explaining the training setup.

A. Training setup

In all our experiments, we used an off-the-shelf CNN,
i.e., AlexNet[19]. The network’s convolution weights have
been pre-trained on ImageNet [20] while the fully connected
layers are trained from scratch. To use AlexNet with RGB-D,
we simply normalize the depth image to get values close to
color channels and duplicate the blue filters in the first pre-
trained convolution layers. The network is trained through
Stochastic Gradient Descent algorithm for 100k iterations
with a learning rate of 0.0005, a momentum of 0.9 and a
weight decay of 0.001. The learning rate is set to 0.00005



TABLE II
ACCURACY OF THE NETWORK TRAINED ON DIFFERENT DATASETS

Training Dataset Rectangle Metrics SGT
Cornell Jacquard Jacquard

Cornell 86.88% ± 2.57 54.28% ± 1.22 42.76% ± 0.91
Jacquard (ours) 81.92% ± 1.95 74.21% ± 0.71 72.42% ± 0.80

after the first 75k iterations. To compute the error of the
network, the Euclidean distance between the prediction and
the closest annotation is used:

L = min
g∈G
‖g − ĝ‖2

Where G is the set of all the annotations for the image
and ĝ is the network prediction.

Before training, we perform data augmentation by translat-
ing, rotating and mirroring the images. For synthetic data, we
also use the object’s mask to replace the default background
with different textures (cardboard, paper, wood, grass ...) to
generate more variabilities.

B. Cross-dataset evaluation

This series of experiments aims to show that: 1) our
Jacquard grasp dataset, despite being synthetic, can be used
to train DNNs to predict grasp locations on real images;
2) The diversity of objects and grasp locations is important
for a trained CNN to generalize on unseen objects. For this
purpose, the Cornell dataset with its 885 RGB-D images on
240 objects and 8019 hand labeled grasp locations is used
along with a portion of Jacquard which contains 15k RGB-
D images on a selected 3k objects and 316k different grasp
positions. To highlight 1), Alexnet is trained on Jacquard
and tested on Cornell; for 2) it is trained on Cornell and
tested on Jacquard. For comparison, we also display a
baseline performance with Alexnet trained and tested on the
same dataset, i.e., Cornell or Jacquard. For this purpose,
we performed training and testing of the network with 5-
fold cross validation for Cornell or Jacquard, leading to
5 variants of Alexnet with slightly different accuracies on
each dataset. Each variant trained on Cornell (Jacquard,
respectively) is then tested on the whole Jacquard dataset
(Cornell, respectively) to evidence 1).

Table II summarizes the experimental results evaluated by
both rectangle metrics and SGT criterion. As it can be seen,
when Alexnet is trained on the simulated Jacquard dataset
and tested on Cornell, it achieves a grasp prediction accuracy
of 81.92% which is quite close to the baseline performance
of 86.88%. Furthermore, we also noticed that the networks
trained on synthetic data tended to predict grasps which
were visually correct despite being classified as wrong by
the rectangle metrics. Typical examples are shown on the
bottom line of Fig. 4.

In contrast, when Alexnet is trained on Cornell and tested
on Jacquard with a much wider diversity of objects and
grasps, it depicts a grasp prediction accuracy of 54.28%
which records a performance decrease of 20 points in
comparison with its baseline performance. As for the other

Fig. 5. Our physical setup to test grasp predictions. The camera is located
above the grasping area.

training, part of this gap could be explained by the misclassi-
fications of the rectangle metrics. However, this performance
decrease is confirmed by our criterion based on simulated
grasp trials (SGT): Alexnet trained on Cornell only displays
a grasp prediction accuracy of 42.76% which is 30 points
behind the 72.42% accuracy of the same CNN trained on
Jacquard.

All these figures thus suggest that Jacquard can be used
to train CNN, for an effective prediction of grasp locations.
Furthermore, thanks to the diversity of objects and grasp
locations, Jacquard enables a much better generalization
skills of the trained CNN.

C. Evaluation of grasp predictions using a real grasping
robot

How good is a grasp predicted by a trained deep neural
network, in real? To answer this question of possible reality
gap, we used a parallel plate gripper mounted on a Fanuc’s
M-20iA robotic arm and a set of various objects. To ensure
a wide variability in shapes, materials and scales, we used
15 everyday objects (toys and furnitures) and 13 industrial
components. Fig. 5 shows the robot performing a predicted
grasp on one of the testing objects. Our criterion of a
successful grasp was the same as in the simulator but this
time using the aforementioned real grasping robot instead
of the simulated one: the grasp of an object is considered
successful only if the object is lifted, moved away and
correctly dropped. For this test, we compared Alexnet trained
on the Cornell dataset and the same network trained on a
subset of 2k objects from the Jacquard dataset.

The experimental results show that the grasp predictor
with Alexnet trained on the Jacquard dataset displays a grasp
successful rate of 78.43% which is even 6 points higher than
the grasp accuracy displayed by Alexnet when it was trained
and tested on the subset of 3k objects of Jacquard (see table



Fig. 6. Samples of grasp predictions on our real setup for the network
trained on the Cornell dataset (top row) and the one trained on our synthetic
Jacquard data (bottom row).

II) using the SGT criterion. This generalization skill of the
trained grasp predictor can be explained by the large diversity
of objects and grasp locations in the Jacquard dataset. For
most of the failed cases, the grasp was not stable enough: the
rectangle in the image was visually coherent and the object
was successfully lifted but dropped during the movement of
the robot.

Now with the the same network trained on Cornell, the
robot succeeded only 60.46% of the predicted grasps, mostly
due to bad rectangle localization in the image. Fig. 6 shows
some examples of the objects for which the network trained
on Cornell failed to predict a good grasp while the one
trained on Jacquard succeeded.

VI. CONCLUSIONS

In this work, we presented a method to generate realistic
RGB-D data with localized grasp annotations from sim-
ulation. Using this method, we built a large scale grasp
dataset with simulated data, namely Jacquard, and we suc-
cessfully used it to train a deep neural network to predict
grasp positions in images. The grasp predictor trained using
Jacquard shows a much better generalization skill than the
same network when trained with a small hand labeled grasp
dataset. Our future work will focus on the quality assessment
of grasp predictions.
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