
HAL Id: hal-01753780
https://hal.science/hal-01753780

Submitted on 29 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Variations around Eagleson’s Theorem on mixing limit
theorems for dynamical systems

Sébastien Gouëzel

To cite this version:
Sébastien Gouëzel. Variations around Eagleson’s Theorem on mixing limit theorems for dynamical
systems. Ergodic Theory and Dynamical Systems, 2020, 40, pp.3368-3374. �10.1017/etds.2019.42�.
�hal-01753780�

https://hal.science/hal-01753780
https://hal.archives-ouvertes.fr


VARIATIONS AROUND EAGLESON’S THEOREM ON MIXING LIMIT

THEOREMS FOR DYNAMICAL SYSTEMS

SÉBASTIEN GOUËZEL

Abstract. Eagleson’s Theorem asserts that, given a probability-preserving map, if renor-
malized Birkhoff sums of a function converge in distribution, then they also converge with
respect to any probability measure which is absolutely continuous with respect to the in-
variant one. We prove a version of this result for almost sure limit theorems, extending
results of Korepanov. We also prove a version of this result, in mixing systems, when one
imposes a conditioning both at time 0 and at time n.

Let T be an ergodic probability-preserving transformation on a probability space (X,m).
Given a measurable function f : X → R, the question of the convergence in distribution
of renormalized Birkhoff sums Snf =

∑n−1
k=0 f ◦ T k is central in ergodic theory. In physical

situations, where there is an a priori given reference probability measure P (for instance
Lebesgue measure) which maybe differs from the invariant measure, there can be a dis-
cussion of whether it is more natural to consider such a distributional convergence with
respect to the reference measure P or to the invariant measure m. It turns out that this
question is irrelevant when P is absolutely continuous with respect to m, by a theorem of
Eagleson [Eag76]: it is equivalent to have the distributional convergence of Snf/Bn towards
a limit Z for m or for P , if Bn → ∞. Since then, this theorem has proved extremely useful,
and has been extended to cover more general situations, see for instance [Aar81, Zwe07]. In
particular, Eagleson’s result holds in non-singular maps for processes which are asymptoti-
cally invariant in probability.

Eagleson’s Theorem has in particular been used to deduce limit theorems for a map from
limit theorems for an induced transformation. An important step in this argument is to
replace the invariant measure for the induced map (which is the restriction of the invariant
measure to the inducing set) by another measure that takes into account the return time
to the set, while keeping a limit theorem, and this is proved using Eagleson’s Theorem.
Recently, a similar inducing argument has been used by Melbourne and Nicol in [MN05] to
prove another kind of limit theorem, called almost sure invariance principle and asserting
that the Birkhoff sums can almost surely be coupled with trajectories of a Brownian motion,
so that the mutual difference is suitably small. However, there was a difficulty in the proof
due to the lack of an analogue of Eagleson’s result in this almost sure setting. This gap
has been fixed by Korepanov in [Kor17] using the specificities of the class of maps studied
in [MN05].

Our goal in this short note is to discuss two variations around Eagleson’s Theorem. First,
in Section 1, we give a general argument to show that it is always equivalent to have
an almost sure limit theorem for an invariant probability measure or for an absolutely
continuous one. Then, in Section 2, we discuss distributional limit theorems for Snf(x)/Bn
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when one conditions both on the positions of x and T nx (where conditioning only on x
corresponds to Eagleson’s Theorem, and conditioning only on T nx follows from Eagleson’s
Theorem applied to T−1, but conditioning simultaneously on both positions requires a new
argument). Our proofs in this note owe a lot to [Zwe07] and [Kor17].

1. Almost sure limit theorems

In this section, we discuss a version of Eagleson’s result that applies to almost sure
limit theorems. Given two probability measures m1 and m2, the goal will be to construct
a coupling between these two measures that respects the orbit structure of the space, as
in [Kor17]. Then, it will readily follow that an almost sure limit theorem with respect to
m1 implies one with respect to m2. Our argument works for general maps but, contrary
to [Kor17], our results are not quantitative. The suitable definition of coupling we use is
the following.

Definition 1.1. Let (X,T ) be a measurable map on a measurable space. A coupling along
orbits between two probability measures m1 and m2 (or more generally between two finite
measures of the same mass) is a measure ρ on X ×X whose marginals are respectively m1

and m2, and such that, for ρ almost every (x1, x2), there exist n1 and n2 with T n1x1 = T n2x2.
If there exists such a coupling, we say that m1 and m2 can be coupled along orbits.

Our goal is to show the following theorem:

Theorem 1.2. Let (X,T ) be a measurable map on a standard measurable space. Consider a
σ-finite measure µ for which T is non-singular and ergodic. Let m1 and m2 be two probability
measures that are absolutely continuous with respect to µ. Then they can be coupled along
orbits.

Before proving the theorem, let us discuss the application to almost sure limit theorems.
An almost sure limit theorem with rate r(n) between two processes (Z1

n)n∈N and (Z2
n)n∈N

defined on two probability spaces (Ω1,P1) and (Ω2,P2) is a coupling between these two
processes, i.e., a measures P on Ω1 × Ω2 whose marginals are P1 and P2, such that for P

almost every ω = (ω1, ω2), one has d(Z1
n(ω1), Z

2
n(ω2)) = o(r(n)). The most classical instance

of such a theorem is the almost sure invariance principle, asserting that the Birkhoff sums
Z1
n = Snf can be coupled with the trajectories Z2

n of a Brownian motion at integer times,
where the error rate r depends on the problem under study.

Corollary 1.3. Let T be a probability-preserving ergodic map on a space (X,m). Let
f : X → R be measurable. Assume that the Birkhoff sums Snf satisfy an almost sure limit
theorem with rate r for the measure m: they can be coupled with a process Wn such that,
almost surely, |Snf − Wn| = o(r(n)). Let m′ be a probability measure which is absolutely
continuous with respect to m. Assume moreover that, m-almost surely, f(T nx) = o(r(n)).
Then Snf can also be coupled with Wn for the measure m′, with the same almost sure rate
r.

The growth assumption is for instance satisfied if f is bounded and r(n) tends to infinity,

or if f ∈ Lp and r(n) = n1/p (by Birkhoff theorem applied to |f |p). These are the most
typical situations in applications.
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Proof. It suffices to construct a coupling between m and m′ such that, for almost all (x, y)
for this coupling, one has Snf(x) − Snf(y) = o(r(n)). We use the coupling along orbits
given by Theorem 1.2. In this case, almost every (x, y) satisfy T k1x = T k2y for some
k1, k2. Let z = T k1x. Let us prove that, almost surely, Snf(x) = Snf(z) + o(r(n)) and
Snf(y) = Snf(z) + o(r(n)), from which the result follows. It suffices to prove the first
estimate. For this, we note that Snf(z) − Snf(x) = Sk1f(T

nx) − Sk1f(x). The second
term is constant, while the first one grows almost surely at most like o(r(n)) under the
assumptions of the corollary. �

Let us now turn to the proof of Theorem 1.2. Note first that, if m1 and m2 can be coupled
along orbits, as well as m2 and m3, then it follows that m1 and m3 can also be coupled along
orbits (this follows from the composition of couplings theorem, see [Kor17, Lemma A.1]).

Note that there is no invariance assumption in the theorem for the measure µ, and
that it does not have to be finite (although one can always assume that µ is a probability
measure, by replacing it with an equivalent probability measure if necessary). However, in
the applications we have in mind, µ will typically be a probability measure, invariant under
T . The fact that the invariance is not relevant for this kind of theorem was pointed out
by Zweimüller in [Zwe07]: he was able to replace the use of Birkhoff theorem by a variant

which is valid without invariance, due to Yosida. Denote by T̂ : L1(µ) → L1(µ) the transfer
operator, i.e., the predual of the composition by T on L∞: it satisfies

∫

f · g ◦ T dµ =
∫

T̂ f · g dµ for all f ∈ L1(µ) and g ∈ L∞(µ). Yosida’s Theorem [Zwe07, Theorem 2] is the
following:

Theorem 1.4. Let (X,T ) be a measurable map on a measurable space. Consider a σ-finite
measure µ for which T is non-singular and ergodic. Then, for any w ∈ L1(µ) with zero

average, 1
n

∑n−1
k=0 T̂

kw tends to 0 in L1(µ).

To prove Theorem 1.2, we will couple increasingly complicated measures, relying ulti-
mately on Yosida’s Theorem. For starters, we begin with a result that should be obvious.

Lemma 1.5. Consider an integrable f > 0, and n > 1. Then f dµ and T̂ f dµ can be
coupled along orbits.

Proof. While this looks obvious, it is enlightening to write down the details, to understand
what a coupling is. We let ρ = (Id, T )∗(f dµ). The first marginal of ρ is f dµ, while the

second one is T∗(f dµ) = T̂ f dµ, as desired. �

It follows from this lemma that f dµ and T̂ jf dµ can be coupled along orbits. Averaging,
one gets the same result for f dµ and 1

n

∑n−1
j=0 T̂

jf dµ.

Lemma 1.6. Consider two probability measures m1 and m2 which are absolutely continuous
with respect to µ. Then there exist two nonnegative measures p1 6 m1 and p2 6 m2, of
mass > 1/2, that can be coupled along orbits.

Proof. Denote by f1 and f2 the respective densities of m1 and m2 with respect to µ. Let
Fi,n = 1

n

∑n−1
k=0 T̂

kfi for i = 1, 2 and n > 0. Let also Gn(x) = min(F1,n(x), F2,n(x)). By

Yosida’s Theorem,
∫

|F1,n − F2,n| dµ tends to 0. As Gn(x) =
F1,n(x)+F2,n(x)−|F1,n(x)−F2,n(x)|

2 ,
we deduce that

∫

Gn(x) dµ → 1. In particular, we may choose n such that
∫

Gn dµ > 1/2.
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Consider a coupling along orbits ρ between m1 = f1 dµ and ν1 = F1,n dµ, by Lemma 1.5.
Define a new measure on X ×X by

dρ̃(x, y) =
Gn(y)

F1,n(y)
1F1,n(y)>0 dρ.

As Gn 6 F1,n everywhere, one has ρ̃ 6 ρ. The second marginal of ρ̃ is the measure Gn dµ
by construction, of mass > 1/2. Hence, the first marginal of ρ̃ is a measure p1 of mass at
least 1/2, dominated by the first marginal m1 of ρ. Moreover, by construction, p1 is coupled
along orbits with Gn dµ.

In the same way, we obtain a measure p2 6 m2 which is coupled along orbits with Gn dµ.
Finally, p1 and p2 can be coupled along orbits by transitivity. They satisfy the conclusion
of the lemma. �

Proof of Theorem 1.2. Start from two probability measures m1 = m
(0)
1 and m2 = m

(0)
2

that we want to couple along orbits. By Lemma 1.6, there exists a coupling ρ0 along

orbits between parts p
(0)
1 and p

(0)
2 of mass at least 1/2 of respectively m

(0)
1 and m

(0)
2 . Let

m
(1)
i = m

(0)
i − p

(0)
i be the uncoupled parts, they have the same mass 6 1/2. Applying

Lemma 1.6 to these two measures, we obtain a coupling ρ1 between parts p
(1)
i of these

measures, leaving parts m
(2)
i uncoupled, with mass 6 1/4. Iterate this process. Then

ρ =
∑

ρi is the desired coupling along orbits between m1 and m2. �

2. Mixing transformations

Let T be an ergodic map preserving a probability measure m. Eagleson’s Theorem ensures
that, if Snf/Bn converges in distribution with respect to m towards a random variable Z,
and Bn → ∞, then this convergence also holds with respect to any probability measure m′

which is absolutely continuous with respect to m. We want to see what happens when we
condition on the position at two moments of time. A typical example is to fix two sets Y1

and Y2 and only consider those trajectories that start at time 0 in Y1 and end at time n
in Y2. Conditioning at time 0 is Eagleson’s Theorem, conditioning at time n follows from
Eagleson’s Theorem applied in the natural extension and a change of variables, but the
simultaneous conditioning requires a new argument. When the map is mixing, we prove
that there is indeed such a limit theorem.

Theorem 2.1. Let T be an ergodic probability-preserving map on (X,m). Assume that T
is mixing. Let f : X → R be a measurable function such Snf/Bn converges in distribution
to a real random variable Z, where Bn → ∞. Let ϕ1, ϕ2 : X → R be two nonnegative
square integrable functions with

∫

ϕ1 =
∫

ϕ2 = 1. Define a sequence of measures mn by
mn(U) =

∫

U ϕ1 · ϕ2 ◦ T n dm. They satisfy mn(X) → 1 by mixing. Then the random
variables Snf/Bn on the probability spaces (X,mn/mn(X)) converge in distribution to Z.

A sequence of real random variables Zn converges in distribution to Z if and only if, for
any continuous bounded function g, then E(g(Zn)) → E(g(Z)). By a density argument, it
is even enough to restrict to bounded Lipschitz functions. Writing an absolutely continuous
probability measure m′ as ϕdm where ϕ is nonnegative and has integral 1, then Eagleson’s
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Theorem can be restated as the convergence

(2.1)

∫

g(Snf/Bn)ϕdm → E(g(Z)))

∫

ϕdm.

By linearity, this even holds for any integrable function ϕ.
What we have to do to prove Theorem 2.1 is to prove the same convergence, but when

one multiplies by two functions ϕ1 and ϕ2 ◦T
n, where ϕ1, ϕ2 ∈ L2. More precisely, we have

to show that

(2.2)

∫

ϕ1 · g(Snf/Bn) · ϕ2 ◦ T
n dm →

(∫

ϕ1 dm

)

E(g(Z))

(∫

ϕ2 dm

)

.

Without loss of generality, we can assume that ϕ1 and ϕ2 are bounded, as a density
argument readily gives the general conclusion. Let us fix once and for all two such bounded
functions. As in the discussion of Eagleson’s Theorem, we will in fact prove the conver-
gence (2.2) without assuming that the functions ϕ1 and ϕ2 are nonnegative, although this
condition is necessary for the probabilistic interpretation put forward in the statement of
Theorem 2.1. When ϕ2 is constant, the convergence (2.2) holds by Eagleson’s Theorem.
Hence, we can without loss of generality replace ϕ2 with ϕ2 −

∫

ϕ2 dm, and assume that
∫

ϕ2 dm = 0.
The proof relies on the following lemma.

Lemma 2.2. Assume that T is mixing and ϕ1, ϕ2 are two bounded functions with moreover
∫

ϕ2 dm = 0. Let ε > 0. There exist k and N such that, for any n > N ,

(2.3)

∥

∥

∥

∥

∥

∥

1

k

k−1
∑

j=0

ϕ1 ◦ T
j · ϕ2 ◦ T

n+j

∥

∥

∥

∥

∥

∥

L2

6 ε.

Proof. Let us expand the square:

∫





1

k

k−1
∑

j=0

ϕ1 ◦ T
j · ϕ2 ◦ T

n+j





2

dm

=
1

k

∫

ϕ2
1 · (ϕ2 ◦ T

n)2 dm+
2

k

k
∑

j=1

(1− j/k)

∫

ϕ1 · ϕ1 ◦ T
j · (ϕ2 · ϕ2 ◦ T

j) ◦ T n dm.

The first term is bounded by C/k for C = ‖ϕ1‖
2
L∞‖ϕ2‖

2
L∞ . When n tends to infinity (and k

is fixed), every integral in the second term tends to the product of the integrals, by mixing.

Hence, it is bounded by 2‖ϕ1‖
2
L∞

∣

∣

∫

ϕ2 · ϕ2 ◦ T
j
∣

∣ if n is large enough. Choose A such that
this term is 6 ε for j > A (again by mixing, and using the fact that

∫

ϕ2 = 0). If n is large
enough, we obtain a bound

(2.4)
C

k
+

2

k

A−1
∑

j=1

C +
2

k

k−1
∑

j=A

ε 6 (C + 2AC)/k + 2ε.

This concludes the proof, first by taking k large enough but fixed so that (C +2AC)/k 6 ε,
and then n large enough so that the above mixing argument applies. �
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Lemma 2.3. Assume that Bn → ∞. We have

(2.5)

∫

ϕ1 · g(Snf/Bn) · ϕ2 ◦ T
n dm−

∫

ϕ1 ◦ T · g(Snf/Bn) · ϕ2 ◦ T
n+1 dm → 0.

Proof. As the measure is invariant, the difference between these two integrals is equal to

(2.6)

∫

ϕ1 ◦ T · (g(Snf ◦ T/Bn)− g(Snf/Bn)) · ϕ2 ◦ T
n+1.

Since g is bounded and Lipschitz continuous, and ϕ1 and ϕ2 are bounded, this is bounded
by

C

∫

min(1, |Snf ◦ T − Snf |/Bn) dm = C

∫

min(1, |f ◦ T n − f |/Bn) dm

6 C

∫

min(1, |f ◦ T n|/Bn) dm+ C

∫

min(1, |f |/Bn) dm = 2C

∫

min(1, |f |/Bn) dm,

where we used the invariance of the measure for the last equality. This bound tends to 0
when n tends to infinity, as Bn → ∞. �

Proof of Theorem 2.1. We prove the convergence (2.2) when ϕ1 and ϕ2 are bounded and
ϕ2 has zero average. Lemma 2.3 (iterated several times) ensures that, for any given k,
(2.7)
∫

ϕ1 · g(Snf/Bn) · ϕ2 ◦ T
n dm =

∫





1

k

k−1
∑

j=0

ϕ1 ◦ T
j · ϕ2 ◦ T

n+j



 g(Snf/Bn) dm+ on(1).

The integral on the right hand side is bounded by a constant multiple of the L2 norm of
1
k

∑k−1
j=0 ϕ1 ◦ T j · ϕ2 ◦ T n+j. If k is fixed but large enough, this norm is bounded by ε for

large enough n, thanks to Lemma 2.2. Therefore,
∫

ϕ1 · g(Snf/Bn) ·ϕ2 ◦ T
n dm is bounded

in absolute value by 2ε. This concludes the proof. �

We can generalize the result as follows. Assume that T is mixing of order p. Let Fn be a
sequence of functions, taking values in a metric space M , which is asymptotically invariant
in the sense that d(Fn, Fn ◦ T ) tends to 0 in probability, and such that Fn converges in
distribution towards a random variable Z on M . Then, for any bounded functions ϕ1, . . . , ϕp,
for any g : M → R Lipschitz and bounded,

(2.8)

∫

∏

ϕi ◦ T
ni · g(Fn) dm

converges to
∏

(
∫

ϕi) ·E(g(Z)), when n and all the ni+1−ni tend to infinity. More formally,
for any ε > 0, there exists N such that, for any n and n1 < · · · < np with n > N and
ni+1 − ni > N , then the above integral is within ε of

∏

(
∫

ϕi) · E(g(Z)). This asserts
that one can condition on the position of the particle at p times if these times are enough
separated, and still get the same limiting behavior.

The proof is the same as for Theorem 2.1. First, we use order p mixing to see that the

sum 1
k

∑k−1
j=0

∏

ϕi ◦ T
ni+j is close in L2 norm to

∏

(
∫

ϕi) if k is large, and the ni+1 − ni are
even larger. Then, one concludes exactly as above.
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