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Leader-follower simultaneous tracking-agreement formation control of nonholonomic vehicles

 which apply only in the one-leader-onefollower scenario. We assume that the leader velocities may be persistently exciting (in the tracking case) or vanishing (in the agreement scenario). As it is common in the literature our controller is composed of an inner loop at the velocity kinematics level and an outer-loop at the dynamics level. We establish robustness of the kinematics closed-loop system in the sense that the convergence of the formation errors is preserved, under the action of any velocity-controller that guarantees that the velocity errors are square integrable.

I. INTRODUCTION

Designing a universal controller that solves the leaderfollower control problem for the case of one nonholonomic mobile robot under different scenarios of the leader's velocities is a very challenging problem. Indeed, to the best of our knowledge the leader-follower tracking-stabilization problem for one leader and one follower nonholonomic vehicle has only been studied in [START_REF] Lee | Tracking control of unicycle-modeled mobile robots using a saturation feedback controller[END_REF], [START_REF] Morin | Control of nonholonomic mobile robots based on the transverse function approach[END_REF], [START_REF] Dixon | Adaptive tracking and regulation of a wheeled mobile robot with controller/update law modularity[END_REF], [START_REF] Do | Simultaneous tracking and stabilization of mobile robots: an adaptive approach[END_REF], [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A lyapunovbased approach[END_REF]. The general idea is to design a unified velocity or torque controller for the follower robot in order to track the trajectories of the leader robot asymptotically (or practically) under different scenarios of the leader's velocities. Possible scenarios include the case in which the leader vehicle describes a generic time-varying trajectory (tracking scenario) -see e.g. [START_REF] Canudas De Wit | Nonlinear control design for mobile robots[END_REF], [START_REF] Jiang | Tracking control of mobile robots: A case study in backstepping[END_REF], [START_REF] Maghenem | iISS formation tracking control of autonomous vehicles[END_REF], as well as the stabilization scenario in which the leader converges to a set point (parking scenario) or, more generally, the case in which the leader's velocities converge to zero (robust stabilization) -see e.g. [START_REF] Lee | Tracking control of unicycle-modeled mobile robots using a saturation feedback controller[END_REF], [START_REF] Maghenem | A robust δ-persistently exciting controller for leader-follower tracking-agreement of multiple vehicles[END_REF]. Some controllers are designed to apply in distinct scenarios. In [START_REF] Lee | Tracking control of unicycle-modeled mobile robots using a saturation feedback controller[END_REF] a saturated time-varying velocity controller is proposed to track the leader's trajectories under different scenarios of the leader's velocities that include the robust stabilization scenario and a particular form of tracking scenario. In [START_REF] Dixon | Adaptive tracking and regulation of a wheeled mobile robot with controller/update law modularity[END_REF] a unified force controller is proposed and, under all possible behaviors of the leader's vehicle, practical convergence of the tracking errors is established. In [START_REF] Morin | Control of nonholonomic mobile robots based on the transverse function approach[END_REF], the problem of tracking a general trajectory has been addressed using the concept of transverse functions, practical convergence of the tracking errors is guaranteed. In [START_REF] Do | Simultaneous tracking and stabilization of mobile robots: an adaptive approach[END_REF] and [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A lyapunovbased approach[END_REF], a unified torque controller is proposed in order to make the tracking error converging to the origin under the tracking and the parking scenarios. In [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A lyapunovbased approach[END_REF], a keen idea has been used which consists in combining the tracking controller with a stabilization controller via a smooth supervisor that depends on the leader's velocities and promotes each controller depending on the current scenario.

The elegant transverse-functions control approach of [START_REF] Morin | Practical stabilization of driftless systems on lie groups: the transverse function approach[END_REF] was used in [START_REF] Wang | Distributed adaptive control for consensus tracking with application to formation control of nonholonomic mobile robots[END_REF] to solve the leader-follower formation problem, guaranteeing ultimate boundedness of the error trajectories. This is done under little restrictive conditions on the leader's velocities, using a full force-controlled model, and assuming that the interconnections graph is directed. It is also assumed, however, that some of the leader's coordinates are accessible to all the agents in the network. To the best of our knowledge, designing a unified controller that applies in both mutually exclusive formation control scenarios, tracking and agreement, i.e., guaranteeing the convergence of the tracking errors to zero, remains an open problem.

Following the approach of [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A lyapunovbased approach[END_REF] for the case of one leader and one follower, we propose a decentralized controller that covers more general scenarios relative to the nature of the leader's velocities. In contrast to previously cited articles, in the tracking scenario and for the kinematics control loop, we establish uniform global asymptotic stability (UGAS). This property cannot be overestimated, only UGAS implies local input to state stability. In addition, in the robust stabilization scenario, we establish strong integral Input-to-State Stability (strong iISS) [START_REF] Chaillet | Combining iISS and ISS with respect to small inputs: the strong iISS property[END_REF], [START_REF] Chaillet | Strong iISS is preserved under cascade interconnection[END_REF] with respect to the leader's velocities. For the overall dynamics we guarantee that the leaderfollower error trajectories converge to zero provided that so do the velocity errors and that these are square integrable. Finally, in the multi-agent case, assuming that the vehicles are interconnected via a spanning-tree graph and based on the robustness properties established for the one-follower case, we extend our results to that of leader-follower formation control.

In the next section we formulate the tracking and agreement control problems; in Section III we present our main statements for a pair of vehicles. In Section IV we solve the formation control problems. Some numerical simulations are presented in Section V and we wrap up the paper with Concluding remarks in Section VI.

II. PROBLEM FORMULATION

We consider force-controlled autonomous vehicles modeled by the generic equations

   ẋ = v cos θ ẏ = v sin θ θ = ω (1) v = f 1 (v, ω, q) + g 1 (v, ω, q)u 1 ω = f 2 (v, ω, q) + g 2 (v, ω, q)u 2 (2) 
The variables v and ω denote the forward and angular velocities respectively, the first two elements of the vector q := [x y θ] correspond to the Cartesian coordinates of a point on the robot with respect to a fixed reference frame, and θ denotes the robot's orientation with respect to the same frame. The two control inputs are the torques u 1 , u 2 . The functions f i and g i are assumed to be locally Lipschitz. Generally speaking, the control strategy consists in designing virtual control laws at the kinematics level, i.e., considering v and ω as control inputs. Then, we design u 1 and u 2 to steer v and ω toward the ideal control laws v * and ω * . That is, we show that if v ≡ v * and ω ≡ ω * , the origin of the closed-loop system, for the kinematics equations is uniformly globally asymptotically stable. Moreover, for (1), we establish robustness statements in the sense of inputto-state stability our statements are valid for any controller that guarantees the stabilization of the origin at the force level -Equations (2).

A. Single follower case

For clarity of exposition, we start by describing the most elementary scenario, that of leader-follower tracking control, as defined in [START_REF] Kanayama | A stable tracking control scheme for an autonomous vehicle[END_REF]. Such problem consists in making the robot to follow a fictitious reference vehicle modeled by

ẋr = v r cos θ r (3a) ẏr = v r sin θ r (3b) θr = ω r , (3c) 
and which moves about with reference velocities v r (t) and ω r (t). More precisely, it is desired to steer the differences between the Cartesian coordinates to some values d x , d y , and to zero the orientation angles and the velocities of the two robots, that is, the quantities

p θ = θ r -θ, p x = x r -x -d x , p y = y r -y -d y .
The distances d x , d y define the position of the robot with respect to the (virtual) leader. In general, these may be functions that depend on time and the state or may be assumed to be constant, depending on the desired path to be followed. In our study, we consider these distances to be defined as piece-wise constant functions -cf. [START_REF] Loria | Leader-follower formation control of mobile robots on straight paths[END_REF].

Then, as it is customary, we transform the error coordinates [p θ , p x , p y ] of the leader robot from the global coordinate frame to local coordinates fixed on the robot, that is, we define

  e θ e x e y   :=   1 0 0 0 cos θ sin θ 0 -sin θ cos θ     p θ p x p y   . (4) 
In these new coordinates, the error dynamics between the virtual reference vehicle and the follower becomes

ėθ = ω r (t) -ω (5a) ėx = ωe y -v + v r (t) cos(e θ ) (5b) ėy = -ωe x + v r (t) sin(e θ ) (5c) 
which is to be completed with Eqs (2). Hence, the control problem reduces to steering the trajectories of (5) to zero via the inputs u 1 and u 2 in (2), i.e., lim t→∞ e(t) = 0. As we mentioned, a natural method consists in designing virtual control laws at the kinematic level, that is, w * and v * , and control inputs u 1 and u 2 , depending on the latter, such that the origin (e, ṽ, w) = (0, 0, 0) with

ṽ := v -v * , ω := ω -ω * , e = [e θ e x e y ] , (6) 
is uniformly globally asymptotically stable.

B. Multiple followers case

The previous setting naturally extends to the case in which a swarm of n robots is required to follow a virtual leader, advancing in formation. This may be achieved in a variety of manners; in this paper we assume that the ith robot follows a leader, indexed i -1, thereby forming a spanning-tree graph communication topology.

The geometry of the formation may be defined via the relative distances between any pair of leader-follower robots, d xi , d yi and it is independent of the communications graph (two robots may communicate independently of their relative positions). Then, the relative position error dynamics is given by a set of equations similar to [START_REF] Dixon | Adaptive tracking and regulation of a wheeled mobile robot with controller/update law modularity[END_REF], that is,

ėθi = ω i-1 (t) -ω i (7a) ėxi = ω i e yi -v i + v i-1 (t) cos(e θi ) (7b) ėyi = -ω i e xi + v i-1 (t) sin(e θi ). (7c) 
For i = 1 we recover the error dynamics for the case of one robot following a virtual leader that is, by definition, v 0 := v r and ω 0 := ω r . Then, we introduce the virtual controls (v * i , ω * i ) which, on one hand are designed to stabilize the reference trajectories for the kinematics equations and, on the other hand, serve as references for the actual controls u 1i and u 2i in

vi =f 1i (t, v i , ω i , e i ) + g 1i (t, v i , ω i , e i )u 1i (8a) ωi =f 2i (t, v i , ω i , e i ) + g 2i (t, v i , ω i , e i )u 2i , i ≤ n (8b)
As in the case of one follower, it is required to stabilize the origin of the closed-loop system. In particular, it is required that for all i ≤ n,

lim t→∞ e i (t) = 0 (9) 
and, as an intermediary step, u 1i and u 2i must guarantee that the velocity errors

ωi := ω i -ω * i , ṽi := v i -v * i
converge to zero sufficiently fast (ω i and ṽi must be square integrable).

Remark 1 Based on the transverse-functions approach of [START_REF] Morin | Practical stabilization of driftless systems on lie groups: the transverse function approach[END_REF], in [START_REF] Wang | Distributed adaptive control for consensus tracking with application to formation control of nonholonomic mobile robots[END_REF] the problem previously described is partially solved in the sense that only practical asymptotic stability is established, yet assuming that the vehicles communicate over a generic directed graph. Even though our results are established for spanning-tree communication topologies, they also apply if the communication graph is time-varying and uni-directional, provided that a distributed estimator that exponentially estimates the leader's trajectories is incorporated, e.g. based on [START_REF] Liu | Cooperative global robust output regulation for a class of nonlinear multi-agent systems with switching network[END_REF] and [START_REF] Abdessameud | Leader-follower synchronization of euler-lagrange systems with time-varying leader trajectory and constrained discrete-time communication[END_REF]. In this case, the virtual controllers (v * i , ω * i ), for all i ≤ n, are the same as in the onefollower case (v * 1 , ω * 1 ) in which we replace (v r , ω r ) by the estimated leader's velocities, and the errors e i are expressed with respect to the estimated leader's trajectories that are generated by the ith agent internal estimator.

III. CONTROL UNDER RELAXED CONDITIONS ON THE REFERENCE VELOCITIES

Following the keen idea proposed in [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A lyapunovbased approach[END_REF] which consists in combining a tracking controller and a stabilization controller via a smooth supervisor that depends on the leader's velocities, in this section we solve the leader-follower control problem for the case of one follower and one leader, but under less restrictive assumptions on the leader's velocities. Technically, our results rely on and cover those obtained in [START_REF] Maghenem | Lyapunov-based formationtracking control of nonholonomic systems under persistency of excitation[END_REF] for the tracking control scenario, as well as those in [START_REF] Maghenem | A robust δ-persistently exciting controller for leader-follower tracking-agreement of multiple vehicles[END_REF] for the robust stabilization problem. These scenarios are defined as follows: Tracking scenario (S1). It is assumed that the reference velocities are persistently exciting, i.e., there exist T and µ > 0 such that

t+T t |v r (τ )| 2 + |ω r (τ )| 2 dτ ≥ µ > 0, ∀t ≥ t 0 . ( 10 
)
Robust stabilization scenario (S2). It is assumed that the reference velocities vanish, i.e.,

lim t→∞ v r (t) = 0, lim t→∞ ω r (t) = 0 (11) 
The following kinematics controller solves the formationtracking and agreement control problem, as formulated in Section II-A, under each one of the two mutually exclusive scenarios S1 and S2: 

v * =v r cos(e θ ) + k x e x ( 
F (v r (τ ), ω r (τ )) dτ , (14) 
and F : R × R → R ≥0 is a piecewise continuous function that satisfies the following conditions:

1) If [START_REF] Loria | Leader-follower formation control of mobile robots on straight paths[END_REF] holds, then,

t t0 F (v r (τ ), ω r (τ ))dτ < ∞, ∀t ≥ 0 
2) If, on the contrary, (10) holds, then there exist T 1 and µ 1 such that

t+T1 t F (v r (s), ω r (s)) 2 ds ≥ µ 1 , ∀t ≥ 0.
The first three terms in the definition of ω * ensure the achievement of the tracking control goal; the fourth, involving ρ(t), makes it possible to stabilize converging trajectories. Thus, the function ρ favours the action of one control action or the other, depending on the nature of the reference trajectories. If ρ = 0 the tracking control goal (of persistently exciting reference velocities) is enforced and, to that end, F is designed in a way that F (v r (t), ω r (t)) is also persistently exciting (PE). In the case that the agreement control goal is to be enforced, ρ is designed so that it remains separated from zero. Then, the last term in the right hand side of ( 13) ensures the achievement of the control objective.

An important relaxation with respect to the literature, in the stabilization scenario, is that reference velocities may vanish slowly and this is still sufficient. This is due to the enforced robustness guaranteed by our controller: strong integral-input-to-state stability -see Proposition 1 below.

In the following statement we provide a choice for the function F that satisfies the previous properties 1) and 2) above.

Lemma 1 Let v r and ω r be two scalar continuous functions and let α(t) := v 2 r (t) + ω 2 r (t). Assume that there exists ᾱ > 0 such that |α(t)| ∞ ≤ ᾱ. Then, the function

F (v r , ω r ) := K(α) := 0 if α ∈ (0, µ 2T ᾱ ] α Otherwise ( 15 
)
satisfies the following properties 1)

K(α(t)) is PE, if α(t) is PE. 2) K(α(t)) is integrable, if lim t→∞ α(t) = 0 .
Proof: For the second property observe that, after [START_REF] Loria | Leader-follower formation control of mobile robots on straight paths[END_REF], there exists

T f < ∞ such that α(t) ∈ (0, µ 2T ᾱ ] so K(α(t)) ≡ 0 for all t ≥ T f . Therefore ∞ 0 K(α(s))ds ≤ T f 0 K(α(s))ds < ∞, ∀t ≥ 0.
To prove the first property, we use [ then for every t ≥ 0 there exists a non null measure interval

I t := {τ ∈ [t, t + T ] : |α(τ )| ≥ a := µ/(2T ᾱ)} , such that meas(I t ) ≥ b := T µ/(2T ᾱ2 -µ).
Using this lemma we obtain

t+T t K 2 (α(s))ds ≥ It K 2 (α(s))ds ≥ It a 2 ds ≥ a 2 b > 0, so K(α(s)) is PE.
Remark 2 The definition of ρ in [START_REF] Maghenem | Lyapunov-based formationtracking control of nonholonomic systems under persistency of excitation[END_REF] covers that introduced in [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A lyapunovbased approach[END_REF] since in the latter reference it is required that in addition to [START_REF] Loria | Leader-follower formation control of mobile robots on straight paths[END_REF] the reference trajectories are integrable. The control law (13) covers the controllers from [START_REF] Maghenem | A robust δ-persistently exciting controller for leader-follower tracking-agreement of multiple vehicles[END_REF], [START_REF] Maghenem | A robust δ-persistently exciting controller for formation-agreement stabilization of multiple mobile robots[END_REF] which apply only under scenario S2 and, hence, the third term is absent. Moreover, in the controller proposed in [START_REF] Maghenem | A robust δ-persistently exciting controller for leader-follower tracking-agreement of multiple vehicles[END_REF] ρ(t) ≡ 1 and in [START_REF] Maghenem | A robust δ-persistently exciting controller for formation-agreement stabilization of multiple mobile robots[END_REF] the reference trajectories are required to be integrable. Another preliminary version of the control law (13) appears in [START_REF] Maghenem | Lyapunov-based formationtracking control of nonholonomic systems under persistency of excitation[END_REF], in which only uniform global asymptotic stability was established for the kinematics model and restricted to the tracking scenario (i.e., with ρ ≡ 0).

Proposition 1 Consider the system (5) in which we replace v with v * + ṽ, and ω with ω * + ω, where the virtual inputs (v * , ω * ) are given by ( 12)-( 13). Let k x , k θ , and k y > 0; let p and ṗ be bounded and persistently exciting functions, and assume that there exists a positive constant β such that

max |ω r | ∞ , | ωr | ∞ , |v r | ∞ , | vr | ∞ ≤ β. (16) 
Then, 1) If the reference trajectories satisfy (10) (scenario S1), the closed-loop system is integral input-to-state stable with respect to η 1 := [ṽ ω] . Moreover, if η 1 → 0 and is square integrable, then the closed-loop trajectories converge to the origin. 2) If, on the contrary, [START_REF] Loria | Leader-follower formation control of mobile robots on straight paths[END_REF] holds (scenario S2), the closedloop system is strongly integral input-to-state stable (see [START_REF] Chaillet | Combining iISS and ISS with respect to small inputs: the strong iISS property[END_REF]) with respect to η 2 := [v r ω r ṽ ω] . As a consequence, if η 2 converges to zero then the closed-loop trajectories also converge to zero.

Sketch of proof.The complete proof is omitted due to space limitations. It relies on the observation that the closed-loop system may be written in the form of a time-varying system with a vanishing perturbation. For the case of scenario S1 we have

ė =A vr (t, e)e + B 1 (t, e)ρ(t) + B 2 (e)η 1 , (17) 
where Writing the closed-loop dynamics as in ( 17) is convenient to stress that the "nominal" system ė = A vr (t, e)e has a familiar structure encountered in model reference adaptive control. Then, we proceed according to the following steps:

A vr (t, e) :=   -k θ 0 -v r (t)k y φ(e θ ) 0 -k x ω * (t,
1) we build a strict Lyapunov function V (t, e) for the nominal system ė = A vr (t, e)e; 2) we construct a strict Lyapunov function W (t, e) for the perturbed system ė = A vr (t, e)e + B 1 (t, e)ρ; 3) we use W (t, e) to prove integral ISS of [START_REF] Morin | Practical stabilization of driftless systems on lie groups: the transverse function approach[END_REF] with respect to η 1 as well as the boundedness of the trajectories of ( 17) under the assumption that η 1 ∈ L 2 . This and the assumption that η 1 → 0 imply the convergence of the error trajectories generated by [START_REF] Morin | Practical stabilization of driftless systems on lie groups: the transverse function approach[END_REF]. Under the case of scenario S2 the closed-loop equation is

ė = A(t, e)e + B(e)η 2 (18) 
where p 1 (t) := ρ(t)p(t), η 2 := [v r , ω r , ṽ, ω], and

A(•) :=   -k θ -kyp1(t) |exy | ex -kyp1(t) |exy | ey 0 -kx ψ(t, e) 0 -ψ(t, e) 0   , ψ(•) :=k θ e θ + kyp1(t)|exy|, B(e) :=   -kyeyφ(e θ ) 0 0 -1 kye 2 y φ(e θ ) ey -1 ey sin(e θ ) -kyexeyφ(e θ ) -ex 0 -ex   .
In this case we establish the strong iISS property with respect to the vector η 2 following the steps in [START_REF] Maghenem | A robust δ-persistently exciting controller for formation-agreement stabilization of multiple mobile robots[END_REF].

IV. A LEADER-FOLLOWER FORMATION CASE

In this section we extend the statement of Proposition 1 to the case of multi-agent formation control. To the best of our knowledge, a unified controller which solves the leader-follower tracking and agreement formation problem simultaneously is considered only in [START_REF] Wang | Distributed adaptive control for consensus tracking with application to formation control of nonholonomic mobile robots[END_REF], but in this reference only ultimate boundedness of the error-trajectories is established. Moreover, the controller proposed therein is centralized hence, it relies on the assumption that part of the leader's coordinates is available to all the agents in the network. Here, we assume that at least (and possible only) one vehicle has access to the reference vehicle's trajectories. For a swarm of vehicles interconnected forming a spanningtree we rely on cascaded arguments and the input to state stability property for any pair of vehicles in closed-loop to establish the formation tracking and agreement control goals with a universal controller.

Similarly to ( 12)-( 20) we introduce the virtual controls

v * i :=v i-1 cos(e θi ) + k xi e xi (19) ω * i :=ω i-1 + k θ e θi + k yi e yi v i-1 φ(e θi ) + ρ i-1 (t)k yi p(t)|e xyi | (20) 
where, e xyi := [e xi e yi ]

ρ i-1 (t) := exp - t t0 F (v i-1 (τ ), ω i-1 (τ )) dτ (21) 
which at the dynamic level, serve as references for the actual controls u 1i and u 2i in

vi =f 1i (t, v i , ω i , e i ) + g 1i (t, v i , ω i , e i )u 1i (22a) ωi =f 2i (t, v i , ω i , e i ) + g 2i (t, v i , ω i , e i )u 2i , i ≤ n. (22b)
Proposition 2 Consider the network-interconnected system composed of ( 7) with i ∈ {1, ..., n} and the virtual-velocity controller ( 19)- [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A lyapunovbased approach[END_REF]. Let the control gains k xi , k yi , k θi > 0, let p i and ṗi be bounded and persistently exciting, and assume that ( 16) holds. Then, all the error trajectories, i.e. e i with i ∈ {1, ..., n}, converge to zero provided that the leader's velocities satisfy either [START_REF] Liu | Cooperative global robust output regulation for a class of nonlinear multi-agent systems with switching network[END_REF] or [START_REF] Loria | Leader-follower formation control of mobile robots on straight paths[END_REF] and the velocities [ṽ 1 , ω1 , ..., ṽn , ωn ] are square integrable and converge to zero.

Proof: Under the scenario S1, the closed-loop equations for each pair leader-follower is

ėi =A vi-1 (t, e i )e i + B 1i (t, e i )ρ i (t) + B 2i (e i )η 1i , ( 23 
)
where η 1i := [ṽ i , ωi ],

Av i-1 (•) :=   -k θi 0 -vi-1(t)kyiφ(e θi ) 0 -kxi ω * i (t, ei) vi-1(t)φ(e θi ) -ω * i (t, ei) 0   , B1i(t, ei) :=   -kyipi(t)eyi kyipi(t)e 2 yi -kyipi(t)eyiexi   , B2i(ei) :=   0 -1 -1 eyi 0 -exi   .
The proof follows invoking recursively the statement of Proposition 1, by exploiting the cascaded structure of the system. Indeed, for the first follower the closed-loop system is reduced to [START_REF] Morin | Practical stabilization of driftless systems on lie groups: the transverse function approach[END_REF], which, under the scenario S1, is integral Input-to-State Stable with respect to the vector η 11 := [ṽ 1 , ω1 ]. As a result, using the square-integrability of η 11 (t) and its convergence to zero, we obtain that e 1 (t) → 0 and, consequently,

lim t→∞ v 1 (t) = v r (t), lim t→∞ ω 1 (t) = ω r (t). (24) 
Moreover, there exists c1 > 0 such that

max {v 1 , v1 , ω 1 , ω1 } ≤ c1 . ( 25 
)
For i = 2 the closed-loop system (23) is equivalent to [START_REF] Morin | Practical stabilization of driftless systems on lie groups: the transverse function approach[END_REF], if we replace v r by v 1 and ω r by ω 1 . Using (24), (25) we obtain that there exists t 1 > 0 and µ 1 > 0 such that for all t ≥ t 1 , we have

t+T t v 2 1 (s) + ω 2 1 (s) ds ≥ µ 1 , ∀t ≥ t 1 .
As a result, Proposition 1 applies for all t ≥ t 1 . Since η 12 := [ṽ 2 , ω2 ] converges and is square integrable, we conclude that

lim t→∞ |e 2 (t)| = 0, lim t→∞ v 2 (t) = v r (t), lim t→∞ ω 2 (t) = ω r (t) (26) 
-cf. [START_REF] Chaillet | Strong iISS is preserved under cascade interconnection[END_REF]. Moreover, there exists c2 > 0 such that

max {v 2 , v2 , ω 2 , ω2 } ≤ c2 . (27) 
The result follows by induction. Under the case of scenario S2 the closed-loop equation for each i ∈ {1, ..., n} becomes ėi = A i (t, e i )e i + B(e i )η 2i

where

p 1i (t) := ρ i (t)p i (t), η 2i := [v i-1 , ω i-1 , ṽi , ωi ], and 
Ai(•) :=   -k θi -kyip1i(t) |e xyi | e xi -kyip1i(t) |e xyi | e yi 0 -kxi ψi(t, ei) 0 -ψi(t, ei) 0   , ψi(•) :=k θi e θi + kyip1i(t)|exyi|, B(ei) :=   -kyieyiφ(e θi ) 0 0 -1 kyie 2 yi φ(e θi ) eyi -1 eyi sin(e θi ) -kyiexieyiφ(e θi ) -exi 0 -exi   .
As before, we invoke Proposition 1 recursively. For i = 1, the system (28) reduces to (18) so, by Proposition 1, it is strong iISS with respect to η 21 := [v r , ω r , ṽ1 , ω1 ]. Consequently, when η 21 → 0, we have

e 1 → 0, v 1 → 0, ω 1 → 0. For i = 2, the convergence of [v 1 , ω 1 ] implies that the closed-loop (17) is strong iISS with respect to η 22 := [v 1 , ω 1 , ṽ2 , ω2 ]. Consequently e 2 → 0, v 2 → 0, ω 2 → 0.
The result follows by induction.

V. SIMULATION RESULTS

We consider a group of four mobile robots following a virtual leader in formation (diamond shape). The tracking scenario (S1) is defined by persistently-exciting reference velocities w r (t) = β 1 (t)α 1 (t) and v r (t) = β 2 (t)α 2 (t) where α 1 (t) and α 2 (t) are sinusoids of respective periods T 1 = 10.8s and T 2 = 10.5s, β 1 (t) and β 2 (t) are periodic "on-off" signals taking values in {0, 1} with duty-cycles of 50% and 33%, and periods of 1.5T 1 and T 2 respectively. For the robust stabilization scenario (S2) we set w r = 0 and v r as solution of vr = -100v 3 r that is, a non-integrable function. The initial conditions are set to [x r (0), y r (0), θ r (0)] = [0, 0, 0], [x 1 (0), y 1 (0), θ 1 (0)] = [START_REF] Abdessameud | Leader-follower synchronization of euler-lagrange systems with time-varying leader trajectory and constrained discrete-time communication[END_REF][START_REF] Chaillet | Strong iISS is preserved under cascade interconnection[END_REF][START_REF] Canudas De Wit | Nonlinear control design for mobile robots[END_REF], [x 2 (0), y 2 (0), θ 2 (0)] = [0, 2, 2], [x 3 (0), y 3 (0), θ 3 (0)] = [0, 4, 1] and [x 4 (0), y 4 (0), θ 4 (0)] = [0, 3, 1]; the velocity-control gains are set to k xi = k yi = k θi = 1 and the function p(t) = 20 sin(0.5t), which has a persistently exciting time-derivative, as required. Furthermore, we define

F (a, b) := K( a 2 + b 2 ) := √ a 2 + b 2 ∀α ≥ 0.1 0 Otherwise.
A diamond-shaped formation is obtained by setting a certain desired distance between the robots and all desired orientation offsets set to zero: At the dynamics level, we use the adaptive controller from [START_REF] Maghenem | A robust δ-persistently exciting controller for leader-follower tracking-agreement of multiple vehicles[END_REF] to guarantee that the error velocities converge with finite L 2 norm; the torque controller parameters are set to (γ, k d ) = (10 -5 , 15), and the initial estimates Θ(0) = ( m1 , m2 , ĉ) = (0, 0, 0). The simulation results with PE reference trajectories (scenario S1) are showed in Figures 1 and2; with vanishing references (scenario S2)), they are depicted in Figures 34. In both cases, the tracking errors converge to zero and the formation follows the prescribed path, which includes straight lines and turns before converging to a set-point. 

VI. CONCLUSION

We studied the decentralized leader-follower tracking and agreement formation control problem for a group of nonholonomic vehicles. Under a directed spanning tree communication topology, we proposed a unified kinematic level controller that solves the two problems at the kinematic level. On the dynamical level, the virtual kinematic controller serves as a reference for the torque-control design. For the global closed-loop system we proved that any torque controller that ensures the tracking of the desired velocities with finite L 2 norm solves the leader-follower formation problem. Further research is being carried out to incorporate other aspects such as changing topologies and obstacle avoidance.

  12) ω * =ω r + k θ e θ + k y e y v r φ(e θ ) + ρ(t)k y p(t)|e xy |, (13) where e xy := [e x , e y ] , φ(e θ ) := sin(e θ )/e θ , ρ(t) := exp -t t0

  e) v r (t)φ(e θ ) -ω * (t, e) f (t, e x , e y ) k y f (t, e x , e y )e y -k y f (t, e x , e y )e x y 0 -e x   , f (t, e x , e y ) := p(t)|e xy |.

  [d xr,1 , d yr,1 ] = [0, 0], [d x1,2 , d y1,2 ] = [-1, 0] and [d x2,3 , d y2,3 ] = [1/2, -1/2] and [d x3,4 , d y3,4 ] = [0, 1]; see Figures4 and 2for illustration.
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 1234 Fig. 1. Relative errors (in norm) for each pair leader-follower under S1
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