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A switched adaptive observer for extended braking stiffness estimation*

Missie Aguado-Rojas1, William Pasillas-Lépine2 and Antonio Lorı́a2

Abstract— We present a switched adaptive observer for the
estimation of the tyre extended braking stiffness (XBS) during
braking scenarios. The design of the observer is based on
Burckhardt’s friction model, and on a model of the wheel dy-
namics in which the XBS appears as one of the state variables.
Asymptotic stability of the estimation error is established on the
basis of dwell-time and persistency of excitation conditions. The
approach is validated via numerical simulations considering
realistic perturbations on the system’s measured output.

I. INTRODUCTION

As vehicle safety-oriented control systems become more
and more advanced, they also increase their dependence on
accurate information about the state of the vehicle and its
surroundings. For instance, the performance of advanced
driver-assistance technologies such as the antilock braking
system (ABS) is greatly influenced by the characteristics of
the friction force between the tyre and the road. Therefore,
by taking into account the external driving conditions of the
vehicle, the effectiveness of such active safety systems can be
greatly improved [1]. Tyre-road friction, however, cannot be
directly measured in real-time, hence the estimation thereof
has been an intensive research area in the last years. On the
one hand, numerous different approaches for the estimation
of the tyre-road friction coefficient and its optimal value,
i.e., the value at which the maximum braking force can be
obtained, have been proposed in the literature (see, e.g., [2],
[3] and references therein). On the other hand, a different line
of research focuses instead on the estimation of the so-called
extended braking stiffness (XBS), which can be defined as the
slope of the tyre-road friction coefficient with respect to the
wheel slip at the operational point, and indicates the residual
longitudinal friction force available to the driver. The interest
of estimating the XBS is that, as opposed to the unknown
optimal value of the tyre-road friction coefficient, the optimal
value of the XBS is always equal to zero, hence an ABS
control algorithm can be designed in order to maintain the
XBS in a neighbourhood around zero.

The concept of maximizing the braking force in an ABS
on the basis of the slope of the braking force with respect to
the wheel slip was first introduced by Sugai et al. in [4],
where XBS is identified by forcing a vibration via the
brake actuator and analyzing the frequency characteristics
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of a resonance system composed of the vehicle body, the
wheel and the road surface. The term extended braking
stiffness was later coined by Umeno in [5], where the XBS is
estimated via the instrumental variable method based on the
frequency characteristics of a tyre vibration model linearized
around a constant-velocity operating point. In [6], the XBS
is (implicitly) assumed to be a constant parameter and
estimated by applying the recursive least squares algorithm
to wheel rotational velocities. In [7], in order to estimate
the maximum friction coefficient, the concept of XBS is
used to signal the entrance of the tyre into a different road
surface and to distinguish one type of road from another.
The XBS is estimated using elementary diagnostic tools and
algebraic methods for filtering and estimating derivatives of
noisy signals (whose main difficulty is to achieve a good
tradeoff between filtering and reactivity), and the estimation
results are accurate only within a certain validity range. In
[8], a model of the wheel acceleration dynamics in which the
XBS appears as one of the state variables was introduced.
In order to cope with uncertainty in road conditions, the
unknown parameters of the model are assumed to be constant
and regarded as state variables with dynamics equal to zero.
The XBS is estimated using an asymptotic state observer for
the augmented system. In that work, however, knowledge of
upper and lower bounds of the unknown parameters is still
required, hence the observer might not be robust to large
changes in road conditions. In this paper, we exploit the
model introduced in [8] and present an adaptive switched
observer for the estimation of the XBS. The proposed
approach does not require any a priori knowledge of the
parameters related to the road conditions, and has an overall
better performance than the one previously proposed in [8].

II. SINGLE-WHEEL SYSTEM MODELLING

In this paper, we employ a basic single-wheel model
and consider the forces acting on the longitudinal direction
only. This model, despite its simplicity, is known to provide
a simple yet sufficiently rich description of the braking
dynamics, hence it is widely encountered in the literature
of active braking control systems (see, e.g., [9, Ch. 2]).

A. Wheel dynamics

The dynamics of the angular velocity ω of the wheel is
described by

Iω̇ = −RFx + T,

where I is the inertia of the wheel, R is its effective
rolling radius, Fx denotes the longitudinal tyre force, and
T = Te − Tb is the torque applied to the wheel, composed
by the engine torque Te and the brake torque Tb. In the
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Fig. 1. Typical tyre-road friction curves obtained using Burckhardt’s model
for different road surface conditions. The corresponding parameter values
are given in Table I.

following, it is assumed that the clutch is open during an
ABS braking manoeuver, hence the engine torque can be
neglected. The brake torque is given by Tb = γbPb, where γb
denotes the brake efficiency, and Pb the brake pressure.

The longitudinal tyre force Fx is modelled as

Fx = µ(λ)Fz,

where Fz is the vertical force at the tyre-road contact point
and µ(λ) denotes the tyre-road friction (or adhesion) coeffi-
cient, i.e., it describes the tyre capability of transferring the
vertical load to the ground in the longitudinal direction. The
friction coefficient depends nonlinearly on the longitudinal
wheel slip λ defined as

λ =
Rω − vx

vx
,

where vx > 0 is the longitudinal speed of the vehicle, and
Rω is the linear speed of the tyre at the wheel-ground
contact point. In other words, λ denotes the normalized
relative velocity between the road and the tyre. A zero slip
corresponds to a pure rolling wheel, while the presence of
a non-zero slip is due, in general, to traction and braking
forces exerted on the tyre. In particular, the region λ < 0
corresponds to braking, and λ = −1 to a locked wheel.

The typical behaviour of the friction coefficient curve µ(λ)
for different road conditions is illustrated in Fig. 1. It is a
smooth function symmetric about the origin (only the region
λ > 0 that corresponds to traction is shown) that satisfies
µ(0) = 0, dµ(0)dλ > 0, and has a single maximum at λ = λ∗.
Note that the optimal wheel slip λ∗, i.e., the value for which
the maximum longitudinal tyre force is transferred to the
ground, changes depending on the road conditions.

Several models of the tyre-road friction coefficient are
available in the literature (see, e.g., [10] and references
therein). In this work, the tyre characteristic model proposed
by Burckhardt [11] is employed, i.e., the friction coefficient
is modelled as

µ(λ) = c1(1− exp(−c2λ))− c3λ, (1)

where the coefficients ci are “constants” that depend on the
road conditions, on the tyre characteristics, and on the vehi-
cle operational conditions [10]. Therefore, by changing the

TABLE I
BURCKHARDT’S MODEL PARAMETERS [12, P. 322]

Road condition c1 c2 c3

Dry asphalt 1.2801 23.99 0.52
Wet asphalt 0.857 33.822 0.347
Cobblestone 1.3713 6.4565 0.6691

Snow 0.1946 94.129 0.0646

values of these three parameters, many different conditions
can be modelled.

B. Simplified wheel slip and wheel acceleration dynamics

Define as state variables the wheel slip x1 := λ and the
wheel acceleration offset

x2 := Rω̇ − ax(t), (2)

i.e., the difference between the longitudinal acceleration of
the vehicle ax(t) = v̇x(t) and the linear acceleration of the
tyre Rω̇ at the wheel-ground contact point. The dynamics of
the system is given by

ẋ1 =
1

vx(t)
(−ax(t)x1 + x2)

ẋ2 = −R
2

I
Fz
µ′(x1)

vx(t)
(−ax(t)x1 + x2)− R

I
γbṖb − ȧx(t),

where

µ′(λ) =
dµ(λ)

dλ

is the tyre extended braking stiffness (XBS), which indicates
the residual longitudinal friction force available to the driver.
Note that, as opposed to the maximum friction coefficient
µ(λ∗), which depends on the road conditions and is usually
unknown, the XBS that corresponds to the optimal wheel
slip is always known, i.e., µ′(λ∗) = 0.

During an ABS braking manoeuver, the longitudinal ac-
celeration of the vehicle remains almost constant and close to
the maximal value a∗x allowed by the road conditions, and the
wheel slip remains relatively small. Under these conditions,
the approximations ȧx(t) ' 0 and (−ax(t)x1 + x2) ' x2
are sensible. While the equalities are true only when vx(t)
is constant, the approximations remain reasonable during the
activation of the ABS. This leads to the simplified dynamics

ẋ1 =
1

vx(t)
x2 (3a)

ẋ2 = − a

vx(t)
x2µ

′(x1)− bu, (3b)

where a = (R2/I)Fz , b = (R/I)γb, and u = Ṗb. The
longitudinal speed of the vehicle vx(t) is assumed to be
strictly positive and considered as an external variable of
the model.



C. XBS dynamics

Given a suitable choice for the tyre-road friction model,
system (3) can be used to develop a simple model wherein
the tyre XBS appears directly as a state variable. Such a
model can then be used to design a state observer in order
to estimate the variable of interest.

To that end, let the wheel acceleration offset z1 := x2
and the XBS z2 := µ′(x1) be defined as new state variables.
From (1), recalling that x1 = λ, one has

µ′(x1) = c1c2 exp(−c2x1)− c3

µ′′(x1) = −c2c1c2 exp(−c2x1)

from which the following relation can be established

µ′′(x1) = −c2µ′(x1)− c2c3.

The above relation, along with system (3), leads to the
dynamics

ż1 = − a

vx(t)
z1z2 − bu (4a)

ż2 = (cz2 + d)
1

vx(t)
z1, (4b)

where c = −c2, d = −c2c3.
The objective of this paper is to design an observer to

estimate the (unmeasurable) XBS z2 under unknown road
conditions, i.e., unknown c2 and c3, using the available
information of the (measurable) wheel acceleration offset z1.
The longitudinal speed of the vehicle vx(t), and the constant
parameters a, b are assumed to be known as well.

III. ADAPTIVE OBSERVER DESIGN

As a first step towards the observer design, consider the
linear change of coordinates

w1 = z1

w2 = z2 +
c

a
z1

that transforms the system (4) into

ẇ1 =
w1

vx(t)
(cw1 − aw2)− bu

ẇ2 = −bc
a
u+

w1

vx(t)
d,

which is bilinear. We may thus rely on observer design
methods for systems that are linear in the unmeasured
variables —see e.g., [13], as well as [14]–[16]. To better
see this, let the above equations be rewritten in the form

ẇ = A(t, y)w +Bu+ Ψ(t, u, y)θ (5a)
y = Cw, (5b)

with w =
(
w1 w2

)>
,

A(t, y) =
w1

vx(t)

(
0 −a
0 0

)
:=

w1

vx(t)
A′, B =

(
−b
0

)
,

Ψ(t, u, y) =


w2

1

vx(t)
0

− b
a
u

w1

vx(t)

 , C =
(
1 0

)
,

and θ =
(
c d

)>
. We assume that the measured output is

y = w1 = x2, i.e., the wheel acceleration offset (2). Then,
following [14], we introduce the switched adaptive observer

˙̂w = A(t, y)ŵ +Bu+ Ψ(t, u, y)θ̂

+
(
K(t, y) + ΥΓΥ>C>

)
(y − Cŵ) (6a)

˙̂
θ = ΓΥ>C> (y − Cŵ) (6b)

Υ̇ = (A(t, y)−K(t, y)C) Υ + Ψ(t, u, y) (6c)

with Γ = Γ> > 0 and

K(t, y) :=
w1

vx(t)
K ′(w1), (7)

where

K ′(w1) =


(
k+1
k+2

)
, if w1 > 0(

k−1
k−2

)
, if w1 < 0

(8)

and k±1,2 are design parameters. The states of the original
system are estimated via the inverse change of coordinates

ẑ1 = ŵ1

ẑ2 = ŵ2 −
ĉ

a
ŵ1,

which depends on the value of the estimated parameter ĉ. It
is clear that if ŵ → w and θ̂ → θ, then ẑ → z.

In order to discuss the stability properties of the observer
we make use of the following lemma.

Lemma 1: Consider system (5) and the switching func-
tion (7). If the gains k±1,2 in (8) satisfy

k+1 > 0, k+2 < 0, k−1 = −k+1 < 0, k−2 = k+2 < 0,

then the origin of the system

η̇ = (A(t, y)−K(t, y)C) η (9)

is stable. Moreover, if the switching signal σ(w1) that selects
the observer gains admits a strictly positive minimal dwell
time, i.e., if any two consecutive switchings are separated by
no less than τD > 0, then, for the system (9), the origin is
globally asymptotically stable.

Proof: The proof is inspired by Hoàng et al. [8]. From
(5), (7) and (9) we have

η̇ =
w1

vx(t)
(A′ −K ′(w1)C) η.

Note that if the right-hand side of the above equation is
multiplied by vx(t)/w1, one obtains a linear time-varying
system. Defining the new time-scale

τ(t) :=

∫ t

0

|w1(ς)|
vx(ς)

dς



ensures that dt/dτ > 0, independently of the value of w1.
Now, since for any function ϕ : R→ Rn one has

dϕ

dτ
=
dϕ

dt

dt

dτ
=
dϕ

dt

vx(t)

|w1(t)|
,

the dynamics of η in the new time-scale τ is given by
dη

dτ
=

w1

|w1|
(A′ −K ′(w1)C) η(τ)

= sgn(w1) (A′ −K ′(w1)C) η(τ)

hence we obtain the switched linear dynamics
dη

dτ
= Aσ(w1)η(τ), (10)

where

Aσ(w1) =


A+ =

(
−k+1 −a
−k+2 0

)
, if w1 > 0

A− =

(
k−1 a
k−2 0

)
, if w1 < 0.

(11)

The conditions k+1 > 0, k+2 < 0, k−1 < 0, k−2 < 0 ensure
that the matrices A+, A− are Hurwitz, and a direct computa-
tion shows that the pairs (A+, C), (A−, C) are observable.
Hence, we know that there exist two symmetric positive-
definite matrices P+, P− such that A>+P++P+A+ = −C>C
and A>−P− + P−A+ = −C>C are satisfied. Furthermore,
by imposing k−1 = −k+1 , k−2 = k+2 the above Lyapunov
equations admit a common solution, that is P+ = P− =: P
defines a nonstrict (because C>C is positive semidefinite)
common Lyapunov function for the switched system (10).
Under these conditions, we can invoke [17, Cor. 1] to
conclude stability of (10) and, consequently, stability of (9).
Moreover, in view of the assumption that the switching signal
σ(w1(t)) admits a strictly positive minimal dwell time, it
follows from [17, Th. 4] that for the system (10) the origin is
exponentially stable, uniformly with respect to the switching
signal. Thus, for the system (9), i.e., in the original time-
scale, the origin is globally asymptotically stable.

The stability properties of the observer are summarized in
the following theorem.

Theorem 1: Consider system (5) and observer (6). Let
w̃ := ŵ − w and θ̃ := θ̂ − θ. Let the observer gains k±1,2
in (7) satisfy

k+1 > 0, k+2 < 0, k−1 = −k+1 < 0, k−2 = k+2 < 0.

Assume that the switching signal σ(w1) that selects the
observer gains admits a strictly positive minimal dwell
time. If Ψ(t, u(t), y(t)) is persistently exciting, then, for the
closed-loop system, the origin (w̃, θ̃) = (0, 0) is globally
asymptotically stable.

Proof: The proof is inspired by Zhang [14]. After (5),
(6a) and (6b), the dynamics of the observation error is

˙̃w = (A(t, y)−K(t, y)C) w̃ + Ψ(t, u, y)θ̃ + Υ
˙̃
θ.

Let η = w̃−Υθ̃. From the above equation and (6c) we have

η̇ = (A(t, y)−K(t, y)C) w̃ + Ψ(t, u, y)θ̃ − Υ̇θ̃

= (A(t, y)−K(t, y)C) η.

From Lemma 1, for this system the origin is globally
asymptotically stable. Now, from (6b) and the definition of
η, the dynamics of the parameter estimation error is

˙̃
θ = −ΓΥ>C>C

(
Υθ̃ + η

)
. (12)

Consider the homogeneous part of (12), that is

˙̃
θ = −ΓΥ>C>CΥθ̃. (13)

If Ψ(t, u(t), y(t)) is persistently exciting (PE), i.e., if there
exist positive constants µ0, T0 such that for all t∫ t+T0

t

Ψ(ς, u(ς), y(ς))>Ψ(ς, u(ς), y(ς))dς ≥ µ0I, (14)

then Υ(t, u(t), y(t)) generated by (6c) is also PE [18]. It fol-
lows that the origin of system (13) is globally exponentially
stable and system (12) is input-to-state stable with respect to
the input η. Global asymptotic stability of (η, θ̃) = (0, 0)
follows. Finally, to see that the same property holds for
(w̃, θ̃) = (0, 0) we observe that w̃ = η + Υθ̃.

IV. SIMULATION RESULTS

The performance of the proposed observer has been tested
via numerical simulations considering the (nonsimplified)
single-wheel model described in Section II-A. A braking
scenario of a vehicle traveling with an initial speed of 25 m/s
and a constant deceleration of 1.96 m/s2 is illustrated in
Figs. 2 to 9. Changes in road conditions occur at times
t = 3 and t = 6: during the first part of the simulation the
wheel runs on dry asphalt, then on wet asphalt, and finally
on dry concrete. For the purpose of generating meaningful
signals, the system is driven via a five-phase hybrid ABS
control algorithm (see [19], [20] for a full description) that
modulates the brake pressure based on measurements of
the wheel acceleration offset. Persistency of excitation of
Ψ(t, u(t), y(t)) under such scenario is verified in Fig. 2,
which shows the eigenvalues of the left-hand side of (14)
for T0 = 1. Recall that Ψ(·) is PE if and only if

%min

{∫ t+T0

t
Ψ(·)>Ψ(·)dς

}
≥ µ0 > 0

for all t, where %min{·} denotes the minimal eigenvalue
of the argument. The observer was tested under ideal con-
ditions, i.e., without measurement noise or other external
disturbances, as well as under a more realistic scenario
considering a velocity-dependent perturbation in the system’s
measured output (Fig. 3). That is, the measurement of the
wheel acceleration offset is perturbed by periodic (in one
mechanical revolution) oscillations caused by imperfections
in the wheel-speed sensors used in automotive applications
(see [21] and references therein).

The estimation results obtained under the ideal scenario
are illustrated in Figs. 4 to 6. A quick convergence to
zero of both the state and parameter estimation errors w̃,
θ̃ can be observed (Fig. 4), even after the abrupt transitions
between different types of roads. Consequently, the estimated
XBS also converges to its true value. In Figs. 5 and 6,
we show a comparison between the XBS estimated via
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the adaptive observer presented in this paper and the one
estimated via the augmented-state observer (ASO) proposed
in [8]. The adaptive observer exhibits better robustness
properties to changes in road conditions than the ASO, and
a better performance both during transient and steady-state
conditions. Figs. 7 to 9 illustrate the results obtained under
the perturbed scenario. As could be expected, the estimation
errors w̃, θ̃ are perturbed due to the error in the system’s
measured output, but they approach zero as the perturbation
vanishes (because the perturbation is velocity-dependent, its
amplitude decreases as the vehicle velocity is reduced).
Therefore, with the adaptive observer the estimated XBS
closely approaches its true value. Such is not the case for
the ASO, which displays greater sensitivity to the error in
the system’s measured output, and whose estimation error
does not converge to zero even as the perturbation vanishes.
The results thus validate the effectiveness of the proposed
approach.

V. CONCLUSION

This paper presented a switched adaptive observer for
the estimation of the tyre extended braking stiffness. The
design of the observer is based on a simplified dynamic
model that retains a good degree of accuracy during an ABS-
controlled braking scenario. The performance of the observer
was tested via numerical simulations with satisfactory results
under ideal and perturbed conditions. Future work will focus
on the experimental evaluation of the proposed approach.
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Fig. 4. Ideal scenario: state and parameter estimation errors.
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Fig. 5. Ideal scenario: real vs estimated XBS.
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Fig. 6. Ideal scenario: XBS estimation error
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Fig. 7. Perturbed scenario: state and parameter estimation errors.
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Fig. 8. Perturbed scenario: real vs estimated XBS.
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Fig. 9. Perturbed scenario: XBS estimation error.


