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Abstract: We address the problem of rotational velocity and acceleration estimation from
incremental encoders in the presence of sensor imperfections. In the area of motion control,
measurements of shaft velocity and acceleration are often affected by large disturbances with a
period of one revolution that arise from sensor imperfections and degrade the performance
of most closed-loop control algorithms. We present an algorithm to identify and remove
such periodic perturbations online, without the need of error compensation look-up tables,
and without assuming constant velocity. The proposed algorithm is evaluated via open-loop
experimental tests, and its implementation in closed-loop control applications is investigated
via numerical simulations through a DC motor case-study.

Keywords: Velocity and acceleration estimation; incremental encoders; periodic measurement
noise; parameter estimation; DC motor control;

1. INTRODUCTION

Real-time measurement of angular position, velocity
and acceleration plays a crucial role in numerous motion
control applications [Ohnishi et al., 1996; Iwasaki et al.,
2012; Huang and Chou, 2015]. The most commonly used
technology to measure such signals is based on incremental
shaft encoders. They consist, mainly, in a toothed wheel
(or a slotted disc) attached to the rotating shaft and a
fixed pick-off sensor that detects the passing of the teeth
and outputs a square wave signal, in which each edge
corresponds to the edge of one tooth [De Silva, 2015,
§ 6.7]. Thus, the position, velocity, and acceleration are
not directly measured, but they have to be reconstructed
from the encoder pulses.

Several algorithms have been proposed to that end,
hence the problem of rotational velocity and acceleration
estimation from (ideal) incremental encoder measurements
is well-addressed (see Bascetta et al. [2009] and Ronsse
et al. [2013] for comprehensive reviews on the state-of-the-
art). However, since these algorithms rely on the output
of a real sensor subject to manufacturing and assembly
tolerances, the resulting estimations are inevitably affected
by the encoder imperfections. In Aguado-Rojas et al.
[2017], we introduced a velocity estimation algorithm
that reduces the effects of encoder imperfections, without
requiring the availability of error look-up tables. The
advantage of this approach, based on a time-stamping
algorithm [Merry et al., 2010], is that it has a good
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performance in terms of reducing the effect of encoder
imperfections without introducing a long delay, which is
a typical drawback of approaches based on notch filters,
like those proposed in Panzani et al. [2012] and Hoàng
et al. [2012].

The aim of this paper is to extend the approach
proposed in Aguado-Rojas et al. [2017] to provide, in
addition to the velocity, an estimation of the acceleration.
The key point of our approach is to take into account
the effects of the delay introduced by the time-stamping
algorithm, by considering a model for the acceleration
perturbation that differs from the derivative of the velocity
perturbation. Our model also takes into account the link
between the number of encoder events considered by the
time-stamping algorithm and the spectral width of the
perturbation on the measured velocity. Using this model
and the least-square method (or, equivalently, the gradient
algorithm) one can identify in real-time the characteristics
of the encoder imperfections, and compensate them in
order to deduce the actual velocity and acceleration of
the system. As an example, we illustrate the potential
usefulness of this new estimation algorithm in closed-loop
control applications through a DC motor case-study.

The rest of the paper is organized as follows. In Sec-
tion 2 we present a brief review on the most common en-
coder imperfections, and the effects that they have on the
position, velocity and acceleration measurements. In Sec-
tion 3 we introduce three models that capture the effects
of sensor imperfections on the measured signals. Based
on these models, in Section 4 we propose a method to
identify and remove the periodical disturbances introduced



by sensor imperfections, and validate it via open-loop
experimental tests. The implementation of the proposed
method in closed-loop control applications is investigated
in Section 5. Concluding remarks are given in Section 6.

2. PRELIMINARIES: ON ENCODER
IMPERFECTIONS AND THEIR EFFECTS

An ideal incremental encoder is characterised by iden-
tical and equidistant teeth (or slits) distributed over the
encoder’s code-wheel, and quadrature output channels
with 50% duty cycles. However, real devices are subject
to well-known manufacturing and assembly imperfections
[Kavanagh, 2000; 2001; 2002]. Generated by these imper-
fections, the most significant error sources in the encoder
output signals are due to [Merry et al., 2013]:

• Cycle error: stochastic variations in the location of the
rising or falling edges of the encoder pulses from their
nominal values, due to unequal positional spacings of
the slits, as well as limitations and irregularities of the
encoder’s signal generation and sensing hardware.

• Pulse-width error: the deviation of the pulse width
from its ideal value of 180◦.

• Phase error: the deviation of the phase between the
two output channels from its ideal value of 90◦.

• Eccentricity or tilt of the encoder’s code-wheel, due
to concentricity and assembly tolerances.

These error sources introduce a time shift to all edges
of the output pulses, hence resulting in inexact readings
of displacement that affect the quality of the position,
velocity and acceleration measurements.

Cycle, pulse-width, and phase errors appear as high-
frequency variations when viewed over the circumference
of the encoder’s code-wheel, while eccentricity or tilt de-
scribe a systematic low-frequency variation with a period
of one revolution. Furthermore, because the measurement
error caused by sensor imperfections is periodic over one
mechanical revolution, the measurements of velocity and
acceleration contain large periodic perturbations whose
frequency is locked with the rotational frequency of the
shaft. In the following section we introduce three models
that capture the effects of sensor imperfections on the
measured position, velocity, and acceleration signals, based
on which our estimation algorithm is designed.

3. MEASUREMENT MODELS

The arguments given in the previous section and the
experimental data reported in Aguado-Rojas et al. [2017],
lead us to model the effects of sensor imperfections using a
2π-periodic function, that we denote fr, added to the real
position θr. Hence the measured position θm corresponds
to

θm = θr + fr(θr).

If the function fr is approximated using a finite number
Mr of Fourier coefficients, one obtains

θm = θr +

Mr∑
k=1

[
ark sin(kθr) + brk cos(kθr)

]
.

In what follows, we assume that both ark � 1 and brk � 1.
This condition is always satisfied if the encoder is of
reasonable quality and if the sensor has been correctly
mounted on its shaft.

The fact that θr is unknown limits the applicability
of the previous model. Nevertheless, when the perturba-
tion fr is sufficiently small, the function

ϕr(θr) = θr + fr(θr)

is invertible so, denoting this inverse by ϕm, we have

θm = θr + fr ◦ ϕm(θm)

and, defining fm = fr ◦ ϕm, we obtain

θm = θr + fm(θm).

The function fm is also a 2π-periodic. Note, however, that
the Fourier coefficients of a finite approximation of fm,
given by

θm = θr +

M∑
k=1

[
ak sin(kθm) + bk cos(kθm)

]
, (1)

are in general different from those of fr, even when M =
Mr. Moreover, the fact that the Fourier approximation of
fr of order Mr is exact does not necessarily imply that the
same is true for fm. In fact, it might be necessary to take
M > Mr to obtain a good approximation.

The new model (1) is the starting point for our
estimation algorithm. The differentiation with respect to
time of the expression above leads to the velocity and
acceleration measurement models

ωm = ωr + ωm

M∑
k=1

[
ka′k cos(kθm)− kb′k sin(kθm)

]
(2)

and

αm = αr + αm

M∑
k=1

[
ka′′k cos(kθm)− kb′′k sin(kθm)

]
−ω2

m

M∑
k=1

[
k2a′′k sin(kθm) + k2b′′k cos(kθm)

]
, (3)

in which the Fourier coefficients a′k, b′k, a′′k and b′′k are
unknown. Therefore, our goal is to estimate the Fourier
coefficients in order to recover reliable estimates of ωr and
αr.

Remark 1. The notation (·)′ and (·)′′ is used here in order
to emphasize that, depending on the algorithm employed
to reconstruct the position, velocity and acceleration sig-
nals from the encoder pulses, the Fourier coefficients in (2)
and (3) may not necessarily be equal to those in (1).

In our work, in order to reconstruct angular velocity
and acceleration from the output pulses of an incremental
encoder, we employ a method known as the time-stamping
algorithm [Merry et al., 2013]. It consists in capturing, via
a high-resolution clock, the time instants in which the ris-
ing or falling edges of the output pulses are detected, and
using the information of the last n events to approximate
the evolution of the angular position with a polynomial of
order m. Estimates of the angular velocity ω and accelera-
tion α are then obtained via analytic differentiation of the
fitted polynomial with respect to time.

An evaluation of the quality of these models as a
function of the number of harmonics M seems to indicate
that the fit between data and the model improves until
M = dN/ne + 1, where N is the number of pulses per
revolution of the encoder, n is the number of events used in
the fit, and d·e is the smallest integer greater than or equal
to the argument. In other words, taking less events reduces
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Fig. 1. Three-stage velocity and acceleration estimation
algorithm.

the measurement delay but increases the complexity of
the model. Based on (2) and (3), an algorithm to reduce
the periodic noise present in the measured velocity and
acceleration can be designed as discussed in the following
section.

4. VELOCITY AND ACCELERATION ESTIMATION

Let us rewrite (2) and (3) as

ωm = ωr + ωmφ(θm)>Dϑ′ (4)

and

αm = αr +
[
αmφ(θm)>D − ω2

mψ(θm)>D2
]
ϑ′′, (5)

where D ∈ R2M×2M , φ and ψ ∈ R2M are defined as

D = diag(1, 1, 2, 2, . . .),

φ(θm) = [cos(θm) − sin(θm) cos(2θm) − sin(2θm) · · ·]> ,
ψ(θm) = [sin(θm) cos(θm) sin(2θm) cos(2θm) · · ·]> ,

and ϑ′, ϑ′′ ∈ R2M contain the corresponding coefficients
a′k, b′k, a′′k and b′′k .

From these models, the measured velocity ωm and
the measured acceleration αm can be seen as the sum of
a low-frequency term —ωr in (4) and αr in (5)— and a
high-frequency (with respect to the first one) term, of the
form

ζ̄ = Φ(θm, ωm, αm)>ϑ, (6)

that depends on the known signals θm, ωm, and αm, and
is linear in the unknown parameters ϑ. For simplicity of
notation, in (6) and in the rest of the paper, we use Φ and
ϑ to denote

Φ =

{
Dφ(θm)ωm for the model (4)

Dφ(θm)αm −D2ψ(θm)ω2
m for the model (5),

and

ϑ =

{
ϑ′ for the model (4)

ϑ′′ for the model (5).

In order to estimate the real velocity (resp. accelera-
tion), we perform the three-stage algorithm illustrated in
Fig. 1, which is based on the work presented in Aguado-
Rojas et al. [2017]. In the first stage, in order to separate
ζ̄ from the other terms in (4) (resp. (5)), the measured
signal is filtered using a first-order high-pass filter with
a cutoff frequency that is considerably below that of the
wheel revolution (for example 1 Hz).

In the second stage, assuming that the filters are ideal
and they completely eliminate the low-frequency term of
the measured signals, i.e. ζ ≈ ζ̄, the Fourier coefficients of
the periodic perturbation in (4) (resp. (5)) are estimated
using the parametric model

ζ = Φ(θm, ωm, αm)>ϑ (7)

via the normalized recursive least-squares (RLS) algorithm
with forgetting factor [Ioannou and Sun, 2012, Ch. 4]:

˙̂
ϑ = −ΓΦε, ϑ̂(0) = ϑ̂0 (8)

Γ̇ = βΓ− ΓΦ>ΦΓ

1 + κΦ>Φ
, Γ(0) = Γ0 (9)

ε =
Φ>ϑ̂− ζ

1 + κΦ>Φ
(10)

where κ > 0, β > 0 and Γ0 = Γ>0 > 0.

Note that due to the form of the parametric model
(7) any other standard algorithm may be used. Note also
that, due to the form of φ(θm), ψ(θm) and D, the real-
time implementation of the RLS algorithm can be greatly
simplified, especially for large values of M . That is, the
term Φ>Φ in (9) and (10) simplifies to

Φ>Φ =

{
ς2ω

2
m for the model (4)

ς2α
2
m + ς4ω

4
m for the model (5)

where ς2 =
∑M

k=1 k
2 and ς4 =

∑M
k=1 k

4.

Finally, using the estimated parameters ϑ̂, we con-
struct our velocity estimate as

ω̂r = ωm − ωmφ(θm)>Dϑ̂′ (11)

and our acceleration estimate as

α̂r = αm −
[
αmφ(θm)>D − ω2

mψ(θm)>D2
]
ϑ̂′′. (12)

Remark 2. As a direct consequence of Remark 1, in gen-

eral αm 6= ω̇m. Therefore, the estimated parameters ϑ̂′ of
the velocity measurement model (4) should not be used
for acceleration estimation using (12), and the estimated

parameters ϑ̂′′ of the acceleration measurement model (5)
should not be used for velocity estimation using (11).

The (open-loop) experimental validation of the esti-
mation algorithm is illustrated in Figures 2 and 3, using a
piecewise-constant reference. The initial condition for the
estimated parameters was arbitrarily set to zero, and Γ0

was chosen as a matrix of the form

Γ0 = diag(γ1, γ1, γ2, γ2, . . .)

with γ1 > γ2 > . . . > γM > 0. A comparison with respect
to the results obtained using a notch filter to remove the
periodic perturbations introduced by sensor imperfections
is shown as well.

The depicted results show that, once the estimated
parameters have converged to appropriate values, the es-
timated signals contain significantly smaller oscillations
than the measured signals. This can be more easily no-
ticed during the intervals in which the velocity or the
acceleration are constant. During this intervals, the level of
attenuation of the periodic perturbations of the estimation
algorithm is similar to the one of the notch filter. The
usefulness of the estimation algorithm over a notch filter
is, however, more evident during the intervals in which
the velocity or the acceleration are changing. Even though
both the notch filter and the estimation algorithm show a
good performance in terms of reducing the amplitude of
the oscillations, the filter clearly introduces a significant
delay, whereas the estimation scheme follows the reference
with no noticeable delay. The use of the estimation algo-
rithm in a closed-loop control scenario is investigated in
the following section.
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5. CASE-STUDY: DC MOTOR CONTROL

In what follows, we present a control algorithm for the
velocity-tracking problem of the DC motor. It is important
to stress at this point, that our aim is not to develop
a new control strategy that would supersede the ones
that already exist. Instead, our aim is to investigate,
through a simple academic case-study, the advantages
and drawbacks of our estimation algorithm in control
applications, relative to other estimation methods, such
as approximate differentiation.

5.1 System modelling

Let us consider the mechanical dynamics of a DC
motor, that is,

J
dω

dt
+Bω = TM − TL (13)

dθ

dt
= ω, (14)

where θ and ω are the angular position and velocity of
the shaft, respectively, J is the rotor inertia, B is the
viscous friction coefficient, TM is the torque exerted by the
motor, and TL is the load torque. The electrical dynamics
is described by

La
dia
dt

+Raia = Va − E, (15)

where ia is the armature current, Va is the armature
voltage, which is used as control input, La is the armature
inductance, Ra is the armature resistance, and E is the
back-emf. Assuming that the magnetic flux Φ is constant,
the dynamics (13) and (15) are related by the expressions

TM = Ktia (16)

E = Keω, (17)

where Kt = K ′tΦ and Ke = K ′eΦ are constants. In SI units,
the motor torque and back-emf proportionality constants
are equal. Hence, in what follows, K := Kt = Ke is used.
In addition, it is assumed that the parameters J , B, K,
Ra, and La are known while the constant perturbation
TL is unknown. Furthermore it is also assumed that
only the armature current ia and the angular position θ
are measured. The latter, however, is obtained from an
imperfect incremental encoder.

Then, the control objective is formulated as follows.
Given a bounded and twice differentiable velocity reference
ω∗ : R≥0 → R, design Va such that
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Fig. 3. Measured vs. filtered and estimated acceleration.

ω − ω∗ → 0 as t→∞.

5.2 Benchmark controller

If the velocity and acceleration of the motor were
measured, a simple pole-placement controller might be
designed as follows. First, we design a virtual control law
T ∗M for the mechanical dynamics (13)–(14), taking TM as
a virtual control input. More precisely, we design T ∗M to
steer the tracking error e1 := ω−ω∗ to zero, for any given
velocity reference ω∗. Then, defining i∗a := T ∗M/K, we
design a control law Va to stabilize (15) at the reference i∗a.

There is a variety of ways to stabilize the sys-
tem (13), (14) while rejecting the constant perturba-
tion TL. For the purpose of stressing the utility of our
velocity-and-acceleration-estimation method, we employ
the commonly-used Proportional Integral controller, to
which we add a feedforward term to ensure tracking con-
trol of non-constant references ω∗. That is, let

T ∗M = − k′p e1 − k′i ν +B ω∗ + J ω̇∗ (18)

ν̇ = e1, (19)

where k′p and k′i are positive gains. Then, let us define

e2 := ν + TL

k′
i

and T̃M := TM − T ∗M so that, using ν = e2−
TL

k′
i

in (19) and TM = T̃M + T ∗M in (13), the closed-loop

dynamics become

ė1 =−
B + k′p
J

e1 −
k′i
J
e2 +

T̃M
J

(20)

ė2 = e1. (21)

Clearly, provided that T̃M ≡ 0, {(e1, e2) = (0, 0)} is
exponentially stable for any positive values of k′p and k′i.
Furthermore, the system (20), (21) is input-to-state stable

with respect to T̃M , hence (e1, e2)→ (0, 0) if T̃M → 0.

In order to steer T̃M to zero, it is left to design a
tracking controller to stabilize the system (15) on the
reference current i∗a, which is defined using (18). That is,

i∗a =
T ∗M
K

=
J

K

(
−kp e1 − ki e2 +

B

J
ω + ω̇∗

)
(22)

ė2 = e1, (23)

where

kp :=
B + k′p
J

, ki :=
k′i
J
.
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Fig. 4. Speed tracking for a step-like reference.

Steering the current tracking error e3 := ia − i∗a to
zero may be achieved using a simple proportional-plus-
feedforward controller. That is,

Va = −Lake e3 +Ra ia +Kω + La
di∗a
dt
, (24)

where ke > 0, and

di∗a
dt

=
J

K

(
−kp (ω̇ − ω̇∗)− ki e1 +

B

J
ω̇ + ω̈∗

)
. (25)

Such a choice, leads to the error dynamics

ė1 = −kp e1 − ki e2 + σ e3 (26)

ė2 = e1 (27)

ė3 = −ke e3, (28)

where σ = K/J . Exponential stability of the origin is
easily checked by computing the characteristic polynomial

p(λ) = (λ+ ke)
(
λ2 + kpλ+ ki

)
,

that has roots with strictly negative real part, provided
that kp, ki, and ke are strictly positive. Moreover, these
parameters may be easily tuned according to specific
performance requirements.

Although effective, the PI-based controller defined
above has the drawback that the actual control input (24)
requires measurement of both velocities ω and accelera-
tions ω̇. Not only these are assumed to be unavailable
from measurement but only an inaccurate position mea-
surement θm is available. In the next section we discuss and
compare two possible implementations of the controller
(22)–(24) using, on one hand, the estimates ω̂r and α̂r

obtained via the algorithm presented in Section 4 and, on
the other, the ad-hoc technique of dirty derivatives.

5.3 Simulation results

In this section we illustrate the performance of the
controller described above via numerical simulations. It is
considered that the signals used for the computation of
the control input are the output pulses of an imperfect
incremental encoder.

For the purpose of comparison, two implementation
scenarios are considered. The first one employs the esti-
mates ω̂r and α̂r from the estimation algorithm. In the
second scenario, the estimates of angular velocity and ac-
celeration are computed using filtered differentiation of the
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Fig. 5. Speed tracking for a chirp-like reference.

shaft angular position. A second-order filter with natural
frequency ωn and damping ratio ξ was implemented, using
the following realization:

ẋ1 = x2
ẋ2 = −ω2

nx1 − 2ξωnx2 + ω2
nu

where the input u is the quantized angular position (de-
coded from the encoder pulses), and the outputs are the

filtered position, velocity and acceleration, θ̂f , ω̂f , and α̂f ,
given by

y =

 θ̂fω̂f

α̂f

 =

 x1
x2

−ω2
nx1 − 2ξωnx2 + ω2

nu

 . (29)

For the simulations included in this paper, the values
ωn = 60 Hz, and ξ = 1 were chosen, in order to have
a good compromise between the response-time of the filter
and the level of amplification of noise (which is due to the
digital nature of the encoder).

Figures 4 and 5 illustrate the response of the controller
to a smoothed step and a chirp-like reference, under the
two implementation scenarios described above. Note that,
due to the periodic nature of encoder imperfections, the
period of the oscillations present in the velocity signals
corresponds to one shaft revolution. A better performance
is observed when the controller is implemented using the
algorithm for estimation and compensation of encoder im-
perfections, than with filtered differentiation. The tracking
error is smaller both during the transient and steady-state
intervals. This is consistent with the information depicted
in Figure 6, which shows the frequency response of the
controller. In both cases, a peak is observed at 25 Hz, that
is, the frequency of rotation of the shaft. The amplitude of
this frequency component, however, is much smaller for the
case of the implementation using the estimation algorithm,
than for the case using filtered differentiation.

6. CONCLUSION

We have extended the velocity estimation algorithm
introduced in Aguado-Rojas et al. [2017] to the case of
acceleration estimation. The algorithm aims at reducing
the effects of the most common encoder imperfections,
namely the presence of large periodic perturbations whose
frequency is locked with the rotational frequency of the
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shaft. The effectiveness of the proposed algorithm has
been evaluated via open-loop experimental tests with
satisfactory results. Moreover, as a first-step towards the
implementation of the estimation algorithm in closed-loop
control applications, the performance of a controller with
velocity and acceleration feedback has been investigated
via numerical simulations through a DC motor case-study.

Future work will focus on the practical implementa-
tion of the proposed estimation method. The testbench,
in which the closed-loop tests are to be performed con-
sists of two identical three-phase synchronous motors cou-
pled via a torque transducer and driven via an IGBT-
based converter and a dSPACE board. The implementa-
tion of the time-stamping algorithm could be done with
a dSPACE dedicated incremental encoder interface card,
or with general-purpose data-acquisition devices, such as
a TUeDACs Microgiant as in Merry et al. [2010; 2013].
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