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We address the problem of rotational velocity and acceleration estimation from incremental encoders in the presence of sensor imperfections. In the area of motion control, measurements of shaft velocity and acceleration are often affected by large disturbances with a period of one revolution that arise from sensor imperfections and degrade the performance of most closed-loop control algorithms. We present an algorithm to identify and remove such periodic perturbations online, without the need of error compensation look-up tables, and without assuming constant velocity. The proposed algorithm is evaluated via open-loop experimental tests, and its implementation in closed-loop control applications is investigated via numerical simulations through a DC motor case-study.

INTRODUCTION

Real-time measurement of angular position, velocity and acceleration plays a crucial role in numerous motion control applications [START_REF] Ohnishi | Motion control for advanced mechatronics[END_REF][START_REF] Iwasaki | Highprecision motion control techniques: A promising approach to improving motion performance[END_REF][START_REF] Huang | Hysteresis switch adaptive velocity evaluation and high-resolution position subdivision detection based on FPGA[END_REF]. The most commonly used technology to measure such signals is based on incremental shaft encoders. They consist, mainly, in a toothed wheel (or a slotted disc) attached to the rotating shaft and a fixed pick-off sensor that detects the passing of the teeth and outputs a square wave signal, in which each edge corresponds to the edge of one tooth [De Silva, 2015, § 6.7]. Thus, the position, velocity, and acceleration are not directly measured, but they have to be reconstructed from the encoder pulses.

Several algorithms have been proposed to that end, hence the problem of rotational velocity and acceleration estimation from (ideal) incremental encoder measurements is well-addressed (see [START_REF] Bascetta | Velocity estimation: Assessing the performance of non-modelbased techniques[END_REF] and [START_REF] Ronsse | Real-time estimate of velocity and acceleration of quasi-periodic signals using adaptive oscillators[END_REF] for comprehensive reviews on the state-of-theart). However, since these algorithms rely on the output of a real sensor subject to manufacturing and assembly tolerances, the resulting estimations are inevitably affected by the encoder imperfections. In Aguado-Rojas et al.

[2017], we introduced a velocity estimation algorithm that reduces the effects of encoder imperfections, without requiring the availability of error look-up tables. The advantage of this approach, based on a time-stamping algorithm [START_REF] Merry | Velocity and acceleration estimation for optical incremental encoders[END_REF], is that it has a good

The work of the first author is supported by CONACYT and SEP, Mexico. performance in terms of reducing the effect of encoder imperfections without introducing a long delay, which is a typical drawback of approaches based on notch filters, like those proposed in [START_REF] Panzani | On the periodic noise affecting wheel speed measurement[END_REF] and [START_REF] Hoàng | Reducing the impact of wheel-frequency oscillations in continuous and hybrid abs strategies[END_REF].

The aim of this paper is to extend the approach proposed in [START_REF] Aguado-Rojas | Angular velocity estimation from incremental encoder measurements in the presence of sensor imperfections[END_REF] to provide, in addition to the velocity, an estimation of the acceleration. The key point of our approach is to take into account the effects of the delay introduced by the time-stamping algorithm, by considering a model for the acceleration perturbation that differs from the derivative of the velocity perturbation. Our model also takes into account the link between the number of encoder events considered by the time-stamping algorithm and the spectral width of the perturbation on the measured velocity. Using this model and the least-square method (or, equivalently, the gradient algorithm) one can identify in real-time the characteristics of the encoder imperfections, and compensate them in order to deduce the actual velocity and acceleration of the system. As an example, we illustrate the potential usefulness of this new estimation algorithm in closed-loop control applications through a DC motor case-study.

The rest of the paper is organized as follows. In Section 2 we present a brief review on the most common encoder imperfections, and the effects that they have on the position, velocity and acceleration measurements. In Section 3 we introduce three models that capture the effects of sensor imperfections on the measured signals. Based on these models, in Section 4 we propose a method to identify and remove the periodical disturbances introduced by sensor imperfections, and validate it via open-loop experimental tests. The implementation of the proposed method in closed-loop control applications is investigated in Section 5. Concluding remarks are given in Section 6.

PRELIMINARIES: ON ENCODER IMPERFECTIONS AND THEIR EFFECTS

An ideal incremental encoder is characterised by identical and equidistant teeth (or slits) distributed over the encoder's code-wheel, and quadrature output channels with 50% duty cycles. However, real devices are subject to well-known manufacturing and assembly imperfections [START_REF] Kavanagh | Shaft encoder characterization via theoretical model of differentiator with both differential and integral nonlinearities[END_REF][START_REF] Kavanagh | Performance analysis and compensation of M/T-type digital tachometers[END_REF][START_REF] Kavanagh | Shaft encoder characterisation through analysis of the mean-squared errors in nonideal quantised systems[END_REF]. Generated by these imperfections, the most significant error sources in the encoder output signals are due to [START_REF] Merry | Optimal higher-order encoder time-stamping[END_REF]:

• Cycle error: stochastic variations in the location of the rising or falling edges of the encoder pulses from their nominal values, due to unequal positional spacings of the slits, as well as limitations and irregularities of the encoder's signal generation and sensing hardware. • Pulse-width error: the deviation of the pulse width from its ideal value of 180 • . • Phase error: the deviation of the phase between the two output channels from its ideal value of 90 • . • Eccentricity or tilt of the encoder's code-wheel, due to concentricity and assembly tolerances. These error sources introduce a time shift to all edges of the output pulses, hence resulting in inexact readings of displacement that affect the quality of the position, velocity and acceleration measurements.

Cycle, pulse-width, and phase errors appear as highfrequency variations when viewed over the circumference of the encoder's code-wheel, while eccentricity or tilt describe a systematic low-frequency variation with a period of one revolution. Furthermore, because the measurement error caused by sensor imperfections is periodic over one mechanical revolution, the measurements of velocity and acceleration contain large periodic perturbations whose frequency is locked with the rotational frequency of the shaft. In the following section we introduce three models that capture the effects of sensor imperfections on the measured position, velocity, and acceleration signals, based on which our estimation algorithm is designed.

MEASUREMENT MODELS

The arguments given in the previous section and the experimental data reported in [START_REF] Aguado-Rojas | Angular velocity estimation from incremental encoder measurements in the presence of sensor imperfections[END_REF], lead us to model the effects of sensor imperfections using a 2π-periodic function, that we denote f r , added to the real position θ r . Hence the measured position θ m corresponds to θ m = θ r + f r (θ r ). If the function f r is approximated using a finite number M r of Fourier coefficients, one obtains

θ m = θ r + Mr k=1 a r k sin(kθ r ) + b r k cos(kθ r ) .
In what follows, we assume that both a r k 1 and b r k 1. This condition is always satisfied if the encoder is of reasonable quality and if the sensor has been correctly mounted on its shaft.

The fact that θ r is unknown limits the applicability of the previous model. Nevertheless, when the perturbation f r is sufficiently small, the function ϕ r (θ r ) = θ r + f r (θ r ) is invertible so, denoting this inverse by ϕ m , we have

θ m = θ r + f r • ϕ m (θ m ) and, defining f m = f r • ϕ m , we obtain θ m = θ r + f m (θ m ).
The function f m is also a 2π-periodic. Note, however, that the Fourier coefficients of a finite approximation of f m , given by

θ m = θ r + M k=1 a k sin(kθ m ) + b k cos(kθ m ) , (1) 
are in general different from those of f r , even when M = M r . Moreover, the fact that the Fourier approximation of f r of order M r is exact does not necessarily imply that the same is true for f m . In fact, it might be necessary to take M > M r to obtain a good approximation.

The new model ( 1) is the starting point for our estimation algorithm. The differentiation with respect to time of the expression above leads to the velocity and acceleration measurement models

ω m = ω r + ω m M k=1 ka k cos(kθ m ) -kb k sin(kθ m ) (2) 
and

α m = α r + α m M k=1 ka k cos(kθ m ) -kb k sin(kθ m ) -ω 2 m M k=1 k 2 a k sin(kθ m ) + k 2 b k cos(kθ m ) , (3) 
in which the Fourier coefficients a k , b k , a k and b k are unknown. Therefore, our goal is to estimate the Fourier coefficients in order to recover reliable estimates of ω r and α r .

Remark 1. The notation (•) and (•) is used here in order to emphasize that, depending on the algorithm employed to reconstruct the position, velocity and acceleration signals from the encoder pulses, the Fourier coefficients in ( 2) and (3) may not necessarily be equal to those in (1).

In our work, in order to reconstruct angular velocity and acceleration from the output pulses of an incremental encoder, we employ a method known as the time-stamping algorithm [START_REF] Merry | Optimal higher-order encoder time-stamping[END_REF]. It consists in capturing, via a high-resolution clock, the time instants in which the rising or falling edges of the output pulses are detected, and using the information of the last n events to approximate the evolution of the angular position with a polynomial of order m. Estimates of the angular velocity ω and acceleration α are then obtained via analytic differentiation of the fitted polynomial with respect to time.

An evaluation of the quality of these models as a function of the number of harmonics M seems to indicate that the fit between data and the model improves until M = N/n + 1, where N is the number of pulses per revolution of the encoder, n is the number of events used in the fit, and • is the smallest integer greater than or equal to the argument. In other words, taking less events reduces the measurement delay but increases the complexity of the model. Based on (2) and (3), an algorithm to reduce the periodic noise present in the measured velocity and acceleration can be designed as discussed in the following section.

VELOCITY AND ACCELERATION ESTIMATION

Let us rewrite ( 2) and (3) as

ω m = ω r + ω m φ(θ m ) Dϑ (4) and α m = α r + α m φ(θ m ) D -ω 2 m ψ(θ m ) D 2 ϑ , (5) 
where D ∈ R 2M ×2M , φ and ψ ∈ R 2M are defined as

D = diag(1, 1, 2, 2, . . .), φ(θ m ) = [cos(θ m ) -sin(θ m ) cos(2θ m ) -sin(2θ m ) • • •] , ψ(θ m ) = [sin(θ m ) cos(θ m ) sin(2θ m ) cos(2θ m ) • • •] , and ϑ , ϑ ∈ R 2M contain the corresponding coefficients a k , b k , a k and b k .
From these models, the measured velocity ω m and the measured acceleration α m can be seen as the sum of a low-frequency term -ω r in (4) and α r in ( 5 In order to estimate the real velocity (resp. acceleration), we perform the three-stage algorithm illustrated in Fig. 1, which is based on the work presented in Aguado-Rojas et al. [2017]. In the first stage, in order to separate ζ from the other terms in (4) (resp. ( 5)), the measured signal is filtered using a first-order high-pass filter with a cutoff frequency that is considerably below that of the wheel revolution (for example 1 Hz).

In the second stage, assuming that the filters are ideal and they completely eliminate the low-frequency term of the measured signals, i.e. ζ ≈ ζ, the Fourier coefficients of the periodic perturbation in (4) (resp. ( 5)) are estimated using the parametric model

ζ = Φ(θ m , ω m , α m ) ϑ (7)
via the normalized recursive least-squares (RLS) algorithm with forgetting factor [Ioannou and Sun, 2012, Ch. 4

]: ˙ ϑ = -ΓΦε, ϑ(0) = ϑ 0 (8) Γ = βΓ - ΓΦ ΦΓ 1 + κΦ Φ , Γ(0) = Γ 0 (9) ε = Φ ϑ -ζ 1 + κΦ Φ ( 10 
)
where κ > 0, β > 0 and Γ 0 = Γ 0 > 0.

Note that due to the form of the parametric model ( 7) any other standard algorithm may be used. Note also that, due to the form of φ(θ m ), ψ(θ m ) and D, the realtime implementation of the RLS algorithm can be greatly simplified, especially for large values of M . That is, the term Φ Φ in ( 9) and ( 10) simplifies to

Φ Φ = ς 2 ω 2 m
for the model ( 4)

ς 2 α 2 m + ς 4 ω 4 m for the model (5) where ς 2 = M k=1 k 2 and ς 4 = M k=1 k 4 .
Finally, using the estimated parameters ϑ, we construct our velocity estimate as

ω r = ω m -ω m φ(θ m ) D ϑ
(11) and our acceleration estimate as

α r = α m -α m φ(θ m ) D -ω 2 m ψ(θ m ) D 2 ϑ . (12 
) Remark 2. As a direct consequence of Remark 1, in general α m = ωm . Therefore, the estimated parameters ϑ of the velocity measurement model (4) should not be used for acceleration estimation using ( 12), and the estimated parameters ϑ of the acceleration measurement model (5) should not be used for velocity estimation using (11).

The (open-loop) experimental validation of the estimation algorithm is illustrated in Figures 2 and3, using a piecewise-constant reference. The initial condition for the estimated parameters was arbitrarily set to zero, and Γ 0 was chosen as a matrix of the form Γ 0 = diag(γ 1 , γ 1 , γ 2 , γ 2 , . . .) with γ 1 > γ 2 > . . . > γ M > 0. A comparison with respect to the results obtained using a notch filter to remove the periodic perturbations introduced by sensor imperfections is shown as well.

The depicted results show that, once the estimated parameters have converged to appropriate values, the estimated signals contain significantly smaller oscillations than the measured signals. This can be more easily noticed during the intervals in which the velocity or the acceleration are constant. During this intervals, the level of attenuation of the periodic perturbations of the estimation algorithm is similar to the one of the notch filter. The usefulness of the estimation algorithm over a notch filter is, however, more evident during the intervals in which the velocity or the acceleration are changing. Even though both the notch filter and the estimation algorithm show a good performance in terms of reducing the amplitude of the oscillations, the filter clearly introduces a significant delay, whereas the estimation scheme follows the reference with no noticeable delay. The use of the estimation algorithm in a closed-loop control scenario is investigated in the following section. Fig. 2. Measured vs. filtered and estimated velocity.

CASE-STUDY: DC MOTOR CONTROL

In what follows, we present a control algorithm for the velocity-tracking problem of the DC motor. It is important to stress at this point, that our aim is not to develop a new control strategy that would supersede the ones that already exist. Instead, our aim is to investigate, through a simple academic case-study, the advantages and drawbacks of our estimation algorithm in control applications, relative to other estimation methods, such as approximate differentiation.

System modelling

Let us consider the mechanical dynamics of a DC motor, that is,

J dω dt + Bω = T M -T L (13) dθ dt = ω, (14) 
where θ and ω are the angular position and velocity of the shaft, respectively, J is the rotor inertia, B is the viscous friction coefficient, T M is the torque exerted by the motor, and T L is the load torque. The electrical dynamics is described by

L a di a dt + R a i a = V a -E, (15) 
where i a is the armature current, V a is the armature voltage, which is used as control input, L a is the armature inductance, R a is the armature resistance, and E is the back-emf. Assuming that the magnetic flux Φ is constant, the dynamics ( 13) and ( 15) are related by the expressions

T M = K t i a (16) E = K e ω, (17) 
where K t = K t Φ and K e = K e Φ are constants. In SI units, the motor torque and back-emf proportionality constants are equal. Hence, in what follows, K := K t = K e is used. In addition, it is assumed that the parameters J, B, K, R a , and L a are known while the constant perturbation T L is unknown. Furthermore it is also assumed that only the armature current i a and the angular position θ are measured. The latter, however, is obtained from an imperfect incremental encoder.

Then, the control objective is formulated as follows. Given a bounded and twice differentiable velocity reference ω * : R ≥0 → R, design V a such that ω -ω * → 0 as t → ∞.

Benchmark controller

If the velocity and acceleration of the motor were measured, a simple pole-placement controller might be designed as follows. First, we design a virtual control law T * M for the mechanical dynamics ( 13)-( 14), taking T M as a virtual control input. More precisely, we design T * M to steer the tracking error e 1 := ω -ω * to zero, for any given velocity reference ω * . Then, defining i * a := T * M /K, we design a control law V a to stabilize (15) at the reference i * a . There is a variety of ways to stabilize the system ( 13), ( 14) while rejecting the constant perturbation T L . For the purpose of stressing the utility of our velocity-and-acceleration-estimation method, we employ the commonly-used Proportional Integral controller, to which we add a feedforward term to ensure tracking control of non-constant references ω * . That is, let

T * M = -k p e 1 -k i ν + B ω * + J ω * (18) ν = e 1 , (19) 
where k p and k i are positive gains. Then, let us define

e 2 := ν + T L k i and TM := T M -T * M so that, using ν = e 2 - T L k i in (19) and T M = TM + T * M in (13), the closed-loop dynamics become ė1 = - B + k p J e 1 - k i J e 2 + TM J (20) ė2 = e 1 . (21) 
Clearly, provided that TM ≡ 0, {(e 1 , e 2 ) = (0, 0)} is exponentially stable for any positive values of k p and k i . Furthermore, the system (20), ( 21) is input-to-state stable with respect to TM , hence (e 1 , e 2 ) → (0, 0) if TM → 0.

In order to steer TM to zero, it is left to design a tracking controller to stabilize the system (15) on the reference current i * a , which is defined using (18). That is,

i * a = T * M K = J K -k p e 1 -k i e 2 + B J ω + ω * (22) ė2 = e 1 , (23) 
where Steering the current tracking error e 3 := i a -i * a to zero may be achieved using a simple proportional-plusfeedforward controller. That is,

k p := B + k p J , k i := k i J .
V a = -L a k e e 3 + R a i a + Kω + L a di * a dt , (24) 
where k e > 0, and

di * a dt = J K -k p ( ω -ω * ) -k i e 1 + B J ω + ω * . ( 25 
)
Such a choice, leads to the error dynamics ė1 = -k p e 1 -k i e 2 + σ e 3 (26) ė2 = e 1 (27) ė3 = -k e e 3 , (28) where σ = K/J. Exponential stability of the origin is easily checked by computing the characteristic polynomial p(λ) (λ + k ) λ 2 + k p λ + k i , that has roots with strictly negative real part, provided that k p , k i , and k e are strictly positive. Moreover, these may be easily tuned according to specific performance requirements.

Although effective, the PI-based controller defined above has the drawback that the actual control input (24) requires measurement of both velocities ω and accelerations ω. Not only these are assumed to be unavailable from measurement but only an inaccurate position measurement θ m is available. In the next section we discuss and compare two possible implementations of the controller ( 22)-( 24) using, on one hand, the estimates ωr and αr obtained via the algorithm presented in Section 4 and, on the other, the ad-hoc technique of dirty derivatives.

Simulation results

In this section we illustrate the performance of the controller described above via numerical simulations. It is considered that the signals used for the computation of the control input are the output pulses of an imperfect incremental encoder.

For the purpose of comparison, two implementation scenarios are considered. The first one employs the estimates ωr and αr from the estimation algorithm. In the second scenario, the estimates of angular velocity and acceleration are computed using filtered differentiation of the shaft angular position. A second-order filter with natural frequency ω n and damping ratio ξ was implemented, using the following realization: ẋ1 = x 2 ẋ2 = -ω 2 n x 1 -2ξω n x 2 + ω 2 n u where the input u is the quantized angular position (decoded from the encoder pulses), and the outputs are the filtered position, velocity and acceleration, θf , ωf , and αf , given by

y =   θf ωf αf   =   x 1 x 2 -ω 2 n x 1 -2ξω n x 2 + ω 2 n u   . (29) 
For the simulations included in this paper, the values ω n = 60 Hz, and ξ = 1 were chosen, in order to have a good compromise between the response-time of the filter and the level of amplification of noise (which is due to the digital nature of the encoder).

Figures 4 and5 illustrate the response of the controller to a smoothed step and a chirp-like reference, under the two implementation scenarios described above. Note that, due to the periodic nature of encoder imperfections, the period of the oscillations present in the velocity signals corresponds to one shaft revolution. A better performance is observed when the controller is implemented using the algorithm for estimation and compensation of encoder imperfections, than with filtered differentiation. The tracking error is smaller both during the transient and steady-state intervals. This is consistent with the information depicted in Figure 6, which shows the frequency response of the controller. In both cases, a peak is observed at 25 Hz, that is, the frequency of rotation of the shaft. The amplitude of this frequency component, however, is much smaller for the case of the implementation using the estimation algorithm, than for the case using filtered differentiation.

CONCLUSION

We have extended the velocity estimation algorithm introduced in Aguado-Rojas et al. [2017] to the case of acceleration estimation. The algorithm aims at reducing the effects of the most common encoder imperfections, namely the presence of large periodic perturbations whose frequency is locked with the rotational frequency of the shaft. The effectiveness of the proposed algorithm has been via open-loop experimental tests with satisfactory results. Moreover, as a first-step towards the implementation of the estimation algorithm in closed-loop control applications, the performance of a controller with velocity and acceleration feedback has been investigated via numerical simulations through a DC motor case-study. Future work will focus on the practical implementation of the proposed estimation method. The testbench, in which the closed-loop tests are to be performed consists of two identical three-phase synchronous motors pled via a torque transducer and driven via an IGBTbased converter and a dSPACE board. The implementation of the time-stamping algorithm could be done with a dSPACE dedicated incremental encoder interface card, or with general-purpose data-acquisition devices, such as a TUeDACs Microgiant as in [START_REF] Merry | Velocity and acceleration estimation for optical incremental encoders[END_REF]2013].

  Fig. 1. Three-stage velocity and acceleration estimation algorithm.
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 6 Fig.6. Right: Frequency response of the controller using estimation algorithm. Left: Frequency response of the controller using filtered differentiation.