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1. Introduction 1.1. Presentation of the continuous problem. The purpose of this work is to investigate the large time behavior of a seawater intrusion model which is a twophase generalization of the porous medium equation (PME). The model we are interested in is derived by Jazar and Monneau in [START_REF] Jazar | Derivation of seawater intrusion models by formal asymptotics[END_REF], where the authors consider the Dupuit approximation of an unsaturated immiscible two-phase (freshwater and saltwater) within an unconfined aquifer assuming that the interface between both fluids is sharp (the fluids occupy disjoint regions), see also [START_REF] Escher | Modelling and analysis of the Muskat problem for thin fluid layers[END_REF][START_REF] Woods | The dynamics of two-layer gravity-driven flows in permeable rock[END_REF] for alternative derivations of the same model. This yields a 2D reduced model obtained from a full 3D model where the unknowns are the heights of the fluid layers. More precisely the interface between the saltwater and the bedrock is set at {z = 0}, whereas the height of the freshwater (resp. saltwater) layer is denoted by {z = f (t, x)} (resp. {z = g(t, x)}), see Figure 1. The model proposed in [START_REF] Jazar | Derivation of seawater intrusion models by formal asymptotics[END_REF] is

(1)      ∂ t f -∇• νf ∇(f + g) = 0 in (0, ∞) × R 2 , ∂ t g -∇• g∇(ρf + g) = 0 in (0, ∞) × R 2 , f |t=0 = f 0 , g |t=0 = g 0 in R 2 ,
where ρ = ρ fresh ρ salt ∈ (0, 1) is the density ratio between the two fluids, and where the parameter ν = ν salt ν fresh > 0 is the ratio of the kinematic viscosities. The authors in [START_REF] Escher | Modelling and analysis of the Muskat problem for thin fluid layers[END_REF][START_REF] Escher | Existence and stability of solutions for a strongly coupled system modelling thin fluid films[END_REF] studied the classical solutions of system [START_REF] Ait | A finite volume scheme for a seawater intrusion model with crossdiffusion[END_REF]. Moreover, the existence of weak solutions is established under different assumptions in [START_REF] Escher | Existence and stability of weak solutions for a degenerate parabolic system modelling two-phase flows in porous media[END_REF][START_REF] Ph | A gradient flow approach to a thin film approximation of the Muskat problem[END_REF][START_REF] Ph | A thin film approximation of the Muskat problem with gravity and capillary forces[END_REF][START_REF] Choquet | Global existence for seawater intrusion models: comparison between sharp interface and sharp-diffuse interface approaches[END_REF]. The characteristic time corresponding to the aquifer dynamics is large. Therefore, understanding the large-time behavior of system (1) is of great interest. The so-called entropy method [START_REF] Arnold | On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations[END_REF][START_REF] Jüngel | Entropy methods for diffusive partial differential equations[END_REF] provides a powerful approach to study the long time behavior of different systems of PDEs. It has been developed first for kinetic equations (Boltzmann and Landau [START_REF] Toscani | On the trend to equilibrium for some dissipative systems with slowly increasing a priori bounds[END_REF]). Then it was extended to other problems, as the linear Fokker-Planck equation [START_REF] Carrillo | Exponential convergence toward equilibrium for homogeneous Fokker-Planck-type equations[END_REF], the porous medium equation (PME) [START_REF] Carrillo | Asymptotic L 1 -decay of solutions of the porous medium equation to self-similarity[END_REF][START_REF] Vázquez | The porous medium equation[END_REF], reaction-diffusion systems [START_REF] Desvillettes | Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations[END_REF][START_REF] Desvillettes | Duality and entropy methods for reversible reaction-diffusion equations with degenerate diffusion[END_REF][START_REF] Glitzky | Exponential decay of the free energy for discretized electro-reaction-diffusion systems[END_REF], drift-diffusion systems for semiconductor devices [START_REF] Gajewski | On the discretization of van Roosbroeck's equations with magnetic field[END_REF][START_REF] Gajewski | On the basic equations for carrier transport in semiconductors[END_REF][START_REF] Gajewski | Semiconductor equations for variable mobilities based on Boltzmann statistics or Fermi-Dirac statistics[END_REF], and thin film models [START_REF] Carlen | An entropy dissipation-entropy estimate for a thin film type equation[END_REF]. For more details about this method and its application domains, one can refer to [START_REF] Arnold | On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations[END_REF][START_REF] Jüngel | Entropy methods for diffusive partial differential equations[END_REF] and the references therein. Similar results were obtained in [START_REF] Bolley | Convergence to equilibrium in Wasserstein distance for Fokker-Planck equations[END_REF][START_REF] Bolley | Uniform convergence to equilibrium for granular media[END_REF][START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF][START_REF] Zinsl | Exponential convergence to equilibrium in a coupled gradient flow system modeling chemotaxis[END_REF] based on the interpretation of the PDE models as the gradient flow of a certain energy functional with respect to the Wasserstein metric. We refer for instance to the monographs [START_REF] Ambrosio | Gradient flows in metric spaces and in the space of probability measures[END_REF][START_REF] Santambrogio | Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling[END_REF] for an extensive discussion on this topic.

In [START_REF] Ph | Self-Similarity in a Thin Film Muskat Problem[END_REF], Laurençot and Matioc studied the large-time behavior of the system (1) in the one-dimensional case. In their paper a classification of self-similar solutions is first provided : there is always a unique even self-similar solution (also found in [START_REF] Woods | The dynamics of two-layer gravity-driven flows in permeable rock[END_REF]) while a continuum of non-symmetric self similar solutions exists for certain fluid configurations. The authors proved the convergence of all nonnegative weak solutions towards a self-similar solution. Nevertheless nothing is known about the rate of convergence. Surprisingly, the situation is simpler in the 2D case, as we shall see below.

As already mentioned, the system (1) can be interpreted as a two-phase generalization of the PME. This can be easily seen by choosing f ≡ 0 or g ≡ 0 in the system [START_REF] Ait | A finite volume scheme for a seawater intrusion model with crossdiffusion[END_REF]. In order to explain the principles of the entropy method, let us consider the following PME (2)

∂ t v = ∆v 2 in (0, ∞) × R 2 , v(0, x) = v 0 (x) ≥ 0 in R 2 .
A further transformation of (2) involves the so-called self-similar variables (see [START_REF] Carrillo | Asymptotic L 1 -decay of solutions of the porous medium equation to self-similarity[END_REF][START_REF] Vázquez | The porous medium equation[END_REF]) and reads

(3) u(t, x) = e 2t v 1 4 (e 4t -1), xe t , (t, x) ∈ [0, ∞) × R 2 , which transforms (2) into the nonlinear Fokker-Planck equation ( 4)

∂ t u = div(xu + ∇u 2 ) in (0, ∞) × R 2 , u(0, x) = v 0 (x) ≥ 0 in R 2 .
In [START_REF] Carrillo | Asymptotic L 1 -decay of solutions of the porous medium equation to self-similarity[END_REF] the authors study the large time behavior of the PME (2) using the rescaled equation ( 4). The energy corresponding to ( 4) is ( 5)

H(u) = R 2 |x| 2 u + 2u 2 dx. Given a nonnegative initial condition v 0 ∈ L 1 (R 2 ) with M := v 0 L 1 (R 2 )
> 0, they prove that the unique stationary solution of (4), which is given by the Barenblatt-Pattle type formula

(6) u ∞ (x) = max β - 1 4 |x| 2 , 0 , x ∈ R 2 ,
where β is determined by u ∞ L 1 (R 2 ) = M attracts the corresponding solution u to (4) at an exponential rate. Moreover u ∞ is the unique minimizer of H in

u ∈ L 2 (R 2 ) ∩ L 1 R 2 , (1 + |x| 2 ) dx : u L 1 (R 2 ) = M .
More precisely, the relative entropy of u with respect to u ∞ is then defined by

H(u|u ∞ ) := H(u) -H(u ∞ ) ≥ 0,
whereas the entropy production for H(u|u ∞ ) is given by

I(u) = R 2 u x + 2∇u 2 dx. Let the initial data v 0 satisfy v 0 ∈ L 1 (R 2 ) ∩ L ∞ (R 2 ) with |x| 2+δ v 0 ∈ L 1 (R 2 )
for some δ > 0. Then the corresponding solution u to (4) satisfies

lim t→∞ H(u(t)|u ∞ ) = 0 and lim t→∞ I(u(t)) = 0.
Moreover, H(u(t)|u ∞ ) and I(u(t)) are linked by the relation

(7) d dt H(u(t)|u ∞ ) = -2I(u(t)), and (8) 
d dt I(u(t)) = -2I(u(t)) -R(t),
where R(t) ≥ 0. Combining [START_REF] Bolley | Uniform convergence to equilibrium for granular media[END_REF] and ( 8) one obtains

(9) d dt H(u(t)|u ∞ ) = d dt I(u(t)) + R(t) ≥ d dt I(u(t)).
Integrating [START_REF] Carrillo | Exponential convergence toward equilibrium for homogeneous Fokker-Planck-type equations[END_REF] with respect to t over (0, ∞) gives

(10) 0 ≤ H(u(t)|u ∞ ) ≤ I(u(t)), t > 0.
Substituting (10) into [START_REF] Bolley | Uniform convergence to equilibrium for granular media[END_REF], one concludes with the exponential decay of the relative entropy to zero at a rate 2. The goal of this paper is to apply a similar strategy to describe the long time behavior of the system (1). Our approach relies also in the use of self-similar variables [START_REF] Desvillettes | Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations[END_REF], leading to the introduction of quadratic confining potentials. The advantage of this alternative formulation is that the profiles of nonnegative selfsimilar solutions to (1) are nonnegative stationary solutions to [START_REF] Desvillettes | Duality and entropy methods for reversible reaction-diffusion equations with degenerate diffusion[END_REF]. We will give an explicit characterization of the self-similar profiles in Section 4 and, relying on compactness arguments, we prove the convergence towards a stationary solution. Unfortunately, due to the extended complexity of the problem (1) with respect to [START_REF] Ait | Numerical analysis of a finite volume scheme for a seawater intrusion model with cross-diffusion in an unconfined aquifer[END_REF] we are not able to establish the exponential convergence towards a steady state. This motivates the numerical investigation carried out in Section 5, using a Finite Volume scheme [START_REF] Ait | Numerical analysis of a finite volume scheme for a seawater intrusion model with cross-diffusion in an unconfined aquifer[END_REF][START_REF] Ait | A finite volume scheme for a seawater intrusion model with crossdiffusion[END_REF] which preserves at the discrete level the main features of the continuous problem (in particular the nonnegativity of the solutions, conservation of mass and decay of energy).

The outline of the paper is as follows. In the next section we state the main results of our paper. As a preliminary step, we introduce a rescaled version (13) of the system (1) which relies in particular on the introduction of self-similar variables. In Theorem 2.1 we state the existence and uniqueness of nonnegative stationary solutions to [START_REF] Desvillettes | Duality and entropy methods for reversible reaction-diffusion equations with degenerate diffusion[END_REF], which are moreover radially symmetric, compactly supported and Lipschitz continuous. The convergence of any nonnegative weak solution to (13) towards these stationary solutions is stated in Theorem 2.2. In Section 3 we prove Theorem 2.1 and Theorem 2.2. In Section 4 we give a classification of the self-similar profiles and we exhibit critical values of the parameter ν for which the shape of the stationary profile changes. We finally present in Section 5 numerical simulations for different values of ν in order to observe the stationary solutions and the decay of the relative energy.

Main results

In what follows, given M > 0, we use the following closed convex set

K M := h ∈ L 2 (R 2 ) ∩ L 1 R 2 , (1 + |x| 2 ) dx : h ≥ 0 a.e. and h L 1 (R 2 ) = M .
2.1. Self-similar solutions. The main contribution of this paper is the classification of nonnegative self-similar solutions to (1), that is, solutions of the form

(11) (f, g)(t, x) = (1 + t) -1/2 (F, G)(x(1 + t) -1/4 ), (t, x) ∈ (0, ∞) × R 2 .
Deeper insight on this issue is provided by transforming (1) using the so-called self-similar variables [START_REF] Carrillo | Asymptotic L 1 -decay of solutions of the porous medium equation to self-similarity[END_REF][START_REF] Vázquez | The porous medium equation[END_REF], i.e.,

(f, g)(t, x) = 1 (1 + t) 1/2 ( f , g) log(1 + t), x (1 + t) 1/4 . (12) 
We end up with the following rescaled system (13)

       ∂ t f -∇• ν f ∇( f + g + b/ν) = 0 in (0, ∞) × R 2 , ∂ t g -∇• g∇(ρ f + g + b) = 0 in (0, ∞) × R 2 , f|t=0 = f 0 , g|t=0 = g 0 in R 2 ,
where b(x) = |x| 2 /8. Thus this change of variable preserves the nature of the equations but adds a confining drift term, the confining potentials b/ν and b being different as soon as the two phases have different kinematic viscosities, i.e., ν = 1.

The resulting system (13) still has a gradient flow structure, but for a modified energy in comparison to (1). Indeed the system (13) can be interpreted as the gradient flow with respect to the 2-Wasserstein metric [START_REF] Ph | A gradient flow approach to a thin film approximation of the Muskat problem[END_REF] of the following energy ( 14)

E( f , g) = R 2 E( f , g) dx,
where

(15) E( f , g) = ρ 2 ( f + g) 2 + 1 -ρ 2 g2 + b ρ ν f + g .
A corner stone of our study is that, if (f, g) is a self-similar solution ( 11) to (1), then the corresponding self-similar profile (F, G) is a stationary solution to [START_REF] Desvillettes | Duality and entropy methods for reversible reaction-diffusion equations with degenerate diffusion[END_REF]. We will see in what follows that, given M f > 0 and M g > 0, there is a unique nonnegative stationary solution (F, G) to [START_REF] Desvillettes | Duality and entropy methods for reversible reaction-diffusion equations with degenerate diffusion[END_REF] satisfying

F L 1 (R 2 ) = M f and G L 1 (R 2 ) = M g and it is the unique minimizer of E in K M f × K Mg .
Furthermore, it satisfies the system

F ∇φ F = 0 in R 2 , G∇φ G = 0 in R 2 ,
where we introduce the potentials

φ F := F + G + b ν , φ G := ρF + G + b.
In other words, the fluxes expressed in the self-similar variables are identically equal to zero.

In what follows, we mainly work on the system (13) expressed in self-similar variables. In order to lighten the notations, we remove the tildes on f and g and denote solutions to (13) by (f, g) while the steady states to [START_REF] Desvillettes | Duality and entropy methods for reversible reaction-diffusion equations with degenerate diffusion[END_REF] are denoted by (F, G).

Given two positive real numbers M f > 0 and M g > 0 and a stationary solution (F, G) ∈ K M f × K Mg to (13), we define the positivity sets E F and E G of F and G by

E F = {x ∈ R 2 : F (x) > 0}, E G = {x ∈ R 2 : G(x) > 0}
, and notice that E F and E G are both nonempty as ( 16)

F L 1 (R 2 ) = R 2 F dx = M f > 0 and G L 1 (R 2 ) = R 2 G dx = M g > 0.
2.2. Main results. Let (F, G) ∈ K M f × K Mg be a stationary solution of [START_REF] Desvillettes | Duality and entropy methods for reversible reaction-diffusion equations with degenerate diffusion[END_REF]. Let M f > 0 and M g > 0 be two positive real numbers.

Theorem 2.1 (Self-similar profiles). There exists a unique stationary solution

(F, G) ∈ K M f × K Mg of (13) such that F and G belong to H 1 (R 2 ) and √ F φ F and √ Gφ G belong to L 2 (R 2 ).
It is radially symmetric, compactly supported, and Lipschitz continuous, and satisfies

F ∇(F + G + b/ν) = 0 a.e. in R 2 , G∇(ρF + G + b) = 0 a.e. in R 2 .
Moreover, E F and E G are bounded connected sets and

(F, G) ∈ arg min (f,g)∈K M f ×K Mg E(f, g).
An important result of this paper is the complete classification of the self-similar profiles (F, G). In fact, in contrast with the 1D case [START_REF] Ph | Self-Similarity in a Thin Film Muskat Problem[END_REF], we prove that all selfsimilar profiles (F, G) are radially symmetric and thus can be computed explicitly, see Section 4. Besides being of interest to compare the outcome of numerical simulations with the theoretical predictions, this feature is at the heart of the uniqueness proof. Still, as it will be explained in Section 4, the shape of F and G strongly depends on ν, ρ, and the mass ratio M f /M g . The topology of E F and E G changes according to the values of these parameters.

The second result concerns the convergence of weak solutions to (13) towards the stationary state.

Theorem 2.2 (Convergence towards the stationary state). Let (f 0 , g 0 ) ∈ K M f × K Mg and consider the weak solution (f, g) of [START_REF] Desvillettes | Duality and entropy methods for reversible reaction-diffusion equations with degenerate diffusion[END_REF] given by Theorem 3.2. Then

f (t), g(t) -→ (F, G) in L 2 (R 2 ; R 2 ) as t → ∞,
where (F, G) is the unique stationary solution of (13) in K M f × K Mg given by Theorem 2.1.

Theorem 2.2 guarantees the convergence of the solutions of ( 13) to the steady state but provides no information on the rate of convergence. We conclude the paper by a numerical investigation concerning the convergence speed. The situation appears to be more intricate than for the (rescaled) single phase PME (4) and, even though exponential convergence is always observed in our numerical tests, the rate strongly varies with the data and goes close to zero for some values of ν. It is in particular rather unclear if there exists a uniform strictly positive minimum decay rate at which convergence occurs.

The steady states and convergence towards a minimizer

We fix M f > 0 and M g > 0.

3.1. Energy/energy dissipation for weak solutions.

Let ω ∈ L 1 loc (R 2 ; R + ) with R + = (0, ∞). For r ≥ 1, we define L r ω (R 2 ) as the set of measurable functions ψ such that R 2 |ψ(y)| r ω(y) dy < ∞,
which is a Banach space once equipped with the norm

ψ L r ω (R 2 ) = R 2 |ψ(y)| r ω(y) dy 1/r .
For further use, we define the phase potentials ( 17)

φ f = f + g + b/ν and φ g = ρf + g + b. Definition 3.1 (weak solution). Consider (f 0 , g 0 ) ∈ K M f × K Mg . A pair (f, g) : R 2 × R + → R 2 + is a weak solution to the problem (13) if (i) f and g belong to L ∞ (R + ; L 2 (R 2 )) and to L ∞ (R + ; L 1 |x| 2 (R 2 )), (ii) ∇f and ∇g belong to L 2 loc (R + ; L 2 (R 2 )), (iii) √ f ∇φ f and √ g∇φ g belong to L 2 (R + × R 2 ) (iv) for all ξ ∈ C ∞ c (R + × R 2 ), there holds R+ R 2 f ∂ t ξ dx dt + R 2 f 0 ξ(0, •) dx - R+ R 2 νf ∇φ f • ∇ξ dx dt = 0, R+ R 2 g∂ t ξ dxdt + R 2 g 0 ξ(0, •) dx - R+ R 2 g∇φ g • ∇ξ dx dt = 0.
The existence of a weak solution of the problem ( 13) and the decay of the energy E are given by the following theorem.

Theorem 3.2. Consider (f 0 , g 0 ) ∈ K M f × K Mg .
There exists a weak solution in the sense of Definition 3.1. Moreover, it satisfies the energy inequality

(18) E(f, g)(t) + t s I(f, g)(τ ) dτ ≤ E(f, g)(s), t ≥ s ≥ 0,
with the energy dissipation I given by

(19) I(f, g) = R 2 νρf |∇φ f | 2 + g|∇φ g | 2 dx,
and the entropy inequality

(20) H(f, g)(t) + t s D(f, g)(τ ) dτ ≤ H(f, g)(s) + ρM f 2 + νM g 2 (t -s), t ≥ s ≥ 0,
where

H(f, g) = R 2 (ρf ln f + νg ln g) dx, D(f, g) = νρ ∇(f + g) 2 L 2 (R 2 ) + ν(1 -ρ) ∇g 2 L 2 (R 2 ) . Since u log(u) ≤ u 2 for u ≥ 0, one has (21) H(f, g)(t) ≤ ρ f (t) 2 L 2 (R 2 ) + ν g(t) 2 L 2 (R 2 )
, for a.e. t ∈ R + . On the other hand, by [4, Eq. (2.14)], [START_REF] Herbin | Benchmark on discretization schemes for anisotropic diffusion problems on general grids[END_REF] 21) and ( 22), one gets that H(f, g) belongs to L ∞ (R + ), so that (20) makes sense for almost every t ≥ s ≥ 0.

H(f, g)(t) ≥ -π(ρ + ν) + ρ f (t) L 1 |x| 2 (R 2 ) + ν g L 1 |x| 2 (R 2 ) , for a.e. t ∈ R + . Combining (
The existence of a weak solution was proven by Laurençot and Matioc in [START_REF] Ph | A gradient flow approach to a thin film approximation of the Muskat problem[END_REF][START_REF] Ph | A thin film approximation of the Muskat problem with gravity and capillary forces[END_REF] by proving the convergence of a JKO scheme without the confining potentials b/ν and b, but the proof can be extended in the presence of these quadratic confining potentials without particular difficulties. The L 2 loc (L 2 ) estimates on ∇f and ∇g and the entropy inequality [START_REF] Gajewski | Semiconductor equations for variable mobilities based on Boltzmann statistics or Fermi-Dirac statistics[END_REF] are obtained thanks to the flow interchange technique of Matthes et al. [START_REF] Matthes | A family of nonlinear fourth order equations of gradient flow type[END_REF].

An important consequence of Theorem 3.

2 is that, if (F, G) ∈ K M f × K Mg is a stationary solution to (13) such that (23) (F, G) ∈ H 1 (R 2 ; R 2 ) and ( √ F ∇φ F , √ G∇φ G ) ∈ L 2 (R 2 ; R 4 ),
then we infer from [START_REF] Gajewski | On the discretization of van Roosbroeck's equations with magnetic field[END_REF] and the nonnegativity of I that I(F, G) = 0 (recall that φ F and φ G are defined by ( 17)). In other words, F and G have vanishing fluxes and ( 24)

F ∇(F + G + b/ν) = 0 in R 2 , G∇(ρF + G + b) = 0 in R 2 .
3.2. Existence and properties of the minimizer of the energy. As already mentioned, the problem (1) can be interpreted as a two phase generalization of the PME (2), and its long time behavior is expected to share some common features with that equation. In particular, since the Barenblatt profile u ∞ given by ( 6) is the unique minimizer of the energy functional (5) under a mass constraint, we are led to consider the following minimization problem ( 25) inf

(f,g)∈K M f ×K Mg E(f, g).
Owing to the energy inequality [START_REF] Gajewski | On the discretization of van Roosbroeck's equations with magnetic field[END_REF], a minimizer (F, G) of E in K M f × K Mg is obviously a stationary solution to [START_REF] Desvillettes | Duality and entropy methods for reversible reaction-diffusion equations with degenerate diffusion[END_REF] and thus satisfies [START_REF] Jüngel | Entropy methods for diffusive partial differential equations[END_REF]. In order to prove the uniqueness of the minimizer in [START_REF] Ph | A gradient flow approach to a thin film approximation of the Muskat problem[END_REF], we need the strict convexity of the energy functional E.

Proposition 3.3. E is a strictly convex function on K M f × K Mg .
Proof. If E is strictly convex then E is strictly convex. We denote by D 2 E the Hessian matrix of E. Then

D 2 E = ρ ρ ρ 1 .
Recalling that ρ ∈ (0, 1), the matrix

D 2 E is symmetric with det(D 2 E) = ρ(1-ρ) > 0 and tr(D 2 E) = 1 + ρ > 0.
We deduce that D 2 E is definite positive and hence E is strictly convex.

Let us now introduce some material that will be needed to prove the existence of a minimizer of [START_REF] Ph | A gradient flow approach to a thin film approximation of the Muskat problem[END_REF]. There exist C > 0 and C > 0 depending only on ρ and ν such that

(26) C (N (f ) + N (g)) ≤ E(f, g) ≤ C (N (f ) + N (g)),
where

N (h) = h 2 L 2 (R 2 ) + h L 1 |x| 2 (R 2 ) , for h ∈ L 2 (R 2 ) ∩ L 1 |x| 2 (R 2
). Indeed, on the one hand, since f , g and b are nonnegative, there holds

E(f, g) = ρ 2 (f + g) 2 + 1 -ρ 2 g 2 + b( ρ ν f + g) ≥ ρ 2 (f 2 + 1 ν bf ) + 1 2 (g 2 + bg).
On the other hand, using

(u + v) 2 ≤ 2(u 2 + v 2 ), we have E(f, g) ≤ ρf 2 + 1 + ρ 2 g 2 + ρ ν bf + bg,
which implies [START_REF] Ph | A thin film approximation of the Muskat problem with gravity and capillary forces[END_REF]. This motivates the introduction of the Banach space

X = L 2 (R 2 ) ∩ L 1 |x| 2 (R 2 ) with • X = • L 2 + • L 1 |x| 2 .
We say that a sequence (u n ) n≥1 converges in X in the weak-sense towards u if u n converges to u weakly in L 2 (R 2 ) and if the densities of the moments of order 2

x → u n (x)|x| 2 converge weakly in the sense of finite measures (i.e., in the dual of the space C 0 (R 2 ) of the continuous functions decaying to 0 as |x| → ∞) towards x → u(x)|x| 2 . Then any bounded sequence in X is relatively compact in X for the weak-topology.

We can now go to the following statement.

Proposition 3.4. There exists a unique minimizer

(F, G) of E in K M f × K Mg . Moreover, F and G belong to H 1 (R 2 ) while √ F φ F and √ Gφ G belong to L 2 (R 2
) and it satisfies [START_REF] Jüngel | Entropy methods for diffusive partial differential equations[END_REF], the fluxes φ F and φ G being defined in [START_REF] Eymard | Finite volume methods[END_REF].

Proof. The uniqueness of the minimizer follows from the strict convexity of the energy functional E proved in Proposition 3.3.

Let us now prove the existence of a minimizer. To this end, pick a minimizing sequence

(f k , g k ) k≥1 ∈ K M f × K Mg . Thanks to (26) there exists a constant C > 0 such that (27) f k X + g k X ≤ C, ∀k ≥ 1.
We obtain that there exist (F, G) ∈ L 2 (R 2 ; R + ) 2 and a subsequence of

(f k , g k ) k≥1 (denoted again by (f k , g k ) k≥1 ) such that f k → F weakly-in X and g k → G weakly-in X.
This convergence implies in particular that

F L 1 (R 2 ) = M f and G L 1 (R 2 ) = M g , hence (F, G) ∈ K M f × K Mg .
Moreover, the energy functional E is lower semi-continuous for the weak-topology of X. Thus,

E(F, G) ≤ liminf k→∞ E(f k , g k ), so that (F, G) is a minimizer of E in K M f × K Mg .
Let us now show that (24) holds. To this end, define ( f , ǧ) as a solution of the evolutionary system (28)

       ∂ t f -∇• ν f ∇( f + ǧ + b/ν) = 0 in (0, ∞) × R 2 , ∂ t ǧ -∇• ǧ∇(ρ f + ǧ + b) = 0 in (0, ∞) × R 2 , f|t=0 = F, ǧ|t=0 = G in R 2 .
Using [START_REF] Gajewski | On the discretization of van Roosbroeck's equations with magnetic field[END_REF] one has

E( f , ǧ)(t) + t 0 I( f , ǧ)(τ ) dτ ≤ E(F, G), with I( f , ǧ) = R 2 νρ f |∇φ f | 2 + ǧ|∇φ ǧ | 2 dx,
where

φ f = f + ǧ + b/ν and φ ǧ = ρ f + ǧ + b. Since (F, G) is a minimizer of E in K M f × K Mg and ( f (t), ǧ(t)) belongs to K M f × K Mg for all t ≥ 0, we deduce from the nonnegativity of I that E( f (t), ǧ(t)) = E(F, G) and I( f (t), ǧ(t)) = 0 for a.e. t > 0.
Owing to the minimizing property of (F, G), the first identity readily implies that ( f (t), ǧ(t)) = (F, G) for all t ≥ 0. On the one hand, it follows from Theorem 3.2 that (F, G) enjoys the regularity properties listed in Proposition 3.4. On the other hand, we conclude that (F, G) satisfies I(F, G) = 0 and thus [START_REF] Jüngel | Entropy methods for diffusive partial differential equations[END_REF].

With Proposition 3.4 at hand, we are now interested in the regularity of stationary solutions (F, G) to ( 13) in K M f × K Mg and in the description of the positivity sets E F and E G of F and G defined by [START_REF] Jüngel | Entropy methods for diffusive partial differential equations[END_REF] enjoying the regularity properties [START_REF] Jazar | Derivation of seawater intrusion models by formal asymptotics[END_REF].

E F = {x ∈ R 2 : F (x) > 0}, E G = {x ∈ R 2 : G(x) > 0}. Lemma 3.5. Let (F, G) ∈ K M f × K Mg be a solution of
Then (i) E F ∩ E G = ∅, (ii) 
F and G are locally Lipschitz continuous and radially symmetric.

Proof. (i) Assume for contradiction that

E F ∩ E G = ∅. Then F ∇G = G∇F = 0 in R 2
and it follows from ( 24) that (F, G) satisfy the equations

F ∇(F + b/ν) = 0 in R 2 , G∇(G + b) = 0 in R 2 ,
hence F and G are Barenblatt solutions centred at 0. Thus 0 ∈ E F ∩ E G = ∅, yielding a contradiction.

(ii) Let us prove that (F, G) are locally Lipschitz continuous and radially symmetric. We have 23 

R 2 = (E F ∩ E G ) ∪ (E F ∩ E c G ) ∪ (E c F ∩ E G ) ∪ (E c F ∩ E c G ). Since F and G belong to H 1 (R 2 ) by (
∇F = ν -1 ν(1 -ρ) ∇b and ∇G = ρ -ν ν(1 -ρ) ∇b a.e in E F ∩ E G . (30) 
Since ∇b(x) = x/4 is locally bounded in R 2 , both F and G are locally Lipschitz continuous in R 2 . In addition, ∇F (x)

• x ⊥ = ∇G(x) • x ⊥ = 0 for almost all x = (x 1 , x 2 ) ∈ R 2 with x ⊥ = (-x 2 , x 1 )
. Consequently, F and G are radially symmetric.

According to the discussion above the profiles (F, G) of self-similar solutions of (1) defined in [START_REF] Choquet | Global existence for seawater intrusion models: comparison between sharp interface and sharp-diffuse interface approaches[END_REF] are stationary solutions of (13) and satisfy [START_REF] Jazar | Derivation of seawater intrusion models by formal asymptotics[END_REF] and [START_REF] Jüngel | Entropy methods for diffusive partial differential equations[END_REF]. Moreover (F, G) are radially symmetric. Then we can express F and G as functions of r = |x|. Thanks to ( 29)-( 30) one has:

• On E F ∩ E G , there are (C 1 , C 2 ) ∈ R 2 such that (31) F (r) = C 1 + ν -1 8ν(1 -ρ) r 2 , G(r) = C 2 + ρ -ν 8ν(1 -ρ) r 2 .
• On

E F ∩ E c G , there is C 3 ∈ R such that (32) F (r) = C 3 - 1 8ν r 2 , G(r) = 0. • On E G ∩ E c F , there is C 4 ∈ R such that (33) G(r) = C 4 - 1 8 r 2 , F (r) = 0.
The above statements are actually not completely correct since the quantities C 1 , C 2 , C 3 and C 4 are constant only on the connected components of

E F ∩ E G , E F ∩ E c G
, and E G ∩ E c F , respectively. But this ambiguity will be removed thanks to the following lemma. Lemma 3.6. Let (F, G) ∈ K M f × K Mg be a solution of (24) enjoying the regularity properties [START_REF] Jazar | Derivation of seawater intrusion models by formal asymptotics[END_REF]. Then 0 ∈ E F ∪E G and E F and E G are connected sets and bounded.

Proof. Step 1. Assume first for contradiction that E F ∩ E G has an unbounded connected component O. On O, (F, G) are given by [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF] and the integrability of F and G complies with [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF] only when ρ > ν > 1, hence a contradiction.

Assume next for contradiction that E F has an unbounded connected component. Since we have already proved that the connected components of E F ∩ E G are bounded, the radial symmetry of F implies that there is

r 0 > 0 such that {x ∈ R 2 : |x| > r 0 } ⊂ E F ∩ E c
G . But this contradicts [START_REF] Toscani | On the trend to equilibrium for some dissipative systems with slowly increasing a priori bounds[END_REF]. A similar argument excludes unbounded connected components in E G .

Step 2. Thanks to formulas ( 31)- [START_REF] Vázquez | The porous medium equation[END_REF], F is nonincreasing (as a function of r) when ν ∈ (0, 1] while G is nonincreasing when ν > 1 > ρ. We only consider when F is nonincreasing, the other case being handled similarly. Owing to the monotonicity of F and the positivity of F L 1 (R 2 ) = M f , it is obvious that 0 ∈ E F and E F is a disk centred at x = 0, hence connected and bounded thanks to the previous step.

Assume for contradiction that E G is not connected and let

O 1 = {x ∈ R 2 : r 1 < |x| < r 2 } and O 2 = {x ∈ R 2 : r 3 < |x| < r 4 } be two connected components of E G with 0 ≤ r 1 < r 2 ≤ r 3 < r 4 .
On the one hand, G is increasing in a rightneighborhood of {x ∈ R 2 : r 3 = |x|} which is only possible if this neighborhood is included in E F and ρ ≥ ν according to formulas (31)- [START_REF] Vázquez | The porous medium equation[END_REF]. Since r 3 ≥ r 2 , this fact and the monotonicity of F imply that F (r) ≥ F (r 3 ) > 0 as soon as r ≤ r 3 , hence [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF] and thus cannot vanish on {x ∈ R 2 : r 2 = |x|}, hence a contradiction. Therefore, E G is also connected and its boundedness follows also from the previous step.

O 1 ⊂ E F . Since ρ ≥ ν, G is increasing on O 1 by
As a consequence of Lemmas 3.5 and 3.6 we get that F and G are compactly supported and globally Lipschitz continuous.

3.3.

Convergence towards a minimizer. The goal of this section is to make a step towards Theorem 2.2 where the convergence as t → ∞ of a solution (f (t), g(t)) to ( 13) with initial conditions (f 0 , g 0 ) ∈ K M f × K Mg towards the unique stationary solution (F, G) ∈ K M f × K Mg is proved. The first part of the proof consists in showing by compactness arguments that any cluster point of (f (t), g(t)) as t → ∞ is a stationary solution to (13) satisfying [START_REF] Jazar | Derivation of seawater intrusion models by formal asymptotics[END_REF].

Proof of Theorem 2.2. Let n ∈ N. We define (f n , g n ) : R + × R 2 → (R + ) 2 by f n (t, x) = f (t + n, x), g n (t, x) = g(t + n, x),
and set

E n = E(f n , g n )(0) = E(f, g)(n).
The relation ( 18) yields

E n+1 + 1 0 R 2 Ψ n dx dt ≤ E n , n ≥ 0,
where we have set

Ψ n = νρf n |∇φ fn | 2 + g n |∇φ gn | 2 ∈ L 1 ((0, 1) × R 2 ).
Since Ψ n ≥ 0 and E ≥ 0, we deduce from the previous inequality that (E n ) n is non-increasing and (34)

0 ≤ E n + 1 0 n∈N Ψ n dt ≤ E 0 .
In particular,

Ψ n -→ n→∞ 0 in L 1 ((0, 1) × R 2 ). (35) 
Thanks to ( 26) and ( 34), we have

• (f n ) n and (g n ) n are bounded in L ∞ ((0, 1); L 2 (R 2 )), • (f n ) n and (g n ) n are bounded in L ∞ ((0, 1); L 1 |x| 2 (R 2 )
). In addition, it follows from [START_REF] Gajewski | Semiconductor equations for variable mobilities based on Boltzmann statistics or Fermi-Dirac statistics[END_REF] and the bounds ( 21)-( 22) on the entropy H that

1 0 νρ ∇(f n + g n ) 2 L 2 (R 2 ) + ν(1 -ρ) ∇g n 2 L 2 (R 2 ) dt = n+1 n νρ ∇(f + g) 2 L 2 (R 2 ) + ν(1 -ρ) ∇g 2 L 2 (R 2 ) dt ≤ H(f, g)(n) -H(f, g)(n + 1) + ρM f + νM g 2 ≤ C. Consequently, • (f n ) n and (g n ) n are bounded in L 2 ((0, 1); H 1 (R 2 )). Moreover, • (∂ t f n ) n and (∂ t g n ) n converge to zero in L 2 (0, 1); (W 1,4 (R 2 )) as n → ∞.
Indeed, for ϕ ∈ L 2 ((0, 1); W 1,4 (R 2 )),

1 0 ∂ t f n , ϕ dt = 1 0 R 2 ∇ • (νf n ∇φ fn ) ϕ dx dt ≤ 1 0 R 2 |νf n ∇φ fn • ∇ϕ| dx dt ≤ νf n ∇φ fn L 2 ((0,1);L 4/3 (R 2 )) ϕ L 2 ((0,1);W 1,4 (R 2 )) , and 
f n ∇φ fn 2 L 2 ((0,1);L 4/3 (R 2 )) ≤ 1 0 f n 2 L 4 (R 2 ) f n ∇φ fn 2 L 2 (R 2 ) dt ≤ C 1 0 R 2 Ψ n dx dt -→ n→∞ 0,
thanks to [START_REF] Zinsl | Exponential convergence to equilibrium in a coupled gradient flow system modeling chemotaxis[END_REF]. The proof for (∂ t g n ) n is similar. Since the embedding

H 1 (R 2 ) ∩ L 1 |x| 2 (R 2 ) in L 1 (R 2 ) ∩ L 2 (R 2 ) is compact, see [26, Lemma A.1]
, and the embedding

L 1 (R 2 ) ∩ L 2 (R 2 ) in (W 1,4 (R 2 )
) is continuous, thanks to Lemma A.1, we are in a position to apply [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF]Corollary 4] to conclude that there are a subsequence of (f n , g n ) n (not relabeled) and functions (F, G) such that

(f n , g n ) -→ (F, G) strongly in L 1 ((0, 1) × R 2 ) ∩ L 2 ((0, 1) × R 2 ), (∇f n , ∇g n )-(∇F, ∇G) weakly in L 2 ((0, 1) × R 2 ), (∂ t f n , ∂ t g n ) -→ (0, 0) strongly in L 2 ((0, 1); W 1,4 (R 2 ) ).
This implies in particular that (∂ t F, ∂ t G) = (0, 0). Moreover, there exist χ F , χ G in L 2 ((0, 1) × R 2 ) 2 such that

f n ∇φ fn -χ F weakly in L 2 ((0, 1) × R 2 ) 2 , (36) √ g n ∇φ gn -χ G weakly in L 2 ((0, 1) × R 2 ) 2 . (37) But since √ f n (resp. √ g n ) converges strongly in L 2 ((0, 1) × R 2 ) towards √ F (resp. √ G)
, and since ∇φ fn (resp. ∇φ gn ) converges weakly in L 2 ((0, 1); L 2 loc (R 2 )) towards ∇φ F (resp. ∇φ G ), we can identify the limits in ( 36)-(37) as

χ F = √ F ∇φ F , χ G = √ G∇φ G .
Owing to [START_REF] Zinsl | Exponential convergence to equilibrium in a coupled gradient flow system modeling chemotaxis[END_REF], we have moreover that

f n ∇φ fn -→ 0 strongly in L 2 ((0, 1) × R 2 ), √ g n ∇φ gn -→ 0 strongly in L 2 ((0, 1) × R 2 ).
Therefore, since F and G do not depend on time, [START_REF] Jüngel | Entropy methods for diffusive partial differential equations[END_REF]. Furthermore,

√ F ∇φ F = √ Gφ G = 0 a.e. in R 2 , that is, (F, G) solves
R 2 F dx = lim n→∞ 1 0 R 2 f n dx dt = M f .
A similar argument being available for G, we conclude that (F, G) ∈ K M f × K Mg .

We have thus established that (F, G) is a solution to [START_REF] Jüngel | Entropy methods for diffusive partial differential equations[END_REF] in K M f × K Mg which satisfies [START_REF] Jazar | Derivation of seawater intrusion models by formal asymptotics[END_REF].

It remains to check that the whole sequence (f n , g n ) n converges towards (F, G) ∈ K M f ×K Mg . This is a consequence of the uniqueness of the solution to the stationary problem [START_REF] Jüngel | Entropy methods for diffusive partial differential equations[END_REF], cf. Remark 4.1 in Section 4 below.

Explicit characterization of the self-similar profiles

The viscosity ratio ν appears to play a central role in the characterization of the stationary profiles. Therefore, we will suppose that M f > 0, M g > 0 and ρ ∈ (0, 1) are fixed and we classify the stationary solutions with respect to the values of ν. We define the critical values of ν by ( 38)

ν 1 = ρ 2 M f M g + ρ(M f -M g ) , ν 2 = ρM f + M g M f + M g , ν 3 = 1 + (1 -ρ) M f M g .
It is easy to check that

0 < ν 1 < ρ < ν 2 < 1 < ν 3 .
It follows from ( 31)-( 33) and Lemmas 3.5 and 3.6 that only four configurations are possible for the stationary solutions. Figure 2 illustrate these four configurations. We now show that these four configurations correspond to the four intervals (0, ν 1 ], (ν 1 , ν 2 ), (ν 2 , ν 3 ) and [ν 3 , ∞), some kind of degeneracy taking place when ν ∈ {ν 1 , ν 2 , ν 3 }. In the particular case ν = ν 2 , one has First case : the first configuration we consider is shown on Figure 3 for some 0 < r 1 ≤ r 2 . We note that 0 ∈ E F ∩ E G . According to [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF] and [START_REF] Vázquez | The porous medium equation[END_REF], we look for F and G under the form

E F = E G . F F, G G F, G F, G F G F, G F G ν ν 3 ν 2 ρ ν 1 0 1 Figure 2.
F (r) =          C 1 + ν -1 8ν(1 -ρ) r 2 for 0 ≤ r ≤ r 1 , C 3 - r 2 8ν for r 1 ≤ r ≤ r 2 , 0 for r ≥ r 2 ,
and

G(r) =    C 2 + ρ -ν 8ν(1 -ρ) r 2 for 0 ≤ r ≤ r 1 , 0 for r ≥ r 1 .
In order to determine C 1 , C 2 , C 3 , r 1 , r 2 and especially the parameter range for which this configuration appears, we use the relations

F (0) = C 1 > 0, F (r 2 ) = 0, F is continuous in r = r 1 , G(r 1 ) = 0 and R 2 F dx = M f , R 2 G dx = M g .
On the one hand, the condition F (r 2 ) = 0 provides (39)

C 3 = 1 8ν r 2 2 ,
whereas the continuity of F at r = r 1 yields (40)

C 1 + ν -1 8ν(1 -ρ) r 2 1 = C 3 - 1 8ν r 2 1 .
To exploit the constraint on the mass for F , we pass in polar coordinates and integrate with respect to r. This leads to (41)

2 r1 0 C 1 + ν -1 8ν(1 -ρ) r 2 r dr + 2 r2 r1 C 3 - 1 8ν r 2 r dr = C 1 r 2 1 + ν -1 16ν(1 -ρ) r 4 1 + C 3 [r 2 2 -r 2 1 ] - 1 16ν [r 4 2 -r 4 1 ] = M f π .
On the other hand, G is decreasing with G(r 1 ) = 0, hence ρ < ν and ( 42)

C 2 = ν -ρ 8ν(1 -ρ) r 2 1 .
In addition, the constraint on the mass of G gives (43)

2 r1 0 C 2 + ρ -ν 8ν(1 -ρ) r 2 r dr = C 2 r 2 1 + ρ -ν 16ν(1 -ρ) r 4 1 = M g π .
Using ( 42) and ( 43) one gets an explicit formula for r 1 :

(44)

r 4 1 = 16ν(1 -ρ)M g π(ν -ρ) > 0.
Multiplying (40) by r 2 1 , we get

C 1 r 2 1 -C 3 r 2 1 = ρ -ν 8ν(1 -ρ) r 4 1 ,
hence, using (39), ( 41) and (44), we obtain (45)

r 4 2 = 16ν π (M f + M g ). Then (46) r 4 2 ≥ r 4 1 ⇐⇒ ν ≥ ρM f + M g M f + M g = ν 2 .
Combining (39) and (40) we get

C 1 = 1 8ν r 2 2 - ν -ρ 1 -ρ r 2 1 ,
and by (45) one has (47)

F (0) = C 1 > 0 ⇐⇒ ν < 1 + (1 -ρ) M f M g = ν 3 .
We conclude that we have the case depicted on Figure 3 if and only if

ν 2 ≤ ν < ν 3 , with ν 2 = ρM f + M g M f + M g and ν 3 = 1 + (1 -ρ) M f M g . Remark that if ν = ν 2 , then r 1 = r 2 .
Second case : the second configuration we consider is shown on Figure 4 for some 0 < r 1 ≤ r 2 . We note that 0 ∈ E F ∩ E G . According to [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF] and [START_REF] Toscani | On the trend to equilibrium for some dissipative systems with slowly increasing a priori bounds[END_REF], we look for 

F and G G r 2 r 1
F (r) =    C 1 + ν -1 8ν(1 -ρ) r 2 for 0 ≤ r ≤ r 1 , 0 for r ≥ r 1 , and 
G(r) =          C 2 + ρ -ν 8ν(1 -ρ) r 2 for 0 ≤ r ≤ r 1 , C 4 - 1 8 r 2 for r 1 ≤ r ≤ r 2 , 0 for r ≥ r 2 .
This case is very similar to the first case, the roles of F and G being exchanged. Since F is decreasing, there holds ν < 1. Reproducing the calculations of the previous case provides that

r 4 1 = 16ν(1 -ρ)M f π(1 -ν) > 0, r 4 2 = 16 π (ρM f + M g ), C 1 = 1 -ν 8ν(1 -ρ) r 2 1 , C 4 = 1 8 r 2 2 , C 2 = C 4 -ρC 1 .
The conditions G(0) = C 2 > 0 and r 1 ≤ r 2 show that the case of Figure 4 occurs if and only if

ν 1 < ν ≤ ν 2 , with ν 1 = ρ 2 M f ρM f + (1 -ρ)M g and ν 2 = ρM f + M g M f + M g .
Third case: we consider the configuration shown on Figure 5. We note that 0 ∈ E F ∩ E c G . According to ( 31)-( 33), F and G are given by

F (r) =          C 3 - r 2 8ν for 0 ≤ r ≤ r 1 , C 1 + ν -1 8ν(1 -ρ) r 2 for r 1 ≤ r ≤ r 2 , 0 for r ≥ r 2 ,
and Observe first that G shall increase on (r 1 , r 2 ) which implies that ν ≤ ρ < 1. Owing to the continuity of F and G and their vanishing properties, we require that

G(r) =          0 for 0 ≤ r ≤ r 1 , C 2 + ρ -ν 8ν(1 -ρ) r 2 for r 1 ≤ r ≤ r 2 , C 4 - 1 8 r 2 for r 2 ≤ r ≤ r 3 .
C 1 = 1 -ν 8ν(1 -ρ) r 2 2 , C 2 = - ρ -ν 8ν(1 -ρ) r 2 1 , C 4 = r 2 3 8 , (48) 
C 2 -C 4 = - ρ(1 -ν) 8ν(1 -ρ) r 2 2 , C 1 -C 3 = ρ -ν 8ν(1 -ρ) r 2 1 . (49) 
Combining ( 48) and (49) leads us to (50)

r 2 3 = ρ(1 -ν) ν(1 -ρ) r 2 2 - ρ -ν ν(1 -ρ) r 2 1 . 
In addition, the mass constraints give

16ν(1 -ρ) M f π = -(ρ -ν)r 4 1 + (1 -ν)r 4 2 , (51) 16ν(1 -ρ) M g π = (ρ -ν)r 4 1 -ρ(1 -ν)r 4 2 + ν(1 -ρ)r 4 3 . (52) 
We use (50) to substitute r 4 3 in (52), providing the relation

16ν 2 (1 -ρ) 2 M g π = ρ(ρ -ν)(1 -ν) r 2 2 -r 2 1 2 .
Since r 2 ≥ r 1 , one gets ν < ρ and (53)

r 2 2 = r 2 1 + 4ν(1 -ρ) M g π(ρ -ν)ρ(1 -ν) .
Combining the relations (53) and (51), we obtain that r 2 1 is the root of the polynomial of degree two, i.e., (54)

r 4 1 -Sr 2 1 + P = 0, with S = -8ν M g (1 -ν) π(ρ -ν)ρ , P = 16ν π ν(1 -ρ)M g ρ(ρ -ν) -M f .
Since S < 0, the polynomial X 2 -SX + P admits one nonnegative root if and only if P ≤ 0, i.e., if and only if

ν ≤ ν 1 = ρ 2 M f ρM f + (1 -ρ)M g .
Therefore, (54) has no real solution if ν > ν 1 , whereas it admits one unique nonnegative solution if ν ≤ ν 1 , given by

r 1 = 2 ν √ π M g ρ + M f ν - (1 -ν)M g ρ(ρ -ν) .
Fourth case : we consider the last configuration shown on Figure 6 for some

0 ≤ r 1 < r 2 < r 3 . We note that 0 ∈ E G ∩ E c F . G F and G F r 1 r 2 r 3 Figure 6. Fourth configuration
According to ( 31)-( 33), F and G are given by

F (r) =          0 for 0 ≤ r ≤ r 1 , C 1 + ν -1 8ν(1 -ρ) r 2 for r 1 ≤ r ≤ r 2 , C 3 - r 2 8ν for r 2 ≤ r ≤ r 3 , and 
G(r) =          C 4 - 1 8 r2 for 0 ≤ r ≤ r 1 , C 2 + ρ -ν 8ν(1 -ρ) r 2 for r 1 ≤ r ≤ r 2 , 0 for r ≥ r 2 .
First of all, we note that F shall increase on (r 1 , r 2 ) which implies that ν ≥ 1.

Owing to the continuity of F and G and their vanishing properties, we require that

C 1 = - ν -1 8ν(1 -ρ) r 2 1 , C 2 = ν -ρ 8ν(1 -ρ) r 2 2 , C 3 = r 2 3 8ν , ( 55 
) C 3 -C 1 = ν -ρ 8ν(1 -ρ) r 2 2 , C 2 -C 4 = - ρ(ν -1) 8ν(1 -ρ) r 2 1 . (56) 
It follows from (55) and (56) that

ν -ρ 8ν(1 -ρ) r 2 2 = C 3 -C 1 = r 2 3 8ν + ν -1 8ν(1 -ρ) r 2 1 , hence (57) (ν -1)r 2 1 -(ν -ρ)r 2 2 + (1 -ρ)r 2 3 = 0.
Moreover, the mass constraints give

(58) (ν -1)r 4 1 -(ν -ρ)r 4 2 + (1 -ρ)r 4 3 = 16ν(1 -ρ) M f π and (59) -ρ(ν -1)r 4 1 + (ν -ρ)r 4 2 = 16ν(1 -ρ) M g π .
It readily follows from ( 58) and (59) that

r 4 2 = 16ν(1 -ρ) ν -ρ M g π + ρ(ν -1) ν -ρ r 4 1 , (60) 
r 4 3 = 16ν M f + M g π -(ν -1)r 4 1 . (61) 
It results from (57) that

r 4 3 = 1 -ν 1 -ρ 2 r 4 1 + ν -ρ 1 -ρ 2 r 4 2 -2 (ν -1)(ν -ρ) (1 -ρ) 2 r 2 1 r 2 2 , hence (62) 
(ν -1)(ν -ρ) (1 -ρ) 2 (r 2 2 -r 2 1 ) 2 = r 4 3 + ν -1 1 -ρ r 4 1 - ν -ρ 1 -ρ r 4 2 .
Multiplying ( 62) by (1 -ρ) and using (58), one has

(63) (r 2 2 -r 2 1 ) 2 = 16ν(1 -ρ) 2 M f π(ν -1)(ν -ρ) .
Since r 2 ≥ r 1 , one gets (64)

r 2 2 = r 2 1 + 4(1 -ρ) νM f π(ν -ρ)(ν -1)
.

Combining the relations (64) and (59), we obtain that r 2 1 is the root of the polynomial of degree two, i.e., (65) r 4 1 -Sr 2 1 + P = 0, with

S = -8 M f (ν -ρ) π(ν -1)ν , P = 16 π (1 -ρ)M f ν -1 -M g .
Since S < 0, the polynomial X 2 -SX + P admits one nonnegative root if and only if P ≤ 0, i.e., if and only if

ν ≥ ν 3 = 1 + (1 -ρ) M f M g .
Therefore, (65) has no real solution if ν < ν 3 , whereas it admits one unique nonnegative solution if ν ≥ ν 3 , given by

r 1 = 2 1 √ π M g + M f ρ ν - (ν -ρ)M f ν(ν -1) . Remark 4.1.
As a consequence of the case study carried out above, there exists a unique solution (F, G) ∈ K M f ×K Mg to the problem [START_REF] Jüngel | Entropy methods for diffusive partial differential equations[END_REF]. Owing to Proposition 3.4, the unique minimizer of the energy E in K M f × K Mg satisfies [START_REF] Jüngel | Entropy methods for diffusive partial differential equations[END_REF]. Consequently, being a minimizer of the minimization problem (25) is equivalent to solving [START_REF] Jüngel | Entropy methods for diffusive partial differential equations[END_REF]. This concludes the proofs of Theorem 2.1 and Theorem 2.2.

Numerical investigation

In this section, we present numerical simulations of the system [START_REF] Desvillettes | Duality and entropy methods for reversible reaction-diffusion equations with degenerate diffusion[END_REF]. We are interested in its long-time behavior and thus compute the numerical solution until stabilization. Since our study is widely based on the use of energy and dissipation estimates, we make use of the upstream mobility finite volume scheme studied in [START_REF] Ait | A finite volume scheme for a seawater intrusion model with crossdiffusion[END_REF][START_REF] Ait | Numerical analysis of a finite volume scheme for a seawater intrusion model with cross-diffusion in an unconfined aquifer[END_REF] and described in the next section.

5.1. The numerical scheme. We detail here the discretization of the problem (13) we use for the numerical simulations. The time discretization relies on backward Euler scheme, while the space discretization relies on a finite volume approach (see, e.g., [START_REF] Eymard | Finite volume methods[END_REF]), with a two-point flux approximation and an upstream choice for the mobility.

Recall that the minimizers have compact support by Theorem 2.1, which allows us to perform the simulations on an open bounded polygonal domain Ω ⊂ R 2 which is chosen to be larger than the support of both the initial data and the final states. It is actually always possible to take here Ω = (0, 1) 2 at the expense of reducing the masses M f and M g (only the ratio M f /M g has an influence on the shape of the minimizers). Practically, no-flux boundary conditions across ∂Ω are prescribed in the numerical method.

An admissible mesh of Ω is given by a family T of control volumes (open and convex polygons), a family E of edges and a family of points (x K ) K∈T which satisfy Definition 9.1 in [START_REF] Eymard | Finite volume methods[END_REF]. This definition implies that the straight line between two neighboring centers of cells (x K , x L ) is orthogonal to the edge σ = K|L separating the cell K and the cell L.

We denote the set of interior edges by E int . For a control volume K ∈ T , we denote the set of its edges by E K and the set of its interior edges by E K,int . For σ ∈ E int,K with σ = K|L, we define d σ = d(x K , x L ) and the transmissibility coefficient

τ σ = m(σ) d σ ,
where d denotes the distance in R 2 and m the Lebesgue measure in R 2 or R.

In the simulation, we use variable time steps ∆t n = t n+1 -t n with t 0 = 0. The quantity f n K , g n K and b K approximate the value of f , g and b, respectively, in the circumcenter of K at time t n . It is given as a data for n = 0 and, for n ≥ 1, as a solution to the nonlinear system

(66) m(K) f n+1 K -f n K ∆t + σ∈E int,K τ σ f n+1 σ ν (f n+1 K -f n+1 L ) + (g n+1 K -g n+1 L ) + 1 ν (b K -b L ) = 0, and 
(67) m(K) g n+1 K -g n K ∆t + σ∈E int,K τ σ g n+1 σ ρ(f n+1 K -f n+1 L ) + (g n+1 K -g n+1 L ) + (b K -b L ) = 0,
for K ∈ T , with an upstream choice for the mobilities

(68) f n+1 σ =      (f n+1 K ) + if (f n+1 K -f n+1 L ) + (g n+1 K -g n+1 L ) + 1 ν (b K -b L ) ≥ 0, (f n+1 L ) + if (f n+1 K -f n+1 L ) + (g n+1 K -g n+1 L ) + 1 ν (b K -b L ) < 0. and (69) g n+1 σ = (g n+1 K ) + if ρ(f n+1 K -f n+1 L ) + (g n+1 K -g n+1 L ) + (b K -b L ) ≥ 0, (g n+1 L ) + if ρ(f n+1 K -f n+1 L ) + (g n+1 K -g n+1 L ) + (b K -b L ) < 0
, where x + = max(0, x) and σ = K|L. The discretization of the steady state problem ( 24) is given by the following set of nonlinear equations:

σ∈E int,K τ σ F σ ν (F K -F L ) + (G K -G L ) + 1 ν (b K -b L ) = 0, (70) 
and

σ∈E int,K τ σ G σ ρ(F K -F L ) + (G K -G L ) + (b K -b L ) = 0, (71) 
where F σ and G σ are defined in a similar way as f n+1 σ and g n+1 σ above. The system (70)-( 71) is underdetermined and one has to add the constraints (72)

F K ≥ 0, G K ≥ 0, K∈T m(K)F K = M f , K∈T m(K)G K = M g .
The relative energy E(f, g|F, G) of a solution (f, g) to ( 13) with respect to the stationary state (F, G) is defined by

E(f, g|F, G) = R 2 E(f, g) -E(F, G) dx = E(f, g) -E(F, G).
It is a classical tool to study the large time behavior of problems with a gradient flow structure since the relative energy is decaying along time: [START_REF] Gajewski | On the discretization of van Roosbroeck's equations with magnetic field[END_REF] and Theorem 2.2, the relative energy shall decay to zero as time goes to infinity. We investigate in Section 5.2 at what speed this convergence occurs. Note that in our case, the relative energy reduces to

E(f (t), g(t)|F, G) + t 0 I(f, g)(τ ) dτ ≤ E(f 0 , g 0 |F, G), t ≥ 0, by (18). Since (F, G) is a minimizer of E in K M f × K Mg by Proposition 3.4 and Remark 4.1, then E(f, g|F, G) = E(f, g) -E(F, G) ≥ 0. Owing to
E(f, g|F, G) = R 2 ρ 2 (f -F + g -G) 2 + 1 -ρ 2 (g -G) 2 dx
which, according to [START_REF] Ph | A thin film approximation of the Muskat problem with gravity and capillary forces[END_REF], is equivalent to the square of the L 2 (R 2 ) 2 distance between (f, g) and (F, G).

For the computations, we introduce a discrete version of the relative energy functional :

E n = K∈T m(K) ρ 2 f n K + g n K ) 2 + 1 -ρ 2 (g n K ) 2 + b K ρ ν f n K + g n K - K∈T m(K) ρ 2 F K + G K ) 2 + 1 -ρ 2 (G K ) 2 + b K ρ ν F K + G K , n ≥ 0.
Since the scheme is energy diminishing [START_REF] Ait | Numerical analysis of a finite volume scheme for a seawater intrusion model with cross-diffusion in an unconfined aquifer[END_REF], this quantity decreases when n increases. Moreover, one can transpose to the discrete setting the proof of Proposition 3.4 and establish that the unique minimizer ((F K ) K , (G K ) K ) of the energy is a solution to the scheme (70)-(72). If ((F K ) K , (G K ) K ) used in the definition of E n is this minimizer (we have not proven that the steady discrete problem (70)-( 72) admits a unique solution), then E n remains positive and converges to zero as n → ∞. This property is observed in the numerical simulations of the next section.

5.2. Numerical simulations. Our scheme leads to a nonlinear system that we solve thanks to the Newton-Raphson method. In our test case, the domain is the unit square, i.e., Ω = (0, 1) 2 . We consider an admissible triangular mesh made of 14336 triangles. We use a mesh coming from the 2D benchmark on anisotropic diffusion problems [START_REF] Herbin | Benchmark on discretization schemes for anisotropic diffusion problems on general grids[END_REF]. For the evolutive solutions, we use an adaptive time step procedure in the practical implementation in order to increase the robustness of the algorithm and to ensure the convergence of the Newton-Raphson iterative procedure. More precisely, we associate a maximal time step ∆t max = 2.10 -4 for the mesh. If the Newton-Raphson method fails to converge after 30 iterations -we choose that the ∞ norm of the residual has to be smaller than 10 -9 as stopping criterion-, the time step is divided by two. If the Newton-Raphson method converges, the first time step is multiplied by two and projected on [0, ∆t max ]. The first time step ∆t is equal to ∆t max in the test case presented below. We perform the numerical experiments with the following data b(x, y) = 1 8 (x -1/2) 2 + (y -1/2) 2 , ρ = 0.9, and as an initial condition we take In this case we have M f = M g then ν 1 = 0.81, ν 2 = 0.95 and ν 3 = 1.1.

Note that f 0 and g 0 are not radially symmetric with respect to (1/2, 1/2). We represent in Figure 7 to 10 the self-similar profiles. Following the values of ν these figures confirm the discussion above on the shape of the steady states.

Figure 13 suggests that the convergence of the discrete solution to the scheme towards the discrete equilibrium occurs at exponential rate. More precisely we have where the rate p(ν) strongly depends on ν. We plot on Figure 14 the function ν → p(ν) obtained experimentally. At its minimum, the function p is close to 0. This prohibits to conclude to the exponential convergence whatever ν ∈ (0, +∞) and whatever the initial data for the continuous model.

Appendix A. auxiliary results

Lemma A.1. The embedding L 1 (R 2 ) ∩ L 2 (R 2 ) in (W 1,4 (R 2 )) is continuous. 

≤ π 1/4 g L 2 h L 4 + g L 1 h L ∞ ≤ C ( g L 2 + g L 1 ) h W 1,4 ,
thanks to the continuous embedding W 1,4 (R 2 ) in L 4 (R 2 ) ∩ L ∞ (R 2 ).
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