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a b s t r a c t

Silver oxalate Ag2C2O4, was already proposed for soldering applications, due to the formation when it is

decomposed by a heat treatment, of highly sinterable silver nanoparticles. When slowly decomposed at

low temperature (125 !C), the oxalate leads however to silver nanoparticles isolated from each other. As

soon as these nanoparticles are formed, the magnetic susceptibility at room temperature increases

from "3.14 10"7 emu.Oe"1.g"1 (silver oxalate) up to "1.92 10"7 emu.Oe"1.g"1 (metallic silver). At the end

of the oxalate decomposition, the conventional diamagnetic behaviour of bulk silver, is observed from

room temperature to 80 K. A diamagnetic-paramagnetic transition is however revealed below 80 K

leading at 2 K, to silver nanoparticles with a positive magnetic susceptibility. This original behaviour,

compared to the one of bulk silver, can be ascribed to the nanometric size of the metallic particles.

1. Introduction

1.1. Magnetic properties of noble metals nanoparticles

Bulk copper, silver or gold, display diamagnetic properties.

Nanoparticles of suchmetals capped by surfactants or embedded in

inorganic matrices, can however be paramagnetic or ferromagnetic

[1e3]. Gold nanoparticles can exhibit paramagnetism. That was, for

instance, observed when they are dispersed in poly-N-vinyl-2-

pyrrolidone [4]. Gold nanoparticles functionalized by various li-

gands can also be ferromagnetic [5e8]. X-ray magnetic dichroïsm

(XMCD) [9], muon spin relaxation [10] and 197Au M€ossbauer

spectroscopy [2] have proved the direct contribution of gold to

ferromagnetism. XMCD has also demonstrated the ferromagnetic

contribution of copper and silver in thiol-capped nanoparticles [2].

Their saturation magnetization could be related to the strength of

metal-ligand binding [11] even if that is still open to debate [12].

Ferromagnetism of uncapped gold or silver nanoparticles was

however observed at room temperature [13,14] and theoretical

studies have predicted ferromagnetism for clusters of bare noble

metals [15e17]. In this work, paramagnetic properties are experi-

mentally observed for the first time, in bare nanoparticles of silver

resulting from the controlled thermal decomposition of silver

oxalate.

1.2. Metals nanoparticles for low temperature soldering

From a technological point of view, metallic nanoparticles pre-

sent a growing interest for low temperature soldering applications.

Indeed, gallium nitride based electronic chips are increasingly used

in power electronic systems. For space applications, their high

power density makes the thermal management critical and re-

quires thermal investigations. Usually, they are mounted to a

thermal substrate by soldering and wiring bonding steps. The sol-

dering process has to be carried out at moderate temperatures

(<300 !C) and low contact pressures, to avoid irreversible damages

or accelerated ageing effects on electronic devices. One of the

thermal challenge is consequently to replace solder (as AuSn alloy)

with a newmaterial with intrinsic higher thermal conductivity and
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which can be applied at moderate temperature. One way is to take

benefit of the strong lowering of melting temperature alloys when

the particle size of such metals is strongly reduced below 10 nm

[18e20]. Because the sintering generally occurs at an absolute

temperature close to 80% of the melting point, this decrease makes

low-temperature sintering easier.

1.3. Specificities of silver oxalate

The silver oxalate (Ag2C2O4) is an interesting compound for such

mounting applications, because its decomposition, already

described by taking into account the structural specificities [21,22],

leads to silver nanoparticles according to the simple following

reaction:

Ag2C2O4/2Agþ 2CO2

The resulting nanoparticles have the required high sintering

propensity in the range 200e300 !C and the metallic silver formed

at the end of the soldering process has a high intrinsic thermal

conductivity [23]. Moreover, the silver oxalate is easily decomposed

as illustrated by Fig. 1, which shows the spherical nanoparticles of

silver generated by a scanning electron microscope, at the end of

several scans. The silver nanoparticles are arranged according to a

regular lattice, which corresponds to the periodicity of the electron

beam modulation. This periodicity is close to 76 nm for the images

(b), (c) and (d) in Fig.1. Silver oxalate also decomposes in air, in inert

or reducing atmosphere, by heating it above 100 !C or by applying

mechanical stresses. Additionally, because the decomposition of

silver oxalate is highly exothermic, a proper heating procedure

provides void mitigation in the solder joint. This joint having a high

thermal conductivity, is obtained without heating the chip to

solder, above 300 !C [24]. A very slow decomposition carried out in

between 100 and 130 !C for several hours, allows also a complete

decomposition. In that instance, isolated nanoparticles of silver are

obtained by this way.

2. Materials and methods

The starting oxalate powder was prepared as follow. A

concentrated solution of silver nitrate (2 mol l"1) was reacted with

oxalic acid solution (0.5 mol l"1) to produce a precipitate of oxalate.

The silver nitrate (purity > 99.9%) was initially dissolved in a

mixture of deionised water (10% vol.) and analytical grade ethylene

glycol (90% vol.). Oxalic acid was dissolved in a mixture of absolute

ethyl alcohol (95% vol.) and deionised water (5% vol.). After pre-

cipitation, the oxalate was separated from the liquors by centrifu-

gation andwashed by deionisedwater. This operationwas repeated

five times. The oxalate was then dried at 50 !C.

The silver oxalate and metallic silver were characterised by X-

ray diffraction with a Siemens D 5000 diffractometer equipped

with a Brucker sol-X detector. The X-ray wavelength was that of the

copper Ka ray (Ka1 ¼ 0.15405 nm and Ka2 ¼ 0.15443 nm). The

chemical composition of the metallic powder was analysed by

Inductively Coupled Plasma e Mass Spectroscopy (ICP-MS). The

samples were also investigated by two scanning electron micro-

scopes (SEM), a SEM ZEISS Ultra 55 and a field emission gun SEM

JEOL JSM 6700 F equipped with an Energy-dispersive X-ray spec-

troscopy (EDS) system of Princeton Gamma Tech.

The magnetic properties were measured with a vibrating sam-

ple magnetometer (VSM Quantum Design Versalab) and a SQUID

magnetometer MPMSXL 7 from Quantum design. The decomposi-

tion of the silver oxalate was carried out inside the VSM, which is

equipped with a system of heating up to 400 K. For such

Fig. 1. Silver oxalate particles observed by scanning microscopy. (a): The lower part of the sample in image (a) was originally scanned for 30 min by a 300 pA and 3 kV electron

beam. The scanned region was then enlarged and an image was recorded after a few additional scans lasting less than 1 min. The image obtained clearly shows two regions. At the

bottom there is a texturing induced by the pulsed energy of the electron beam, which is responsible of the partial decomposition of the oxalate. This latter is not modified in the

upper part of the image. (b) Image of freshly prepared silver oxalate after scans for 10 min at 200 nA and 3 kV. Silver particles are arranged according to a periodic network with a

lattice constant of 76 nm, corresponding to the electron beam modulation. (c) Image after scans for 10 min at 200 nA and 3 kV, of a silver oxalate initially heated at 20 !C.min"1 up to

210 !C then quenched. (d) Detail of image c.



temperature measurements, the studied oxalate powders were

placed in an aluminium sheet and a brass sample holder. The VSM

was then used for the measurements at different steps of oxalate

decomposition. Due to the limited operating temperatures of the

apparatus, such measurements were done in a range lying from 50

to 300 K. Measurements at lower temperatures were performed

with the SQUID, without removing the sample from its sample

holder and taking the best precautions, to avoid possible contam-

ination during transfer. The package composed of the aluminium

container and the sample holder, was measured to have data of

magnetization as a function of temperature, to perform baseline

corrections.

3. Results and discussion

The powder obtained by the chemical precipitation previously

described, is a Ag2C2O4 pure silver oxalate, as revealed by X-ray

diffraction pattern (Fig. 2). The mass loss after complete decom-

position in air into metallic silver, is close to 28.97% in agreement

with a decomposition of Ag2C2O4 leading to metallic silver and CO2

gas.

The beginning of silver oxalate decomposition is revealed by the

metallic silver formation in Fig. 2 and illustrated by Fig. 3 showing

the appearance of the silver nanoparticles at the surface of the

initial oxalate particles. Partially decomposed oxalate particles

displays a very porous microstructure as it can be observed on a

particle section prepared by microtomy (Fig. 4). Silver nanometric

particles are still blocked in the cavities, formed by the decompo-

sition, and isolated from the other metallic grains. Their sintering is

thus delayed up to the whole decomposition of the oxalate.

Transmission electron microscopy is not possible to carry out

because of the high sensitivity of the oxalate to a focused electron

beam. Consequently, more details about the microstructure and the

localisation of the metallic nanoparticles were not obtained.

The starting silver oxalate displays diamagnetic properties from

50 K ("223 !C) up to room temperature. After subtraction of the

container and sample holder contributions, the silver oxalate sus-

ceptibility was derived. A value of"3.14 ± 0.02 0.10"7 emu.Oe"1.g"1

at room temperature was obtained.

Measurements of the magnetization at 20 kOe, in the range of

temperature lying from room temperature to 50 K ("223 !C), were

also carried out at various states of progress of decomposition

Fig. 2. X-ray diffraction patterns of pure silver oxalate and after its partial decomposition at 100 !C for 10 h.



(Fig. 5). At 125 !C, the kinetic of formation of silver particles from an

oxalate is slow. It is the reasonwhy the processing times have been

long enough. However, clear changes in the magnetization versus

temperature curves, were observed after heat treatment (Fig. 5a). In

the range of temperature above about 80 K ("193 !C), the

diamagnetic behaviour still remains but the magnetic susceptibility

increases progressively to reach "1.90 ± 0.02 0.10"7 emu.Oe"1.g"1,

after 100 h of heat treatment. This value is calculated dividing the

magnetization by the mass sample after treatment and by the

applied field (20 k Oe). This susceptibility is very close to the one of

pure bulk silver. In fact, bibliographical data give "1.95.10"7

emu.Oe"1.g"1 [24] and our measurements, carried out on a silver

bulk sample obtained by oxalate decomposition in air at 900 !C,

give "1.92 ± 0.02 0.10"7 emu.Oe"1.g"1. These results highlight the

complete decomposition of the oxalate into metallic silver after a

long term heat treatment at 125 !C. For such a sample, the

magnetization is no more constant with temperature. The same

behaviour is observed for the partially decomposed oxalate at

125 !C for only 10 h. It is interesting to plot the susceptibility per

gram of metallic silver, versus temperature, for the totally (125 !C-

100 h) and partially (125 !C-10 h) decomposed samples. For the

partially decomposed sample, the metallic silver quantity was

estimated from the reaction:

Ag2C2O4/ð1" xÞ Ag2C2O4 þ 2x Agþ 2x CO2;

which shows that the solid part remaining after a treatment at

125!-10 h is (1-x) Ag2C2O4 þ 2x Ag. The ratio of the molar mass of

these residual compoundsmultiplied by their molar fractions to the

molar mass of the initial oxalate, is equal to the mass of the sample

after treatment divided by the mass of the oxalate initially intro-

duced into the magnetometer. In our case, this amounts to writing

that:

ð303:74" 88xÞ=303;74 ¼ 68:71: 10"3
.

74:78: 10"3

with:

(303.74e2(44)x) ¼ molar mass in grams of (1-x) Ag2C2O4 þ 2x

Ag

303.74 g ¼ molar mass in grams of silver oxalate, 44 g ¼ molar

mass of CO2

68.71. 10"3 ¼ sample mass after a treatment at 125-10 h

74.78. 10"3 ¼ initial oxalate sample mass.

This gives x ¼ 0.2802 or a mass of metallic silver equal to

14.87 mg resulting from the partial decomposition of the initial

74.78 mg of silver oxalate.

Fig. 5b shows also clearly the change in magnetic properties at

low temperature for the two samples. It reveals also a stronger

change in susceptibility for the partially decomposed sample.

The behaviour of the totally decomposed sample was studied at

lower temperature with a SQUID magnetometer. Below 80 K, the

magnetization exhibits a peak centred around 60 K ("213 !C) for

zero field cooled (ZFC) curve and around 40 K for field cooled (FC)

curve, followed, at the lowest temperatures, by a paramagnetic tail

in each case (Fig. 6a). The plot of the magnetization versus field at

2 K confirms the paramagnetic-like behaviour of the decomposed

oxalate (Fig. 6b).

The resulting product of decomposition at 125 !C for 100 h, was

carefully analysed after the magnetic measurements. In agreement

with the susceptibility measurements, it was made of metallic sil-

ver and the presence of oxalate was not detected. The silver was in

the form of spherical nanoparticles with some truncations for the

largest ones (Fig. 7). Their “diameters” lied from about 5 to 20 nm.

Careful analyses by both Energy-dispersive X-ray spectroscopy

(EDS) and Inductively Coupled Plasma e Mass spectroscopy (ICP-

MS) allowed to determine their chemical composition. The parti-

cles contain more than 99.52 mass. % of silver. Conventional

ferromagnetic metals such as iron, cobalt, nickel or gadolinium,

have been tracked also, but their concentrations were less than

50 ppm. Transition metals were not detected at a concentration

higher than 50 ppm. Less than 0.5 mass. % of carbon impurities

were also detected. On the other hand, X-ray diffraction patterns

didn't reveal any other phase than pure metallic silver.

The unconventional paramagnetic behaviour observed at low

temperatures for the silver nanoparticles, cannot then be assigned

to superparamagnetic impurities such as iron, cobalt, nickel or

gadoliniummetallic nanoparticles, because they are only present in

trace amounts in the powder studied. Some authors have already

assumed that carbon brings a small and soft ferromagnetic

contribution in silver-carbon composites with 70 mass. % of carbon

[25]. According to previous analysis, the concentration of this

element is however much lower in the silver powder issued from

oxalate and it gets obvious not to incriminate carbon impurities to

be responsible for the paramagnetism observed. The paramagnetic

behaviour observed at low temperature, seems therefore due to

intrinsic properties of bare silver nanoparticles. These magnetic

properties are unconventional for silver and they are even more

original because silver is not capped by molecules, such as thiols,

which generally change the magnetic properties of noble metal

because of strong bonds with the metal and a resulting charge

Fig. 3. Metallic silver nanoparticles (bright dots) growing at the surface of silver ox-

alate crystals. The oxalate was partially decomposed in air at 100 !C for 10 h.

Fig. 4. Transversal section of a silver oxalate particle decomposed at 130 !C for 10 h.

Some metallic silver nanoparticles (bright dots) can be observed inside the porosity

generated by the oxalate decomposition. Two crystallographic axes for the oxalate

particle are shown.



transfer. Therefore, low temperature paramagnetism appears to be

related to a size effect only. The logic of this interpretation is

reinforced by the results presented in Fig. 5b. It shows a more

marked change in magnetic behaviour per unit of silver mass

formed for the partially decomposed sample. As can be illustrated

in Figs. 3 and 4, this sample is precisely composed of silver particles

still isolated in the oxalic matrix, which are smaller than after the

total decomposition. The latter obviously generates a slight growth

of the grains of metallic silver.

It is however difficult to go further in the interpretation of

observed physical phenomena. The theory of the persistent cur-

rents [26], which gives an interpretation of the unusual magnetic

properties of gold in the nanometric state, could bring elements of

understanding to the diamagnetic-paramagnetic transition high-

lighted. However, caution should be exercised in the absence of

further investigation.

The interest of the experimental protocol used in this article lies

in the formation of nanoparticles within the magnetometer itself.

This makes it possible to consider many experiments. In particular,

it would be possible to form nanoparticles of slightly different sizes

under different fields and to measure the effect on the para-

magnetic properties at low temperature. The identification of a link

between the intensity of these fields, the particle size and the

paramagnetic behaviour, could then reinforce the interpretation

based on the existence of persistent currents. The differences

observed in Fig. 6a for the ZFC and FC samples may suggest a

positive outcome for this type of measurements. It will be neces-

sary to verify all this.

4. Conclusion

In conclusion, the interest in the silver oxalate is not reduced to

its suitability for soldering of components for the space industry. It

is also a very good precursor for fundamental scientific studies.

Indeed, due to its quite low stability, silver oxalate can be totally

decomposed at low temperature (125 !C) to obtain pure metallic

silver nanoparticles. These latter are diamagnetic at room tem-

perature but they have a paramagnetic-like behaviour below 80 K

("193 !C).

The pollution of the samples by impurities appears not sus-

pected because of the experimental precautions setup. Moreover,

the paramagnetic-diamagnetic transition at low temperature, is not

common among the materials used to manipulate the samples or

among the most common ferro or ferrimagnetic materials having a

Fig. 5. (a) Zero field cooled magnetization under 20 kOe at different temperatures, for an oxalate sample at the early beginning of the decomposition, after 10 h and 100 h at 125 !C.

The heat treatments were carried out inside the vibrating sample magnetometer to avoid contamination. The magnetization is divided by the sample mass measured after heat

treatment. The magnetization under 20 kOe for diamagnetic bulk silver is given for comparison. (b) Susceptibility per gram of metallic silver formed after heat treatment, versus

measurement temperature. The susceptibility of bulk silver is given for comparison.



high magnetic signal, such as iron alloys or iron oxides. Conse-

quently, it seems that the magnetic properties observed are really

related to metallic silver.

Appendix A. Supplementary data

Supplementary data related to this article can be found at http://

dx.doi.org/10.1016/j.solidstatesciences.2017.05.009.

References

[1] L. Suber, F. Dino, G. Scavia, P. Imperatori, W.R. Plunkett, Permanent magnetism
in dithiol-capped silver nanoparticles, Chem. Mater 19 (6) (2007) 1509e1517.

[2] J.S. Garitaonandia, M. Insausti, E. Goikolea, M. Suzuki, J.D. Cashion,
N. Kawamura, H. Ohsawa, I. Gil de Muro, K. Suzuki, F. Plazaola, T. Rojo,

Chemically induced permanent magnetism in Au, Ag and Cu nanoparticles:

localization of the magnetism by element selective techniques, Nano. Lett. 8
(2) (2008) 661e667.

[3] S. Trudel, Unexpected magnetism in gold nanostructures: making gold even
more attractive, Gold Bull. 44 (2011) 3e13.

[4] H. Hori, T. Teranishi, Y. Nakae, Y. Seino, M. Miyake, S. Yamada, Anomalous
magnetic polarisation effect of Pd and Au nano-particles, Phys. Lett. A 263

(1999) 406e410.

[5] H. Hori, Y. Yamamoto, T. Iwamoto, T. Miura, T. Teranishi, M. Miyake, Diameter
dependence of ferromagnetic spin moment in Au nanocrystals, Phys. Rev. B 69

(2004) 174411.
[6] P. Crespo, R. Litran, T.C. Rojas, M. Multigner, J.M. de la Fuente, J.C. Sanchez-

Lopez, M.A. Garcia, A. Hernando, S. Penades, A. Fernandez, Phys. Rev. Lett. 93

(2004), 087204 and 94 (2005) 049903(E).
[7] M.A. Munoz-Marquez, E. Guerrero, A. Fernandez, P. Crespo, A. Hernando,

R. Lucena, J.C. Conesa, Permanent magnetism, magnetic anisotropy, and hys-
teresis of thiol-capped gold nanoparticles, J. Nanopart. Res. 12 (2010)

1307e1318.
[8] B. Donnio, P. Garcia-Vazquez, J.-L. Gallani, D. Guillon, E. Terazzi, Dendronized

ferromagnetic gold nanoparticles self-organized in a thermotropic cubic

phase, Adv. Mater 19 (2007) 3534e3539.
[9] Y. Yamamoto, T. Miura, M. Suzuki, N. Kawamura, H. Miyagawa, T. Nakamura,

K. Kobayashi, T. Teranishi, H. Hori, Direct observation of ferromagnetic spin
polarization in gold nanoparticles, Phys. Rev. Lett. 93 (2004) 116801.

[10] E. Goikolea, J.S. Garitaonandia, M. Insausti, J. Lago, I. Gil de Muro, J. Salado,

F.J. Bermejo, D. Schmool, Evidence of intrinsic ferromagnetic of thiol capped
Au nanoparticles based on mSR results, J. Non-Cryst. Solids 354 (2008)

5210e5212.
[11] U. Maitra, B. Das, N. Kumar, A. Sundaresan, C.N.R. Rao, Ferromagnetism

exhibited by nanoparticles of noble metals, ChemPhysChem 12 (2011)
2322e2327.

[12] G.L. Nealon, B. Donnio, R. Greget, J.-P. Kappler, E. Terazzi, J.-L. Gallani,

Magnetism in gold nanoparticles, Nanoscale 4 (2012) 5244e5258.
[13] S. Mohapatra, R.K. Kumar, T.K. Maji, Green synthesis of catalytic and ferro-

magnetic gold nanoparticles, Chem. Phys. Lett. 508 (2011) 76e79.
[14] Y. Jo, M.H. Jung, M.C. Kyum, S.I. Lee, Ferromagnetism signal in nanosized Ag

particles, J. Nanosci. Nanotechnol. 7 (11) (2007) 3884e3887.

[15] M. Pereiro, D. Baldomir, J.E. Arias, Unexpected magnetism of small silver
clusters, Phys. Rev. A 75 (2007) 063204.

[16] F. Chen, R.L. Johnston, Charge transfer driven surface segregation of gold
atoms in 13-atom Au-Ag nanoalloys and ots relevance to their structural,

optical and electronic properties, Acta. Mater 56 (2008) 2374e2380.
[17] W. Li, F. Chen, A density functional theory study of structural, electronic,

optical and magnetic properties of small Ag-Cu nanoalloys, J. Nanopart. Res.

15 (2013) 1809.
[18] Ph Buffat, J.P. Borel, Size effect on the melting temperature of gold particles,

Phys.Rev. A 13 (6) (1976) 2287e2298.
[19] A.N. Goldstein, C.M. Echer, A.P. Alivisatos, Melting in semiconductors nano-

crystals, Science 256 (5062) (1992) 1425e1427.

[20] A. Hu, J.Y. Guo, H. Alarifi, G. Patane, Y. Zhou, G. Compagnini, C.X. Xu, Low
temperature sintering of Ag nanoparticles for flexible electronics packaging,

Appl. Phys. Lett. 97 (153117) (2010) 1e3.
[21] D.Y. Naumov, E.V. Boldyreva, N.V. Podberezskaya, J.A.K. Howard, The role of

“ideal” and “real” crystal structure in the solid-state decomposition of silver

oxalate: experimental diffraction studies and theoretical calculations, Solid
State Ionics 101e103 (1997) 1315e1320.

[22] V.V. Boldyrev, Thermochim.,Thermal decomposition of silver oxalate, Acta
388 (2002) 63e90.

[23] K. Kiryukhina, H. Le Trong, Ph Tailhades, J. Lacaze, V. Baco, M. Gougeon,
F. Courtade, S. Dareys, O. Vendier, L. Raynaud, Silver oxalate-based solders:

new materials for high thermal conductivity microjoining, Scr. Mater 68

(2013) 623e626.
[24] Landolt-Bornstein, Numerical Data and Functional Relationships in Science

and Technology, New Series, II/16, Diamagnetic Susceptibility, Springer-Ver-
lag, Heidelberg, 1986, pp. 4e134.

[25] R. Caudillo, X. Gao, R. Escudero, M. Jos!e-Yacaman, J.B. Goodenough, Ferro-

magnetic behaviour of carbon nanospheres encapsulating silver nano-
particles, Phys. Rev. B 74 (2006) 214418.

[26] R. Gr!eget, G.L. Nealon, B. Vileno, Ph Turek, Ch M!eny, F. Ott, A. Derory, E. Voirin,
E. Rivi#ere, A. Rogalev, F. Wilhelm, L. Joly, W. Knafo, G. Ballon, E. Terazzi,

J.P. Kappler, B. Donnio, J.L. Gallani, Magnetic properties of gold nanoparticles:
room-temperature quantum effect, ChemPhysChem 13 (2012) 3092e3097.

Fig. 6. (a) Magnetization per gram of metallic silver versus temperature. For temper-

ature higher than about 80 K, the nanoparticles are diamagnetic as bulk silver. Below

80 K, a diamagnetic-paramagnetic transition occurs. (b) At 2 K the silver nanoparticles

are clearly paramagnetic as it is highlighted by the magnetization versus field curve.

Fig. 7. Silver nanoparticles obtained after heat treatment of the silver oxalate at 125 !C

for 100 h in helium atmosphere, inside the vibrating sample magnetometer used for

the magnetic measurements. For both (a) and (b) images, the silver powder was

previously dispersed in alcohol in an ultrasonic bath, before observation, to obtain

well-separated particles.




