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ON THE EXISTENCE OF POSITIVE SOLUTIONS TO SEMILINEAR

ELLIPTIC SYSTEMS INVOLVING GRADIENT TERM

BOUMEDIENE ABDELLAOUI, AHMED ATTAR, EL-HAJ LAAMRI

Abstract. In this work we analyze the existence of solutions to the nonlinear elliptic system:
−∆u = vq + αg in Ω,

−∆v = |∇u|p + λf in Ω,

u = v = 0 on ∂Ω,
u, v ≥ 0 in Ω,

where Ω is a bounded domain of IRN and p ≥ 1, q > 0 with pq > 1. f, g are nonnegative

measurable functions with additional hypotheses and α, λ ≥ 0.

As a consequence we show that the fourth order problem{
∆2u = |∇u|p + λ̃f̃ in Ω,

u = ∆u = 0 on ∂Ω,

has a solution for all p > 1, under suitable conditions on f̃ and λ̃.

1. Introduction

The aim of this paper is to discuss the existence of solutions to the following elliptic system

(1.1)


−∆u = vq + αg in Ω,
−∆v = |∇u|p + λf in Ω,
u = v = 0 on ∂Ω,
u, v ≥ 0 in Ω,

where Ω ⊂ IRN is a bounded domain. We will consider the case p ≥ 1, q > 0 with pq > 1, f, g are
nonnegative measurable functions and α, λ are nonnegative real constants.

Our goal is to get natural conditions on the parameter α, λ and the data f, g, in order to prove
the existence of positive solutions to the problem (1.1) under the condition pq > 1. By solution,
we mean solution in the sense of distributions (see Definition 2.1).

The class of elliptic systems with gradient term appears when considering electrochemical models
in engineering and some other model in fluid dynamics. We refer to [15], and [16] for more details
and more applications of this class of systems.

Existence results for nonlinear elliptic systems with gradient term are well known in some
particular cases. For example, in the case where α = λ = 1, the authors in [4] established that
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system (1.1) has a solution for all (f, g) ∈ L2(Ω) × L2(Ω) under the condition that pq < 1 and
0 < p < 2. In [11], Boccardo-Orsina-Porretta investigated the system −div(b(x, z)∇u) = f(x) in Ω,

−div(a(x, z)∇z) = b(x, z)|∇u|2 in Ω,
u = z = 0 on ∂Ω,

where the functions (x, s) 7→ a(x, s), b(x, s) are positive and coercive Carathéodory functions.
Under the hypothesis that f ∈ Lm(Ω), with m ≥ 2N

N+2 , they proved the existence and the regularity

of a positive solution. In [12], Boccardo-Orsina-Puel studied the system −div(a(x, z)∇u) = f(x) in Ω,
−div(b(x)∇z) +K(x, z)|∇u|2 = g(x) in Ω,

z = u = 0 on ∂Ω,

where the gradient appears as an absorption term.

It is clear that for g = 0, setting v = |−∆u|
1
q−1(−∆u), the system (1.1) is reduced to the following

fourth order problem

(1.2)

 −∆(| −∆u|
1
q−1(−∆u)) = |∇u|p + λf in Ω,

u = ∆u = 0 on ∂Ω,
u > 0 in Ω.

If q = 1, the above problem is reduced to the following one

(1.3)

 ∆2u = |∇u|p + λf in Ω,
u = ∆u = 0 on ∂Ω,

u ≥ 0 in Ω.

Hence, to get a positive solution to problem (1.3), we just have to show that the system (1.1) has
a solution with q = 1 and α = 0.
Problems related to the Bi-Laplacian operator are widely studied in the literature, we refer to [19]
and the references therein. We refer also to the paper [17] where an extension of the Kardar-Parisi-
Zhang equation for the Bi-Laplacian operator is also studied.

Notice that if we substitute the fourth order operator ∆2u by the classical Laplacian, the
previous problem takes the form

(1.4)

{
−∆u = |∇u|p + λf in Ω,

u = 0 on ∂Ω.

This problem has been widely studied in the literature, we refer to [23, 10, 9, 14, 18, 7, 21, 24] and
references therein. If p ≤ 2, using suitable comparison principle and under suitable hypothesis on
f , Alaa-Pierre proved in [3] the existence of positive solutions to (1.4) that is in a suitable Sobolev
space. Some extension were proved in [20] using truncations arguments. The existence result in [20]
holds for a more general class of elliptic operators. However, in the case of the Laplacian operator,
the condition p ≤ 2 seems to be optimal and cannot be improved by using the techniques of [20].

On the other hand, if u ∈ W 1,2
0 (Ω), then in general, ∆(Tk(u)) /∈ L1(Ω) and it seems to be more

complicated to handle problem (1.3) using truncation arguments. The existence result obtained
in [22] is more general because it holds for all p > 1. However, it seems that the techniques of the
proofs are strongly related to a fine estimate on the Green function and cannot be extended to
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more general operators.
In the case where Ω = BR(0), then for p = 1, q = 2 and g = f = 0, based on ODEs technics, the
authors in [16] were able to show that the corresponding system has a unique radial large solution.

Our paper mainly complements the investigations of [4]. However as it was noticed in [4], the
arguments used to deal with the case pq < 1 can not be adapted to the case pq > 1. Some new
arguments are needed to deal with the new situation. Hence, we will use in a convenient way,
the Schauder fixed point theorem, following some ideas from Phuc in [26]. Moreover, in order to
show that (1.1) has a solution, it is necessary to have regularity assumptions on the data f, g and
smallness conditions on λ and α. Indeed, such conditions are necessary even in the case of a single
equation. To help understand the situation, let us consider the following semilinear equation :

(Pr)

 −∆w = wr + h in Ω,
w = 0 on ∂Ω,
w ≥ 0 in Ω,

where r ∈ (1,+∞) and h ≥ 0. As it is proved by Baras-Pierre in [5], two conditions on h are
necessary for the existence of solutions to (Pr) :
(i) A regularity condition : h should be “regular” enough.
(ii) A size condition : even if h ∈ C∞0 (Ω), it should be small enough. For instance, if h = γψ where
ψ ∈ C∞0 (Ω), ψ 	 0 and γ > 0, then there exists γ∗> 0 so that (Pr) does not have any solution for
γ > γ∗.

In other words, a necessary and sufficient condition on h for the existence of solutions to (Pr) can be
formulated in a simple way, saying that a certain “norm” of h should be exactly less than or equal

to k(r) =
r − 1

rr′
where r′ =

r

r − 1
. This quantity is defined by duality through a functional which

is naturally associated with the above problem. Mathematically speaking, one has the following
result :

Theorem 1.1 (Baras-Pierre [5]). Let h be a nonnegative measurable function on Ω. Then (Pr)
has a weak solution if and only if

(H)

 ∀ϕ ∈ C
∞(Ω) with ϕ 	 0 in Ω and ϕ = 0 on ∂Ω,∫

Ω

hϕ ≤ k(r)

∫
Ω

|∆ϕ|r
′
|ϕ|1−r

′
.

Thus, we will deal with this type of functionals in order to describe exactly the optimal size of
the data f , g and to determine the largest set of (λ, α) such that the system (1.1) has a solution.

The paper is divided into four sections. We state our main results in section 2. Then we introduce
some useful tools in section 3. Finally the last section is devoted to prove our theorems and we also
give some nonexistence results that show, in some sense, the optimality of the hypothesis imposed
in Theorem 2.4.
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2. Main results

Throughout this paper, Ω is a bounded open set of IRN and f, g : Ω → IR are nonnegative
measurable functions.

Let’s begin by specifying the meaning of a solution.

Definition 2.1. Assume that p ≥ 1 and q > 0. Let f, g be nonnegative functions such that
f, g ∈ L1(Ω). We say that (u, v) ∈ L1(Ω)×L1(Ω), with u, v ≥ 0, is a weak solution to system (1.1)

if (u, v) ∈W 1,p
0 (Ω)×W 1,1

0 (Ω), vq ∈ L1(Ω) and for all ϕ,ψ ∈ C∞0 (Ω), we have

(2.1)

∫
Ω

∇ϕ∇u =

∫
Ω

vqϕ+ α

∫
Ω

gϕ, and

∫
Ω

∇ψ∇v =

∫
Ω

|∇u|pψ + λ

∫
Ω

fψ.

We are now ready to state our main existence results.

Theorem 2.2. Assume that p ≥ 1, q > 0 with pq > 1. Let (m,σ) ∈ [1,+∞)2. Suppose that
(f, g) ∈ Lm(Ω)× Lσ(Ω) where (m,σ) satisfies one of the following conditions

(2.2)



m,σ ∈ [1, N),

pm <
σN

N − σ
= σ∗,

qσ

N + qσ
<

m

N −m
,

or

(2.3) m ≥ N and σ >
pmN

N + pm
,

or

(2.4) σ ≥ N and m >
qσN

N + 2qσ
.

Then there exists Λ∗ > 0 such that for all (λ, α) ∈ Π where

(2.5) Π := {(λ, α) ∈ [0,+∞)× [0,+∞) | λ‖f‖m + αp‖g‖pσ ≤ Λ∗},

the system (1.1) has a nonnegative solution (u, v). Moreover (u, v) ∈ W 1,θ
0 (Ω) ×W 1,r

0 (Ω) for all

θ <
σN

(N − σ)+
and r <

mN

(N −m)+
.

Remark 1.

(1) To give some light on the hypothesis (2.2), (2.3) and (2.4), let us make explicit the size
conditions on (p, q) for a given (m,σ).

(i) If m = σ = 1 and N ≥ 2, then (2.2) is satisfied for p <
N

N − 1
and q <

N

(N − 2)+
,

that is the classical range when dealing with entropy solution.

(ii) m = σ = 2 and N ≥ 3, then (2.2) is satisfied for p <
N

N − 1
and q <

N

N − 2
.
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(iii) m = σ = N/2 and N ≥ 3, then (2.2) is satisfied for p < 2 and for all q.

(iv) m = σ ≥ N , then (2.3) and (2.4) are satisfied for all (p, q) ∈ [1,+∞)2.

(v) σ = N and m = N/2, then (2.4) are satisfied for all (p, q) ∈ [1,+∞)2.

(vi) m = N and σ =
3N

4
, then (2.3) is satisfied for all p < 3 and all q.

(2) Reciprocally,

(i) If p < N
N−1 and q < N

N−2 , then (2.2) holds for all σ,m ≥ 1.

(ii) If p ≥ N
N−1 or q ≥ N

N−2 , then (σ,m) satisfies

(2.6)


m,σ ≥ 1,

1

qσ
+

2

N
>

1

m
,

1

pm
+

1

N
>

1

σ
.

It is clear that the above condition hold always if we choose m > N
2 and σ > N

independently of the values of p and q.

Notice that the set Π defined in (2.5) is a bounded set of IR2
+. The next nonexistence result

explains clearly that a smallness condition on (λ, α) is necessary for the existence of solutions to
(1.1), at least for p > 1 and q ≥ 1.

Theorem 2.3. Suppose that p > 1 and q ≥ 1. Let f, g be nonnegative measurable functions such
that (f, g) 6= (0, 0) and f, g ∈ L1(Ω). Let (λ, α) ∈ (0,+∞)2 be such that the system (1.1) has a
nonnegative solution (u, v), then there exists (λ∗, α∗) ∈ (0,+∞)2 such that λ ≤ λ∗ and α ≤ α∗.

In the particular case where q = 1 and α ≡ 0, and as a direct application of Theorem 2.2, we
obtain the following existence result for the Bi-Laplacian problem with gradient term.

Theorem 2.4. Let p > 1. Suppose 0 � f ∈ Lm(Ω) where m > max{1, N3p′ }. Then there exists

λ∗ > 0 such that if λ < λ∗ the problem

(2.7)

 ∆2u = |∇u|p + λf in Ω,
u = ∆u = 0 on ∂Ω,

u ≥ 0 in Ω.

has a solution u such that u ∈W 4,m(Ω) if m < N
2 and u ∈ Cs(Ω) with s < 4− N

m if m > N
2 .

Finally we give a nonexistence result that, in some sense, justifies the regularity conditions
imposed on f to get the existence of nonnegative solution to problem (2.7).

Theorem 2.5. Assume that 1 ≤ m < max{1, N3p′ } where p > 1. Then there exists f ∈ Lm(Ω)

with f 
 0 such that problem (2.7) does not have any positive solution for all λ > 0.
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3. Useful results

For the convenience of the reader and for the sake of completeness, we recall in this short section
some classical results we will use in our proofs.

In order to prove the main existence result of this paper we will use useful theorems: Schauder
fixed point Theorem and Vitali’s Theorem.

Theorem 3.1 (Schauder fixed point theorem). Assume that E is a closed convex set of a
Banach space X. Let T be a continuous and compact mapping from E into itself. Then T has a
fixed point in E.

Theorem 3.2. (Vitali) Let (E,µ) be a measured space such that µ(E) < +∞, let 1 ≤ p < +∞
and let {fn}n ⊂ Lp(E) such that fn → f a.e. If {fpn}n is uniformly integrable over E, then
f ∈ Lp(E) and fn → f in Lp(E).

Systematically , we will use the following regularity result proved in [6, Appendix].

Theorem 3.3. Assume that h ∈ L1(Ω), then the problem

(3.1)

{
−∆z = h in Ω,

z = 0 on ∂Ω

has a unique weak solution z ∈W 1,s
0 (Ω) for all s ∈ [1, N

N−1 ).

Moreover, for s ∈ [1, N
N−1 ) fixed, there exists a positive constant C = C(Ω, N, s) such that

(3.2) ||∇z||Ls(Ω) ≤ C||h||L1(Ω).

and the operator Φ : h 7→ z is compact from L1(Ω) into W 1,s
0 (Ω).

Finally, let us recall the following classical regularity result that we will use in several proofs
below.

Theorem 3.4. Let h ∈ Lm(Ω) with m > 1. Then the problem

(3.3)

{
−∆z = h in Ω,

z = 0 on ∂Ω.

has a unique weak solution z. Moreover there exists a positive constant C = C(Ω, N,m) indepen-
dent of h such that

(1) If 1 < m < N , then

(3.4) ||∇z||Lm∗ (Ω) ≤ C||h||Lm(Ω) where m∗ =
mN

N −m
.

(2) If m = N , |∇z| ∈ Ls(Ω) for all s ∈ [1,+∞).
(3) If m > N , z ∈ C1,γ(Ω) for some γ ∈ (0, 1).

For a proof see for instance [13] or [8].

Remark 2. As a consequence of the above theorems, we can prove that for all h ∈ L1(Ω), there
exists a unique solution w of the problem

(3.5)

{
∆2w = h in Ω,

w = ∆w = 0 on ∂Ω,
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with w ∈W 1,θ
0 (Ω) for all θ < N

N−3 and

||w||W 1,θ
0 (Ω) ≤ C(Ω, θ)||h||L1(Ω).

4. Proofs of the main results.

4.1. Proof of Theorem 2.2. We give the proof in the case where (m,σ) satisfies (2.2) i.e.

m,σ ∈ [1, N), pm <
σN

N − σ
= σ∗,

qσ

N + qσ
<

m

N −m
.

The other cases follow by using the same arguments.
For s ≥ 0, we define the function

Υ(s) = s
1
pq − C̃s,

where C̃ is a universal positive constant that depends only on datum and that will specified later.
Using the fact that pq > 1, then there exists s0 > 0 such that Υ(s0) = 0, Υ(s) > 0, ∀s ∈ (0, s0),

Υ(s) < 0, ∀s ∈ (s0,+∞) and we get the existence of positive constants ` > 0 and Λ̂ > 0 such that

max
s≥0

Υ(s) = Υ(`) = Λ̂.

Thus

`
1
pq = C̃(`+

Λ̂

C̃
).

Fix ` > 0 as above and define the set

Π ≡
{

(λ, α) ∈ [0,+∞)× [0,+∞) ; λ||f ||Lm(Ω) + αp||g||pLσ(Ω) ≤
Λ̂

C̃
≡ Λ∗

}
.

It is clear that Π is non empty, bounded and for all (λ, α) ∈ Π, we have

(4.1) C̃

(
`+ λ||f ||Lm(Ω) + αp||g||pLσ(Ω)

)
≤ `

1
pq .

In what follows we fix (λ, α) ∈ Π. Since qσN
N+qσ <

mN
N−m , there exists r > 1 such that

(4.2)
qσN

N + qσ
< r <

mN

N −m
.

Moreover, if r < N , then

(4.3) σq <
rN

N − r
= r∗.

and if r ≥ N , then (4.3) holds trivially with r∗ =∞.

Now let us fix ` and r as above, we define the set

(4.4) E = {w ∈W 1,1
0 (Ω) ; w ∈W 1,r

0 (Ω) and ||∇w||Lr(Ω) ≤ `
1
pq }.

One can easily verify that E is a closed convex subset of W 1,1
0 (Ω). Let us consider the operator

T : E −→W 1,1
0 (Ω)

w 7−→ T (w) = v
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where v is the unique solution to problem

(4.5)

{
−∆v = |∇u|p + λf in Ω,

v = 0 on ∂Ω,

with u being the unique solution to the problem

(4.6)

{
−∆u = wq+ + αg in Ω,

u = 0 on ∂Ω.

It is clear that if v is a fixed point of T , then (u, v) solves the system (1.1). Thus we just have to
show that T has a fixed point in E, this will be achieved in several steps.

In what follows we denote by C1, C2, ..., any positive constants that depend only on the datum of
the problem and that can be changed from one line to next one.
Step I : T is well defined. Let w ∈ E, by using Sobolev’s inequality we conclude that w ∈ Lr∗(Ω).
Since qσ < r∗, then wq+ ∈ Lσ(Ω) ⊂ L1(Ω). Hence, by Theorem 3.3, u is well defined as the unique

weak solution to the problem (4.6) and u ∈ W 1,θ
0 (Ω) for all θ < N

N−1 . Taking into consideration

the hypothesis on g, we reach that (wq+ + αg) ∈ Lσ(Ω). Therefore, by Theorem 3.4, there exists
C1 such that

||∇u||Lβ(Ω) ≤ C1||wq+ + αg||Lσ(Ω), for all β ≤ σ∗ =
σN

N − σ
.

Notice that by (4.2), we have qσ < r∗, hence using Hölder and Sobolev’s inequalities, we get

(4.7) ||∇u||Lβ(Ω) ≤ C2

(
||∇w||qLr(Ω) + α||g||Lσ(Ω)

)
, for all β ≤ σ∗.

From (2.2), σ∗ > p, then (4.7) holds with β = p. Thus

(4.8) ||∇u||Lp(Ω) ≤ C2||∇w||qLr(Ω) + C3||g||Lσ(Ω).

Since f ∈ Lm(Ω) and |∇u|p ∈ L1(Ω) then |∇u|p + λf ∈ L1(Ω) and v is the unique weak solution

to the problem (4.5). By applying again Theorem 3.3, v ∈W 1,θ
0 (Ω) for all θ < N

N−1 and then T is
well defined.
Step II : T (E) ⊂ E. First, by hypothesis pm < σ∗, we have |∇u|p ∈ Lm(Ω). Second, by using
the fact that f ∈ Lm(Ω) and by Theorem 3.4, we obtain that for all θ ≤ m∗ = mN

N−m ,

(4.9)

||∇v||Lθ(Ω) ≤ C4

∥∥∥∥|∇u|p + λf

∥∥∥∥
Lm(Ω)

≤ C4

(
||∇u||pLpm(Ω) + λ||f ||Lm(Ω)

)
.

Recalling again that pm < σ∗, then by using (4.7) with β = pm, we get

(4.10) ||∇u||pLpm(Ω) ≤ C5

(
||∇w||pqLr(Ω) + αp||g||pLσ(Ω)

)
.

Going back to (4.9), we conclude that

||∇v||Lθ(Ω) ≤ C6

(
||∇w||pqLr(Ω) + αp||g||pLσ(Ω) + λ||f ||Lm(Ω)

)
.
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Since r < mN
N−m , by choosing θ = r in the previous inequality it holds that

||∇v||Lr(Ω) ≤ C7

(
||∇w||pqLr(Ω) + αp||g||pLσ(Ω) + λ||f ||Lm(Ω)

)
.

Recall that w ∈ E, thus

||∇v||Lr(Ω) ≤ C8

(
`+ αp||g||pLσ(Ω) + λ||f ||Lm(Ω)

)
.

By choosing C̃ = C8 and taking into consideration the definition of `, we conclude that

||∇v||Lr(Ω) ≤ `
1
pq . Thus v ∈ E and then T (E) ⊂ E.

Step III : T is a continuous and compact operator on E endowed with the topology
of W 1,1

0 (Ω).
• First, let us begin by proving the continuity of T . Assume that {wn}n ⊂ E,w ∈ E are such that

wn → w in W 1,1
0 (Ω) and define vn = T (wn), v = T (w). Then (un, vn) and (u, v) satisfy

(4.11)

 −∆un = wqn+ + αg in Ω,
−∆u = wq+ + αg in Ω,
un = u = 0 on ∂Ω,

and

(4.12)

 −∆vn = |∇un|p + λf in Ω,
−∆v = |∇u|p + λf in Ω,
vn = v = 0 on ∂Ω.

Thanks to Sobolev’s inequality in the space W 1,1
0 (Ω), we have

||wn − w||
L

N
N−1 (Ω)

≤ S1||wn − w||W 1,1
0 (Ω) → 0 as n→∞.

Thus wn → w strongly in Ls(Ω), for all s ≤ N
N−1 . Since {wn}n is bounded in the space W 1,r

0 (Ω),

then using Vitali’s theorem it follows that wn → w strongly in La(Ω) for all a < r∗. In particular
wqn+ → wq+ strongly in L1(Ω). Therefore thanks to Theorem 3.3 we conclude that un → u strongly

in W 1,a
0 (Ω) for all a < N

N−2 . In particular we have

||∇un −∇u||L1(Ω) → 0 as n→∞.

Now, by (4.10) it follows that

(4.13) ||∇un||pLpm(Ω) ≤ C
(
||∇wn||pqLr(Ω) + αp||g||pLσ(Ω)

)
≤ C

(
`+ αp||g||pLσ(Ω)

)
.

Thus {un}n is bounded in W 1,pm
0 (Ω). Using again Vitali’s theorem we obtain that

||∇un −∇u||Lp(Ω) → 0 as n→∞.

Hence by Theorem 3.3 there results that vn → v strongly in W 1,1
0 (Ω) and then the continuity of T

follows.
• Second, we show that T is a compact operator.
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Let {wn}n ⊂ E be such that ||wn||W 1,1
0 (Ω) ≤ C and let vn = T (wn). Since {wn}n ⊂ E,

||∇wn||Lr(Ω) ≤ C and then, up to a subsequence again denoted by {wn}n, we have

wn ⇀ w weakly in W 1,r
0 (Ω).

By Rellich-Kondrachov’s Theorem, it follows that wn → w strongly in La(Ω) for all a < r∗. In
particular, wqn+ → wq+ strongly in L1(Ω).
Let u to be the unique weak solution to the problem

(4.14)

{
−∆u = wq+ + αg in Ω,

u = 0 on ∂Ω.

By the result of Theorem 3.3, we reach that ||∇un − ∇u||L1(Ω) → 0 as n → ∞. Now, setting
v = T (w) and following the same argument as in the proof of the continuity of T , we obtain

that vn → v strongly in W 1,1
0 (Ω). Hence T is compact. Therefore, by the Schauder Fixed Point

Theorem we get the existence of v ∈ E such that T (v) = v. It is clear that v ∈ W 1,r
0 (Ω). Taking

into consideration the hypothesis (4.2), it holds that v ∈ W 1,ρ
0 (Ω) for all ρ < mN

N−m . Now going

back to (4.6), we conclude that u ∈ W 1,θ
0 (Ω) for all θ < σN

N−σ . Thus the proof of Theorem 2.2
follows.

4.2. Proof of Theorem 2.3. Let α > 0, λ > 0, f 	 0, g 	 0. Assume that the system

(4.15)


−∆u = vq + αg in Ω,
−∆v = |∇u|p + λf in Ω,
u = v = 0 on ∂Ω,
u, v ≥ 0 in Ω,

has a nonnegative solution (u, v). Recall that f, g ∈ L1(Ω).

In order to prove the existence of α∗ and λ∗, we will distinguish two cases : p, q > 1 and p > 1, q = 1.

In what follows we will use Young’s inequality under this form

∀(a, b) ∈ (0,+∞)2 and ∀s ∈ (1,+∞), ab ≤ as + Csb
s′ where Cs =

s− 1

ss′
and s′ =

s

s− 1
.

• Case p, q > 1.
Let φ ∈ C∞0 (Ω) such φ 	 0. Multiplying both equations of (4.15) by φ and integrating over Ω, we
obtain

(4.16)

∫
Ω

(vq + αg)φ =

∫
Ω

∇u∇φ

and

(4.17)

∫
Ω

(|∇u|p + λf)φ = −
∫

Ω

φ∆v =

∫
Ω

v(−∆φ).

Determination of α∗.
Thanks to Young’s inequality, (4.16) yields

(4.18)

∫
Ω

(vq + αg)φ ≤
∫

Ω

φ|∇u|p + Cp

∫
Ω

φ1−p′ |∇φ|p
′
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By the nonnegativity of each term of (4.17) we get

(4.19)

∫
Ω

|∇u|pφ ≤
∫

Ω

v(−∆φ).

Therefore Young’s inequality yields

(4.20)

∫
Ω

|∇u|pφ ≤
∫

Ω

vqφ+ Cq

∫
Ω

φ1−q′ |∆φ|q
′
.

Let us set

F (φ) = Cp

∫
Ω

φ1−p′ |∇φ|p
′
+ Cq

∫
Ω

φ1−q′ |∆φ|q
′
.

From (4.18) and (4.20), we deduce

(4.21) α

∫
Ω

gφ ≤ F (φ)

and then α ≤ α∗ with

(4.22) α∗ := inf

{
F (φ) ; 0 ≤ φ ∈ C∞0 (Ω) and

∫
Ω

gφ = 1

}
.

To end this part we have to show that α∗ <∞.
It is clear that α∗ ≥ 0. Let ψ ∈ C∞0 (Ω) be such that ψ ≥ 0 and define φ = C̄ψθ with θ =[

max{p′, 2q′}
]

+ 1 (where [.] denotes the integer part) and C̄ > 0 is chosen such that
∫

Ω
gφ = 1.

Since θ ∈ IN∗, φ ∈ C∞0 (Ω). Moreover

φ1−p′ |∇φ|p
′

= C̄θp
′
ψθ−p

′
|∇ψ|p

′

and

φ1−q′ |∆φ|q
′
≤ C(q, θ, C̄)

(
ψθ−q

′
|∆ψ|q

′
+ ψθ−2q′ |∇ψ|2p

′
)
.

Thus

F (φ) ≤ θp
′
∫
Ω

ψθ−p
′
|∇ψ|p

′
dx+ C(q, θ, C̄)

∫
Ω

(
ψθ−q

′
|∆ψ|q

′
+ ψθ−2q′ |∇ψ|2p

′
)
dx <∞.

Hence α∗ <∞.

It is clear that if α > α∗, system (1.1) does not have any positive solution.

Determination of λ∗.
For this, we will proceed in the same way as before.
By applying Young’s inequality, (4.17) implies

(4.23)

∫
Ω

(|∇u|p + λf)φ ≤
∫

Ω

φvq + Cq

∫
Ω

φ1−q′ |∆φ|q
′

Thanks to the nonnegativity of each term, (4.16) yields

(4.24)

∫
Ω

vqφ ≤
∫

Ω

∇u∇φ

and then

(4.25)

∫
Ω

vqφ ≤
∫

Ω

φ|∇u|p + Cp

∫
Ω

φ1−p′ |∇φ|p
′
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Therefore (4.23) and (4.25) imply

(4.26) λ

∫
Ω

fφ ≤ F (φ).

and then

(4.27) λ∗ = inf

{
F (φ) ; 0 ≤ φ ∈ C∞0 (Ω) and

∫
Ω

fφ = 1

}
.

As above we can show that λ∗ <∞. Thus λ ≤ λ∗.

• Case q = 1 and p > 1.
Let ϕ ∈ C∞0 (Ω) be such that ϕ 	 0 and define φ to be the unique solution to the following problem

(4.28)

{
−∆φ = ϕ in Ω,

φ = 0 on ∂Ω.

It is clear that φ ∈ C2(Ω̄) and −∆φ 	 0. Then multiplying the first equation in (1.1) by −∆φ, the
second equation by φ and integrating to obtain

(4.29)

∫
Ω

v(−∆φ) + α

∫
Ω

g(−∆φ) =

∫
Ω

(−∆u)(−∆φ) =

∫
Ω

∇u.∇(−∆φ)

Determination of α∗.
Thanks to Young’s inequality, we have

(4.30)

∫
Ω

v(−∆φ) + α

∫
Ω

g(−∆φ) ≤
∫

Ω

|∇u|pφ+ Cp

∫
Ω

φ1−p′ |∇(−∆φ)|p
′
.

But ∫
Ω

|∇u|pφ ≤
∫

Ω

|∇u|pφ+ λ

∫
Ω

fφ =

∫
Ω

(−∆v)φ =

∫
Ω

v(−∆φ)

Therefore

(4.31)

∫
Ω

v(−∆φ) + α

∫
Ω

g(−∆φ) ≤
∫

Ω

(−∆v)φ+ Cp

∫
Ω

φ1−p′ |∇(−∆φ)|p
′
.

Thus

(4.32) α

∫
Ω

g(−∆φ) ≤ Cp
∫

Ω

φ1−p′ |∇(−∆φ)|p
′
.

SettingG(ϕ) = Cp

∫
Ω

φ1−p′ |∇ϕ|p
′
. Going back to the definition of φ and using the strong maximum

principle, then there exists C > 0 such that φ ≥ C in the support of ϕ. Thus G(ϕ) is well defined
for all ϕ ∈ C∞0 (Ω) and ϕ 	 0.

Define

(4.33) α∗ := inf

{
G(ϕ) | ϕ ∈ C∞0 (Ω) , ϕ 	 0 and

∫
Ω

gϕ = 1

}
,

then α∗ <∞ and α ≤ α∗.
Determination of λ∗.

In the same way, we obtain
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(4.34)

∫
Ω

|∇u|pφ+ λ

∫
Ω

fφ =

∫
Ω

(−∆v)φ =

∫
Ω

v(−∆φ)

and

(4.35)

∫
Ω

v(−∆φ) ≤
∫

Ω

|∇u|pφ+ Cp

∫
Ω

φ1−p′ |∇(−∆φ)|p
′
.

Thus

λ

∫
Ω

fφ ≤ G(ϕ),

and then λ ≤ λ∗ with

(4.36) λ∗ = inf

{
G(ϕ) |

∫
Ω

fφ = 1

}
.

We conclude as above that λ∗ <∞.

Remark 3.

(1) Consider the set

Σ :=

{
(λ, α) ∈ (0,+∞)× (0,+∞) | such that the system (1.1) has a positive solution

}
.

It is clear that under the hypotheses of Theorem 2.2, we have Σ 6= ∅. Hence setting

λ̂ = max{λ > 0 such that (λ, α) ∈ Σ for some α > 0},

α̂ = max{α > 0 such that (λ, α) ∈ Σ for some λ > 0}.
It follows that λ̂, α̂ > 0. Going back to the proof of Theorem 2.3, we obtain that λ∗ ≥ λ̂ > 0
and α∗ ≥ α̂ > 0.

(2) Under additional hypotheses on f and g, we get some explicit bounds from below for α∗

and λ∗ defined in the proof of Theorem 2.3.

The first case : p, q > 1: Assume that f, g ∈ L
N
p′ (Ω) and let φ ∈ C∞0 (Ω), then

F (φ) ≥ Cp
∫

Ω

φ1−p′ |∇φ|p
′

= Cp(p
′)p
′
∫

Ω

|∇φ
1
p′ |p

′
.

Without loss of generality we can assume that p′ < N . By using Sobolev’s inequality we
reach that

F (φ) ≥ Cp
(∫

Ω

|φ|
N

N−p′

)N−p′
N

.

Applying Hölder’s inequality, we obtain∫
Ω

fφ ≤ ||f ||
L
N
p′ (Ω)

||φ||
L

N
N−p′ (Ω)

.

Thus
F (φ)∫
Ω

fφ

≥ Cp
||f ||

L
N
p′ (Ω)

.
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Therefore it holds that λ∗ ≥ Cp
||f ||

L
N
p′ (Ω)

. In the same way we reach that α∗ ≥ Cp
||g||

L
N
p′ (Ω)

.

The second case: q = 1 and p > 1: Assume that f, g ∈ L
θN

(θ−1)N+θ (Ω) with θ is chosen

such that 1 < θ < min{ N
(N−3(p′−1))+

, p′}. It is clear that (p′−1)θ
p′−θ ≤

θN
N−3θ .

Recall that φ is the unique solution of problem (4.28). Taking into consideration the
definition of φ and θ, and by Theorem 3.4, it follows that

||φ||
L

(p′−1)θ
p′−1 (Ω)

≤ C||ϕ||Lθ∗ (Ω) ≤ C||∇ϕ||Lθ(Ω).

Using Hölder’s inequality, it follows that

∫
Ω

|∇ϕ|θ =

∫
Ω

|∇ϕ|θφ
(1−p′)θ
p′ φ

(p′−1)θ

p′ ≤
(∫

Ω

φ1−p′ |∇ϕ|p
′
) θ
p′
(∫

Ω

|ϕ|
(p′−1)θ

p′−θ

) p′−θ
p′

≤ C

(∫
Ω

φ1−p′ |∇ϕ|p
′
) θ
p′
(∫

Ω

|ϕ|θ
∗
) (p′−1)θ

p′θ∗

Thus, using Sobolev’s inequality it holds that(∫
Ω

|∇ϕ|θ
) 1
θ

≤ C
∫

Ω

φ1−p′ |∇ϕ|p
′

= CG(ϕ).

On the other hand we have∫
Ω

fφ ≤ ||f ||
L

θN
(θ−1)N+θ (Ω)

||φ||Lθ∗ (Ω).

Hence

G(ϕ)∫
Ω

fϕ

≥
C(p,Ω)

(∫
Ω

|∇ϕ|θ
) 1
θ

∫
Ω

fϕ

≥ C(p,Ω)

||f ||
L

θN
(θ−1)N+θ (Ω)

.

Thus λ∗ ≥ C(p,Ω)

||f ||
L

θN
(θ−1)N+θ (Ω)

.

In the same way we obtain that α∗ ≥ C(p,Ω)

||g||
L

θN
(θ−1)N+θ (Ω)

.

Remark 4. The existence result in Theorem 2.2 is obtained under the hypothesis that pq > 1
and smallness condition on (α, λ). It will be interesting to show that nonexistence result, for large
values of (α, λ), obtained in Theorem 2.3 holds under the condition pq > 1.
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4.3. Proof of Theorem 2.4. In this case we take q = 1 and g = 0 in Theorem 2.2. Since
f ∈ Lm(Ω) with m > max{1, N3p′ }, we can fix m0 such that m0 ≤ m and N

3p′ < m0 < N .

If m0 ≥ N
2 , we take σ0 = N − ε with ε small enough, however, if N

3p′ < m0 <
N
2 , we choose

σ0 = 3pm0

p+2 . Hence in all cases, the condition (2.2) holds and then by Theorem 2.2, we get the

existence of (u, v) ∈ W 1,ρ
0 (Ω) ×W 1,θ

0 (Ω), for all ρ < m0N
N−m0

, θ < σ0N
N−σ0

, such that (u, v) solves the
system 

−∆u = v in Ω,
−∆v = |∇u|p + λf in Ω,
u = v = 0 on ∂Ω,
u, v ≥ 0 in Ω.

It is clear that:

u = ∆u = 0 on ∂Ω and ∆2u = −∆v = |∇u|p + λf in Ω.

Hence u solves (4.39). Now using the regularity results in [19], we reach that u ∈ Cs(Ω) for all
s < 4− N

m , in particular u ∈ Cs(Ω) for all s < 2 if m ≥ N
2 and u ∈ W 4,m(Ω) if m < N

2 . Hence we
conclude.

Remark 5. Taking into consideration the nonlinear nature of the above arguments used in the
proof of Theorem 2.2, then we can extend our existence result for more general operator like the
m-laplacian operator where ∆m(u) := div(|∇u|m−2∇u). More precisely if we consider the system

(4.37)


−∆m1

u = vq + αg in Ω,
−∆m2

v = |∇u|p + λf in Ω,
u = v = 0 on ∂Ω,
u, v ≥ 0 in Ω,

with m1,m2 > 2− 1
N , then if f ∈ Lθ(Ω) and g ∈ Lσ(Ω), where (θ, σ) satisfies

(4.38)



θ, σ ∈ (1, N),

pθ <
σN(m1 − 1)

N − σ
,

qσN
N+qσ <

θN(m2 − 1)

N − θ
,

we can show the existence of a bounded set Π ⊂ IR+ × IR+ defined by

Π ≡
{

(λ, α) ∈ (IR+)2 : λ||f ||Lθ(Ω) + αp||g||pLσ(Ω) ≤ Λ

}
,

such that for all (λ, α) ∈ Π, the system (4.37) has a positive solution (u, v) with (u, v) ∈W 1,ρ
0 (Ω)×

W 1,r
0 (Ω) for all ρ < σN(m1−1)

N−σ and r < θN(m2−1)
N−θ .
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4.4. Some nonexistence results. In this subsection we will show that the regularity conditions
(2.2) are optimal for existence at least in some explicit cases. More precisely we will analyze the
problem

(4.39)

 ∆2u = |∇u|p + λf in Ω,
u = ∆u = 0 on ∂Ω,

u ≥ 0 in Ω.

that is the case where q = 1 and g ≡ 0.

Let us begin by proving the following result.

Theorem 4.1. Assume that 0 � f ∈ Lm(Ω) with m ≥ 1 and p > 1. Define

(4.40) Λ(f) ≡ inf
φ∈C∞0 (Ω),φ 6=0

∫
Ω

|∇
(
|φ|p′−2φ(−∆φ)

)
|p′

|φ|
p

(p−1)2

dx

∫
Ω

f |φ|p
′
dx

.

Assume that Problem (4.39) has a positive solution for some λ > 0, then Λ(f) > 0.

Proof : We follow closely the arguments used in [5]. Suppose that Problem (4.39) has positive
solution u. Setting v = −∆u, then v solves{

−∆v = |∇u|p + λf in Ω,
v = 0 on ∂Ω

Thus v > 0, hence −∆u > 0 in Ω. Let φ ∈ C∞0 (Ω) such φ 6= 0. Using |φ|p′ as a test function in
(4.39), we obtain

(4.41)

∫
Ω

(−∆u)(−∆|φ|p
′
)dx =

∫
Ω

|∇u|p|φ|p
′
dx+ λ

∫
Ω

f |φ|p
′
dx.

Since p′ > 1, then using Kato’s inequality we reach that

−∆|φ|p
′
≤ p′|φ|p

′−2φ(−∆φ).

Since −∆u ≥ 0, using Young’s inequality, it follows that∫
Ω

(−∆u)(−∆|φ|p
′
)dx ≤ p′

∫
Ω

|φ|p
′−2φ(−∆φ)(−∆u)dx

≤ p′
∫
Ω

∇u∇
(
|φ|p

′−2φ(−∆φ)
)
dx

≤ ε

∫
Ω

|∇u|p|φ|p
′
dx+ C(ε)

∫
Ω

|∇
(
|φ|p′−2φ(−∆φ)

)
|p′

|φ|
p

(p−1)2

dx.

Choosing p′ε ≤ 1 and going back to (4.41), we conclude that

λ

∫
Ω

f |φ|p
′
dx ≤ C(ε, p)

∫
Ω

|∇
(
|φ|p′−2φ(−∆φ)

)
|p′

|φ|
p

(p−1)2

dx.
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Thus

(4.42) λ ≤ C(ε, p)

∫
Ω

|∇
(
|φ|p′−2φ(−∆φ)

)
|p′

|φ|
p

(p−1)2

dx

∫
Ω

f |φ|p
′
dx

and the result follows.

Remark 6. Let φ ∈ C∞0 (Ω) and consider the operator Q defined

Q(φ) =

∫
Ω

|∇
(
|φ|p′−2φ(−∆φ)

)
|p′

|φ|
p

(p−1)2

dx

∫
Ω

f |φ|p
′
dx

,

then Q(αφ) = Q(φ) for all α ∈ IR∗.

As a direct consequence of Theorem 4.1 we can show that Problem (4.39) has non solution if λ
is large. This follows directly by estimate (4.42).

We are now able to prove the next nonexistence result.

Theorem 4.2. Assume that 1 ≤ m < max{1, N3p′ } where p > 1, then there exists f ∈ Lm(Ω) with

f 
 0 such that Problem (4.39) does not have any positive solution for any λ > 0.

Proof : Without loss of generality we can assume that N > p′. Assume that Ω = B1(0) ⊂ IRN

and fix m < N
3p′ . Consider the function f(x) =

1

|x|3p′+ε
. Then we can choose ε small enough such

that f ∈ Lm(B1(0)). In order to show the nonexistence result we will prove that Λ(f) = 0 and
then we will conclude by Theorem 4.1.
Let φ be the function defined by

φ(x) =


1

|x|θ
if |x| ≤ 1

4

(1− |x|)γ if 1
2 ≤ |x| ≤ 1,

where θ = N−(3p′+ε)
p′ , γ > 3p′−1

p′ . It is clear that φ ∈ C2(B1(0)\{0}) and φ > 0 in B1(0). Moreover,

we have ∫
B1(0)

|∇
(
|φ|p′−2φ(−∆φ)

)
|p′

|φ|
p

(p−1)2

dx =

∫
B 1

4
(0)

+

∫
1
4<|x|<

1
2

+

∫
1
2<|x|<1

.

Since φ > 0 for 1
4 < |x| <

1
2 , then

∫
1
4<|x|<

1
2

= C <∞.

Now by a direct computation we reach that∫
B 1

4
(0)

|∇
(
|φ|p′−2φ(−∆φ)

)
|p′

|φ|
p

(p−1)2

dx ≤ C
∫
B 1

4
(0)

1

|x|p′(θ+3)
dx.
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Since θ = N−(3p′+ε)
p′ , then p′(θ + 3) = N − ε < N . Thus∫

B 1
4

(0)

|∇
(
|φ|p′−2φ(−∆φ)

)
|p′

|φ|
p

(p−1)2

dx ≤ C.

We deal now with the integral

∫
1
2<|x|<1

. In this case we have

∫
1
2<|x|<1

|∇
(
|φ|p′−2φ(−∆φ)

)
|p′

|φ|
p

(p−1)2

dx ≤ C
∫

1
2<|x|<1

(1− |x|)p
′(γ−3)dx.

Since γ > 3p′−1
p′ , then p′(γ − 3) > −1. Therefore∫

1
2<|x|<1

|∇
(
|φ|p′−2φ(−∆φ)

)
|p′

|φ|
p

(p−1)2

dx ≤ C.

As a conclusion we have proved that∫
B1(0)

|∇
(
|φ|p′−2φ(−∆φ)

)
|p′

|φ|
p

(p−1)2

dx <∞.

On the other hand we have

∫
Ω

f |φ|p
′
dx = +∞. Hence Q(αφ) = 0. Now using an approximation

argument we obtain that Λ(f) = 0 and therefore the result follows.

Remark 7. Combining the existence result in Theorem 2.4 and the result of Theorem 4.1 we
obtain that if 0 � f ∈ Lm(Ω) where m > max{1, N3p′ }, then Λ(f) > 0.

It will be nice if we can prove directly that if f ∈ Lm(Ω) with m > max{1, N3p′ }, then Λ(f) > 0.
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Portugal Math. 41 (1982), 507-534.
[11] L. Boccardo, L. Orsina, A. Porretta, Existence of finite energy solutions for elliptic systems with L1− value

nonlinearities Mathematical Models and Methods in Applied Sciences 18, (2008), no.5, 669-687.

[12] L. Boccardo, L. Orsina, J.-P. Puel, A quasilinear elliptic system with natural growth terms. Annali di Matem-
atica. 194, (2015), no.3, 1733-1750.
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