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Stationary reaction-diffusion systems in L1

El Haj Laamri∗, Michel Pierre†,

March 27, 2018

Abstract

We prove existence of solutions to stationary m×m reaction-diffusion systems where the data are in L1

or in LLogL. We first give an abstract result where the “diffusions” are nonlinear m-accretive operators in
L1 and the reactive terms are assumed to satisfy m structural inequalities. It implies that the situation is
controlled by an associated cross-diffusion system and provides L1-estimates on the reactive terms. Next
we prove existence for specific systems modeling chemical reactions and which naturally satisfies less than
m structural (in)equalities. The main difficulty is also to obtain L1-estimates on the nonlinear reactive
terms.

Keywords: reaction-diffusion systems, nonlinear diffusion, cross-diffusion, global existence, porous media
equation, weak solutions.
2010 MSC: 35K10, 35K40, 35K57

1 Introduction and main results

Our goal is to analyze the existence of solutions to stationary reaction-diffusion systems in L1-spaces.
We first give a general abstract result for nonlinearities satisfying as many structural inequalities as the
number of equations. This is done in the framework of abstract m-accretive operators in L1 spaces for the
diffusion part and the full system is controlled by a somehow “good” associated cross-diffusion system. We
give several examples where this abstract result applies. Then, we provide a general result for more specific
systems associated with general chemical reactions for which less structure holds for the nonlinearities.

We denote by (Ω, µ) a measured space where µ is a nonnegative measure on the set Ω with µ(Ω) < +∞.
We consider systems of the type

(S)


∀i = 1, ...,m,
ui ∈ D(Ai) ∩ L1(Ω, dµ)+, hi(·, u) ∈ L1(Ω, dµ),
ui +Aiui = hi(·, u1, ..., um) + fi(·) ∈ L1(Ω, dµ),

(1)

where for all i = 1, ...,m,
− Ai is a (possibly) nonlinear operator in L1(Ω, dµ) (generally a diffusion operator in applications), defined
on D(Ai) ⊂ L1(Ω, dµ),
− hi : Ω× Rm → R is a nonlinear “reactive” term,
− fi ∈ L1(Ω, dµ)+ [:= {g ∈ L1(Ω, dµ) ; g ≥ 0, µ− a.e.}].
We are interested in nonnegative solutions u = (u1, ..., um) ∈ L1(Ω, dµ)+m.
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These systems are naturally associated with the evolution reaction-diffusion systems

∂tui(t) +Aiui(t) = hi(·, u(t)), t ∈ [0,+∞), i = 1, ...,m. (2)

When approximating these evolution systems by an implicit time discretization scheme, we are led to solving
the following set of equations, for all small time interval ∆t{

∀ i = 1, ...,m, n = 0, 1, ..., un+1
i ∈ D(Ai),

un+1
i −uni

∆t +Aiu
n+1
i = hi(·, un+1) or un+1

i + (∆t)Aiu
n+1
i = (∆t)hi(·, un+1

i ) + uni .

This is exactly the system (S) with unknown u = un+1, up to trivially changing (∆t)Ai into Ai and
(x, u) 7→ [(∆t)hi(x, u) + uni (x)]1≤i≤m into (x, u) 7→ [hi(x, u) + fi(x)]1≤i≤m.
The asymptotic steady states of the evolution system (2) are also the solutions u = (u1, ..., um) to the system
{Aiui = hi(·, u), i = 1, ...,m, } which is also essentially included in the system (S) up to a slight change of
the operators Ai.

The kind of operators Ai we have in mind are :
− The Laplacian u 7→ −∆u on a bounded open set Ω of RN with various boundary conditions on ∂Ω.

− More general elliptic operators u 7→ −
∑N

i=1 ∂xi

(∑N
i=1 aij(x)∂xju+ biu

)
on the same Ω, with various

boundary conditions as well.
− Nonlinear operators of porous media type like u 7→ −∆ϕ(u) where ϕ : R → R is an increasing function,
again with different boundary conditions on ∂Ω.
− Nonlinear operators of p-Laplacian type like u 7→ −∆pu := −∇ ·

(
|∇u|p−2∇u

)
where p ∈ (1,+∞) and | · |

is the euclidian norm in RN .
− Classical perturbations and various associations of all of those.

All these operators will satisfy the assumption (A) below which means that each Ai is an m-accretive
operator in L1(Ω, dµ) whose resolvents are compact and preserve positivity, namely the following, where I
denote the identity :

(A)


∀ i = 1, ...,m,
Ai : D(Ai) ⊂ L1(Ω, dµ)→ L1(Ω, dµ), and for all λ ∈ (0,+∞),
(A1) m− accretivity : I + λAi is onto and (I + λAi)

−1is nonexpansive,
(A2) positivity :

∫
Ω sign

−(ui)Aui ≥ 0,∀ ui ∈ D(Ai),
(A3) compactness : (I + λAi)

−1 : L1(Ω, dµ)→ L1(Ω, dµ) is compact.

(3)

Here I denotes the identity on L1(Ω, dµ) and in (A2), we define sign−(s) := −sign+(−s), ∀s ∈ R where

sign+(s) := 1, ∀ s ∈ [0,+∞), sign+(s) = 0, ∀ s ∈ (−∞, 0).

This implies immediately that (I + λAi)
−1
(
L1(Ω, dµ)+

)
⊂ L1(Ω, dµ)+ since then, for g ∈ L1(Ω, dµ)+ and

ui := (I + λAi)
−1g

0 ≥
∫

Ω
sign−(ui)g dµ =

∫
Ω
sign−(ui)[ui + λAiui] dµ ≥

∫
Ω
u−i dµ ⇒ u−i = 0 µ− a.e.

For simplicity, we consider only single-valued operators Ai, but everything would also work for multivalued
m-accretive operators Ai.

The nonlinear reactive terms hi will preserve positivity as well. We assume that, for all i = 1, ...,m :

(H1)


(1) hi : Ω× Rm → R measurable ;

(2) h̃i(·, R) := sup{|hi(·, r)|; |r| ≤ R} ∈ L1(Ω, dµ)+, ∀R ∈ [0,+∞) ;
(3) r ∈ Rm 7→ hi(·, r) is continuous ;
(4) quasipositivity : hi(·, r1, ..., ri−1, 0, ri+1, ..., rm) ≥ 0, ∀ r ∈ [0,+∞)m.

(4)
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Moreover, the nonlinear reactive terms hi we are considering are those for which mass conservation or, more
generally, mass dissipation or at least mass control holds for the associated evolution system (2). It is the

case when the hi’s satisfy a relation like

m∑
i=1

hi(·, r) ≤ 0 for all r ∈ [0,+∞)m or more generally

(H2)
m∑
i=1

aihi(·, r) ≤
m∑
i=1

biri+ω(·), ω ∈ L1(Ω, dµ)+, for some 0 ≤ bi < ai, i = 1, ...,m, r ∈ [0,+∞)m. (5)

As we will see, this structure naturally implies an a priori L1-estimate on the solutions ui of the system (S)
(see Proposition 2.2), together with “standard operators” Ai by which we mean

(Ainf ) a∞ := inf

{∫
Ω
Aiui dµ, ui ∈ D(Ai) ∩ L1(Ω, dµ)+

}
> −∞ for each i = 1, ...,m. (6)

This assumption essentially holds when 0 ∈ D(Ai), i = 1, ...,m. It also holds with most diffusion operators
with non homogeneous boundary conditions (see Section 3) except a few ones : this is discussed in Remark
3.4.

Actually, the main point will be to get a priori L1-estimates even on the nonlinearities hi(·, u) where u
is solution of System (S). This will be satisfied if more structure is required on the nonlinear functions hi,
namely (using the natural order in Rm) :

(M)


There exist two m×m matrices M0,M1 where
M0 is invertible, with nonnegative entries and such that
M0h(·, r) ≤M1r + Θ(·), ∀ r ∈ [0,+∞)m, Θ ∈ L1(Ω, dµ)+m.

(7)

Applying the matrix M0 to the system (S) leads to the following set of m inequalities for an associated
cross-diffusion system :

M0u+M0Au = M0h(·, u) +M0f ≤M1u+ Θ +M0f,

where we denote Au := (Aiui)1≤i≤m, h(·, u) := (hi(·, u))1≤i≤m and f := (fi)1≤i≤m.

As proved in Proposition 2.3, this will imply an a priori estimate of hi(·, u), i = 1, ...,m in L1(Ω, dµ). More
precisely, we will consider an approximate problem where the nonlinearities hi are replaced by truncated
versions hni . Then (M) will imply that hni (·, un) is bounded in L1(Ω, dµ) for the approximate solutions
un. The compactness of un in L1(Ω, dµ) will then follow. Thus up to a subsequence, un will converge in
L1(Ω, dµ)m and µ-a.e. to some u and hni (·, un) will also converge µ-a.e. to hi(·, u) for all i. But this is not
sufficient yet to pass to the limit in the system since one essentially needs the convergence of hni (·, un) in
L1(Ω, dµ). It is the case if hni (·, un) is uniformly integrable, by Vitali’s lemma. This will hold if we add the
following technical assumption which is some kind of compatibility condition between the various operators
Ai. It will be satisfied in the examples of Section 3.

(Φ)

{
There exist ϕ : [0,+∞)m → [0,+∞) continuous with lim

|r|→+∞
ϕ(r) = +∞ and b ∈ (0,+∞)m such that∫

Ω sign
+(ϕ(u)− k)b ·M0Audµ ≥ 0, ∀u ∈ D(A) ∩ L1(Ω, dµ)+m, ∀ k ∈ [0,+∞), D(A) := Πm

i=1D(Ai).

(8)

We now state our abstract result. It will be proved in Section 2 and applied to several explicit examples
in Section 3. We refer to [11] where this kind of results and examples were already widely discussed and
analyzed.
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Theorem 1.1 Assume that (A), (H1), (H2), (Ainf ), (M), (Φ) hold. Then the system (S) has a solution for
all f ∈ L1(Ω, dµ)+m.

As already explained, the assumption (M) means that m independent inequalities hold between the m
nonlinear functions hi. But many systems come with less than m such relations. The following 2×2 system
satisfies only one relation of type (H2) and not (M):

u1 − d1∆u1 = (β1 − α1)[uα1
1 uα2

2 − u
β1
1 u

β2
2 ] + f1 =: h1(u1, u2) + f1,

u2 − d2∆u2 = (β2 − α2)[uβ11 u
β2
2 − u

α1
1 uα2

2 ] + f2 =: h2(u1, u2) + f2,
∂νu1 = 0 = ∂νu2 on ∂Ω,

(9)

where for i = 1, 2, di ∈ (0,+∞), αi, βi ∈ {0} ∪ [1,+∞), fi ∈ L1(Ω)+,Ω ⊂ RN equipped with the Lebesgue
measure. This kind of nonlinearity appears in reversible chemical reactions with two species, namely

α1A1 + α2A2 
 β1A1 + β2A2. (10)

Here (β1 − α1)(β2 − α2) < 0. The nonlinearity h1 and h2 are quasipositive but satisfy the only one relation
γ2h1 + γ1h2 = 0, γi := |βi − αi|. It turns out that existence indeed holds for system (9) when fi ∈ L1(Ω)+

for all i, as we prove it here. Actually we prove existence for a general class of such “chemical systems”
when fi ∈ L1(Ω)+ and also fi log fi ∈ L1(Ω). This is the second main result of this paper. Let us consider
the system

(CHS)


For all i = 1, ...,m,

ui − di∆ui = (βi − αi)
(
k1Πm

k=1u
αk
k − k2Πm

k=1u
βk
k

)
+ fi,

∂νui = 0 on ∂Ω,

(11)

where k1, k2 ∈ (0,+∞) and, for all i = 1, ...,m, di ∈ (0,+∞), αi, βi ∈ {0} ∪ [1,+∞) and fi ∈ L1(Ω)+ where
Ω is bounded regular open subset of RN and where

I :=
{
i ∈ {1, ...,m} ; αi − βi > 0

}
, J :=

{
j ∈ {1, ...,m}; βj − αj > 0

}
satisfy :
I 6= ∅, J 6= ∅, I ∪ J = {1, ...,m}.

(12)

We denote by |I| (resp. |J |) the number of elements of I (resp. J).

Theorem 1.2 Assume that fi ∈ L1(Ω)+, fi log fi ∈ L1(Ω) for all i = 1, ...,m. Assume also that |I| ≤ 2 (or
|J | ≤ 2). Then there exists a nonnegative solution u ∈ W 2,1(Ω)+m of (CHS) with hi(u) ∈ L1(Ω) for all
i = 1, ...,m. If moreover m = 2, then the same result holds if fi ∈ L1(Ω)+, i = 1, 2 only.

Remark 1.3 System (11) arises when modeling a general reversible chemical reaction with m species,
according to the mass action law and to Fick’s linear diffusion. In fact, it also contains systems written
more generally as

vi − di∆vi = λi

(
K1Πm

k=1v
αk
k −K2Πm

k=1v
βk
k

)
+ f̃i,

where λi ∈ R, λi(βi − αi) > 0, i = 1, ...,m. Indeed, we may go back to the exact writing of (11) by setting

ui := (βi − αi)vi/λi, k1 := K1Πk[λk/(βk − αk)]αk , k2 := K2Πk[λk/(βk − αk)]βk , fi := (βi − αi)f̃i/λi.

On the other hand, it does not include systems like{
u1 − d1∆u1 = +[u3

1u
2
2 − u2

1u
3
2] + f1 (= u2

1u
2
2[u1 − u2] + f1),

u2 − d2∆u2 = −[u3
1u

2
2 − u2

1u
3
2] + f2.

Here the condition λi(βi − αi) > 0 is not satisfied.
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Remark 1.4 Note that besides the 2×2 system (9), Theorem 1.2 contains as particular cases some favorite
systems of the literature like

hi(u) = (−1)i[uα1
1 uα3

3 − u
β2
2 ], i = 1, 2, 3, α1, α3, β2 ∈ [1,+∞),

hi(u) = (−1)i[u1u3 − u2u4], i = 1, 2, 3, 4.

We may use Remark 1.3 to write them as in (11). Analysis of systems of this kind may be found for instance
in [12], [7], [18], [13], [9], [5], [6], etc.

In fact Theorem 1.2 applies to quite general systems like, for instance, those obtained by multiplying the
above 3× 3 (resp. 4× 4) example by uσ11 uσ22 uσ33 (resp. uσ11 uσ22 uσ33 uσ44 ) where σi ∈ [0,+∞). They lead to the
following nonlinearities

hi(u) = λi[Π
m
k=1u

αk
k −Πm

k=1u
βk
k ],

where m = 3 (resp. m = 4) and λi(βi − αi) > 0. Actually, Theorem 1.2 applies also to these same
nonlinearities when m = 5. Indeed, since I ∪ J = {1, 2, 3, 4, 5}, it follows that I or J contains at most two
elements.

We believe that the result of Theorem 1.2 holds even if |I| and |J | > 2. But it is not clear how to extend
our main Lemma 4.2 to the general case. We leave this as an open problem.

Remark 1.5 Theorem 1.2 provides a solution u such that hi(u) ∈ L1(Ω). It is easy to write down explicit

examples where the nonlinear terms Πku
αk
k ,Πku

βk
k are not separately in L1(Ω). For instance, let N > 4

and let us introduce the following function σ where r := |x|, x ∈ Ω := B(0, 1) ⊂ RN , b ∈ (N/2, N − 2), c ∈
(0,+∞):

σ(r) := r−b + br + c,∀ 0 < r ≤ 1,

⇒ σ −∆σ = f, f(r) := c+ r−b + br + b(N − 2− b)r−(b+2) − b(N − 1)r−1, σ′(1) = 0,

where c is chosen large enough so that f ≥ 0. Note that f ∈ Lp(Ω), p ∈ [1, N/(b+ 2)). Let us now consider
the solution (which exists by Theorem 1.2) of the system

u1, u2 ∈W 2,1(Ω), u2
2 − u2

1 ∈ L1(Ω),
u1 −∆u1 = u2

2 − u2
1 + f/2,

u2 −∆u2 = −[u2
2 − u2

1] + f/2,
∂νu1 = ∂νu2 = 0 on ∂Ω.

Then (u1 + u2)−∆(u1 + u2) = f, ∂ν(u1 + u2) = 0 on ∂Ω. Thus u1 + u2 = σ. But u1, u2 cannot be in L2(Ω)
since σ is not in L2(Ω) by the choice of b > N/2.

Remark 1.6 It is classical that an entropy structure holds in System (11) since

m∑
i=1

[log ui + µi]hi(u) = −[log
(
k1Πm

k=1u
αk
k

)
− log

(
k2Πm

k=1u
βk
k

)
][k1Πm

k=1u
αk
k − k2Πm

k=1u
βk
k ] ≤ 0,

when choosing µi := [log k1− log k2]/[m(αi−βi)]. Under the assumptions of Theorem 1.2, and in particular
the LLogL assumption on the fi, we have the estimate∫

Ω

m∑
i=1

[log ui + µi]ui + di
|∇ui|2

ui
≤
∫

Ω

m∑
i=1

[log ui + µi]fi ≤
∫

Ω

m∑
i=1

fi log fi + (µi − 1)fi + ui,

where, for the last inequality, we use the Young’s inequality (75) with r = fi, s = log ui.
But we will not use here this stucture in the proof of Theorem 1.2. Our strategy will consist in proving

that the nonlinearity hi(u) is a priori bounded in L1(Ω). Then adequate compactness arguments allow us to
pass to the limit in the approximate system. Note that the entropy inequality provides the extra information
that ∇√ui ∈ L2(Ω) for the solutions obtained in Theorem 1.2 when fi log fi ∈ L1(Ω), i = 1, ...,m.
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Theorem 1.1 will be proved in Section 2, examples of applications are given in Section 3 and the proof of
Theorem 1.2 is given in Section 4.

2 Proof of Theorem 1.1

Since µ is fixed, we will most of the time more simply write L1(Ω), L1(Ω)+ instead of L1(Ω, dµ), L1(Ω, dµ)+.
We will use the natural order in Rm namely [r ≤ r̂ ⇔ ri ≤ r̂i, i = 1, ...,m] and we also denote r+ :=
(r+

1 , ..., r
+
m).

Lemma 2.1 Let f = (f1, ..., fm) ∈ L1(Ω)+m. We set

hni (x, r) :=
hi(x, r)

1 + n−1

m∑
j=1

|hj(x, r)|
, ∀ i = 1, ...,m, r ∈ Rm, x ∈ Ω. (13)

Assume that (A) and (H1) hold. Then the following approximate system

(Sn)

{
∀i = 1, ...,m, uni ∈ D(Ai) ∩ L1(Ω)+,
uni +Aiu

n
i = hni (·, un) + fi(·) in L1(Ω, dµ),

(14)

has a nonnegative solution un = (un1 , · · · , unm).

Proof. We consider the mapping T : v ∈ L1(Ω)m 7→ w ∈ L1(Ω)m where w = (w1, ..., wm) is the solution of{
∀i = 1, ...,m, wi ∈ D(Ai),
wi +Aiwi = hni (·, v+) + fi(·) in L1(Ω, dµ),

(15)

where v+ := (v+
1 , ..., v

+
m). The mapping T is well defined since |hni (x, r)| ≤ n for all (x, r) ∈ Ω × Rm and

f ∈ L1(Ω)m so that the solution is given by

wi = (I +Ai)
−1
(
hni (·, v+) + fi

)
, i = 1, ...,m.

Moreover ‖hni (·, v) + fi‖L1(Ω) ≤ nµ(Ω) + ‖fi‖L1(Ω) =: Mi. Let

Ki := (I +Ai)
−1
[
{g ∈ L1(Ω) ; ‖g‖L1(Ω) ≤Mi}

]
, K := K1 × ...×Km ⊂ L1(Ω)m.

By assumption (A) and in particular (A3), K is a compact set of L1(Ω)m and K ⊃ T
(
L1(Ω)m

)
. On the

other hand, we easily check that T is continuous. Thus T is a compact operator from L1(Ω)m into the
compact set K ⊂ L1(Ω)m. By Schauder’s fixed point theorem (see e.g. [21]), T has a fixed point un. This
means that un is solution of (Sn).

To prove the nonnegativity property of un, we multiply the i-th equation by sign−(uni ) and integrate to

obtain, using

∫
Ω
sign−(ui)Aiui ≥ 0 (see (A2) ),∫

Ω
(uni )−dµ ≤

∫
Ω

[
sign−(uni )hni (·, (un)+) + sign−(uni )fi

]
dµ.

By the nonnegativity of fi and the quasipositivity of hi assumed in (H1), the integral on the right is

nonpositive so that

∫
Ω

(uni )−dµ ≤ 0 or uni ≥ 0 µ− a.e.. �

We will now progressively obtain estimates on un independently of n. We start with the control of the total
mass of un.
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Proposition 2.2 Assume that (A), (H1), (H2), (Ainf ) hold. Then there exists C ∈ (0,+∞) independent
of n such that the solution un of the approximate system (Sn) satisfies

max
1≤i≤m

‖uni ‖L1(Ω) ≤ C.

Proof. According to (H2), we multiply each equation by ai and we add them to obtain

m∑
i=1

ai(u
n
i +Aiu

n
i ) =

m∑
i=1

ai[h
n
i (·, un) + fi] ≤

m∑
i=1

[biu
n
i + aifi].

We use (Ainf ) to obtain

n∑
i=1

(ai − bi)
∫

Ω
uni dµ ≤ −a∞

m∑
i=1

ai +
m∑
i=1

ai

∫
Ω
fidµ.

Using ai > bi for all i yields the estimate of Proposition 2.2. �

We now prove that the nonlinearities are bounded in L1 independently of n.

Proposition 2.3 Assume that (A), (H1), (H2), (Ainf ), (M) hold. Then there exists C ∈ (0,+∞) inde-
pendent of n such that the solution un of the approximate system (Sn) satisfies

max
1≤i≤m

‖hni (·, un)‖L1(Ω) ≤ C.

Proof. According to the assumption (M), let us multiply the system (Sn) by the matrix M0. As before,
we denote

Aun := (A1u
n, ..., Amu

n), hn(·, un) := (hn1 (·, un), ..., hnm(·, un)) , f := (f1, ..., fm).

Then

M0u
n +M0Au

n = M0h
n(·, un) +M0f ≤M1u

n + Θ +M0f. (16)

Since the entries of M0 are nonnegative, and thanks to (Ainf ) and the nonnegativity of un, there exists
C∞ ∈ [0,+∞)m such that∫

Ω
[M0u

n +M0Au
n]dµ ≥ −C∞ which implies

∫
Ω

[M0h
n(·, un) +M0f ]dµ ≥ −C∞.

We deduce∫
Ω

[M1u
n + Θ−M0h

n(·, un)]dµ ≤ C∞ +

∫
Ω

[M1u
n + Θ +M0f ]dµ ≤ D∞ ∈ (0,+∞)m,

the last inequality using also Proposition 2.2. As the function M1u
n+ Θ−M0h

n(·, un) is nonnegative, these
inequalities provide a bound for its L1(Ω)m-norm. It follows that M0h

n(·, un) is also bounded in L1(Ω)m

independently of n. Since M0 is invertible, we deduce that hn(·, un) is itself bounded in L1(Ω)m: indeed if
| · | denotes the euclidian norm in Rm and ‖ · ‖ the induced norm on the m×m matrices, we may write

|hn(·, un)| = |M−1
0 M0h

n(·, un)| ≤ ‖M−1
0 ‖|M0h

n(·, un)|.

Whence Proposition 2.3. �
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Proposition 2.4 Assume that (A), (H1), (H2), (Ainf ), (M), (Φ) hold. Then, if un is the solution of the
approximate system (Sn), {hn(., un)}n is uniformly integrable in Ω which means that, for all ε > 0, there
exists δ > 0 such that for all measurable set E ⊂ Ω

µ(E) < δ ⇒
∫
E

n∑
i=1

|hni (·, un)|dµ ≤ ε for all n.

Proof. By Proposition 2.3, we already know that hn(·, un) is bounded in L1(Ω)m. Let us prove that the
extra condition (Φ) implies that it is even uniformly integrable.

First, since uni = (I + Ai)
−1(hn(·, un) + fi), the compactness condition (A3) in (3) implies that, for all

i = 1, ...,m, uni belongs to a compact set of L1(Ω).

Let us show that M0h
n(·, un) is uniformly integrable. Since M0 is invertible, this will imply that hn(·, un)

is itself uniformly integrable and end the proof of Proposition 2.4.

We will successively prove that (M0h
n(·, un))+ and (M0h

n(·, un))− are uniformly integrable.

Note that by the definition (13), hn(·, un) ≤ h(·, un). We may write (recall that the entries of M0 are
nonnegative)

M0h
n(·, un) ≤M0h(·, un) ≤M1u

n + Θ ⇒ (M0h
n(·, un))+ ≤ (M1u

n)+ + Θ. (17)

Since un is in a compact set of L1(Ω)m, so is (M1u
n)+ and it is in particular uniformly integrable. We then

deduce from the last inequality that (M0h
n(·, un))+ is uniformly integrable.

To control (M0h
n(·, un))−, we go back to (16) and, using (17), we rewrite it as follows

M0u
n +M0Au

n + (M0h
n(·, un))− = (M0h

n(·, un))+ +M0f ≤ (M1u
n))+ + Θ +M0f. (18)

According to (Φ), we multiply this inequality by sign+(ϕ(un) − k)b. By (Φ) on one hand and by the
nonnegativity of un, b and of the entries of M0 on the other hand, we have∫

Ω
sign+(ϕ(un)− k)b ·M0Au

ndµ ≥ 0,

∫
Ω
sign+(ϕ(un)− k)b ·M0u

ndµ ≥ 0, ∀ k ∈ [0,+∞).

Combining with (18), we deduce∫
Ω
sign+(ϕ(un)− k)b · (M0h

n(·, un))− dµ ≤
∫

Ω
sign+(ϕ(un)− k)b ·

[
(M1u

n))+ + Θ +M0f
]
dµ. (19)

Since lim
|r|→+∞

ϕ(r) = +∞, for all k ∈ [0,+∞), there exists R(k) such that [|r| ≥ R(k)] ⊂ [ϕ(r) ≥ k] and

therefore

[|un| ≥ R(k)] ⊂ [ϕ(un) ≥ k] , µ− a.e.. (20)

Let E ⊂ Ω be a measurable set. Then∫
E
b ·(M0h

n(·, un))− dµ ≤
∫
E∩[|un|≤R(k)]

b ·(M0h
n(·, un))− dµ+

∫
E∩[|un|≥R(k)]

b ·(M0h
n(·, un))− dµ =: In−+In+.

If we denote ϕR := max{ϕ(r); |r| ≤ R}, then R ∈ [0,+∞) 7→ ϕR ∈ [0,+∞) is a nondecreasing function such
that [ϕ(r) ≥ k] ⊂ [|r| ≥ ψ(k)] where ψ(k) := inf ϕ−1

R ([k,+∞)). By (20) and (19) and [ϕ(un) ≥ k] ⊂ [|un| ≥
ψ(k)], we have

In+ ≤
∫

[ϕ(un)≥k]
b ·
[
(M1u

n)+ + Θ +M0f
]
dµ ≤

∫
[|un|≥ψ(k)]

b ·
[
(M1u

n)+ + Θ +M0f
]
dµ. (21)
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Since un lies in a compact set of L1(Ω)m and lim
k→+∞

ψ(k) = +∞, then lim
k→+∞

µ([|un| ≥ ψ(k)]) = 0 uniformly

in n. Thus, given ε ∈ (0, 1), there exists k = kε large enough so that

In+ ≤ ε/2 for all n. (22)

We can also control In− as follows. We remark that (see assumption (2) in (H1))

|un| ≤ R(kε) ⇒ |hni (·, un)| ≤ |hi(·, un)| ≤ h̃i(·, R(kε)).

This implies that for some B ∈ (0,+∞),

In− =

∫
E∩[|un|≤R(k)]

b · (M0h
n(·, un))− dµ ≤

∫
E
B

m∑
i=1

h̃i(·, R(kε)) (23)

We may choose δ small enough (independent of n) such that

µ(E) ≤ δ ⇒
∫
E

m∑
i=1

h̃i(·, R(kε)) < ε/2B.

Combining with In+ ≤ ε/2 proved above (see (22)), we deduce that b · (M0h
n(·, un))− is uniformly integrable.

Since b ∈ (0,+∞)m, this implies that (M0h
n(·, un))− is itself uniformly integrable. We already know that

(M0h
n(·, un))+ is uniformly integrable. Thus so is M0h

n(·, un) and this ends the proof of Proposition 2.4.
�

Proof of Theorem 1.1. We consider the solution un of the approximate system (Sn) built in Lemma 2.1.
By Propositions 2.2, 2.3, 2.4, up to a subsequence as n→ +∞, we may assume that un converges in L1(Ω)m

and µ-a.e. to some u ∈ L1(Ω)+m. Moreover, by definition of hni (see (13) ) and the continuity property of hi
assumed in (H1), hni (·, un) converges µ-a.e. to h(·, u). Moreover hn(·, un) is uniformly integrable. By Vitali’s
Lemma (see e.g. [20] or [8]), hn(·, un) converges also in L1(Ω)m to h(·, u). Since uni = (I+Ai)

−1(hn(·, un)+fi)
this implies that ui = (I +A−1

i (h(·, u) + fi) which means that u is solution of the limit system (S) and this
ends the proof of Theorem 1.1. �

3 Examples

In all examples below, Ω is a bounded open subset of RN with regular boundary and equipped with the
Lebesgue measure.

3.1 Examples with linear diffusions and homogeneous boundary conditions

We start with a simple example associated with the Laplacian operator with homogeneous boundary
conditions.

Corollary 3.1 Assume the nonlinearity h = (h1, ..., hm) satisfies (H1), (H2), (M). Let di ∈ (0,+∞), fi ∈
L1(Ω)+, i = 1, ...,m. Then the following system has a solution

for all i = 1, ...,m;

ui ∈W 1,1
0 (Ω)+, hi(·, u) ∈ L1(Ω),

ui − di∆ui = hi(·, u) + fi.

(24)
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Proof. We consider the operators{
D(Ai) := {u ∈W 1,1

0 (Ω) ; ∆u ∈ L1(Ω)},
Aiu := di∆u.

(25)

It is classical that these operators Ai satisfy the three conditions of (A) in (3) (see e.g. [4]). Since 0 ∈ D(Ai),
as already noticed just after (6), (Ainf ) is also satisfied. And for (Φ), if we denote M0 = [mij ]1≤i,j≤m, we
choose ϕ(r) :=

∑m
j=1 (

∑m
i=1mij) djrj , b = (1, ..., 1)t ∈ (0,+∞)m. Note that

∑m
i=1mij > 0 for all j = 1, ...,m

since mij ≥ 0 and M0 is invertible. In particular, lim
|r|→+∞

ϕ(r) = +∞). Then, if u ∈ D(A), k ∈ (0,+∞),

∫
Ω
sign+(ϕ(u)− k)b ·M0Au = −

∫
Ω
sign+

 m∑
i,j=1

mijdjuj − k

∆

 m∑
i,j=1

mijdjuj

 ≥ 0. (26)

Then we may apply Theorem 1.1. �

Remark 3.2 As examples of functions h, we may for instance choose
m = 2, αi, βi ∈ {0} ∪ [0,+∞), i = 1, 2, λ ∈ (0, 1)

h1(·, u1, u2) = λuα1
1 uα2

2 − u
β1
1 u

β2
2 ,

h2(·, u1, u2) = −uα1
1 uα2

2 + uβ11 u
β2
2 .

We easily check that (H1) holds and that (H2) is satisfied with ai = 1, bi = 0 for all i and ω = 0 (in other
words h1 + h2 ≤ 0). Moreover (M) is satisfied with M1 = 0,Θ = (0, 0)t and

M0 =

(
1 1
1 λ

)
.

Note that for λ = 1, M0 is not invertible so that only one relation h1 + h2 ≤ 0 holds and Theorem 1.1 does
not apply. This kind of systems is considered in Theorem 1.2. �

• Here is another example of a nonlinearity h = (h1, h2, h3) which satisfies the corollary.{
m = 3, αi ∈ [1,+∞), i = 1, 2,
h1 = u3 − uα1

1 uα2
2 = h2 = −h3.

The corresponding evolution problem is studied in [19] for N ≤ 5, [15] for any dimension N with α1 = α2 = 1,
and in [12] where (α1, α2) ∈ [1,+∞)2.

Here (H1) is obviously satisfied and so is (H2) with ai = 1, i = 1, 2, a3 = 2, bi = 0, i = 1, 2, 3, ω = 0. Then
(M) is satisfied with Θ = (0, 0, 0)t and

M0 =

 1 0 0
0 1 0
1 1 2

 , M1 =

 0 0 1
0 0 1
0 0 0

 .

A main point here is that the dependence in u3 is linear. When it is superlinear, the system does not fit
any more into the scope of Theorem 1.1. It is however analyzed in Theorem 1.2.

�
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3.2 About more general linear diffusions

Let us now make some comments on the following example where diffusions are more general than in
Corollary 3.1.

ui ∈W 1,1
0 (Ω), hi(u1, u2) ∈ L1(Ω), i = 1, 2,

u1 −
N∑

i,j=1

aij∂xixju1 = h1(u1, u2) + f1,

u2 −
N∑

i,j=1

bij∂xixju2 = h2(u1, u2) + f2,

(27)

where

aij , bij ∈ R,
N∑

i,j=1

aijξiξj ,
N∑

i,j=1

bijξiξj ≥ α|ξ|2, α ∈ (0,+∞), ∀ξ = (ξ1, ..., ξN ) ∈ RN . (28)

We consider the operators
D(A1)[resp. D(A2)] :=

{
v ∈W 1,1

0 (Ω),
∑N

i,j=1 aij∂xixjv [resp.
∑N

i,j=1 bij∂xixjv] ∈ L1(Ω)
}
,

A1v :=

N∑
i,j=1

aij∂xixjv, A2v :=

N∑
i,j=1

bij∂xixjv.

It is easy to see that the assumptions (A), (Ainf ) are satisfied. Thus if (H1), (H2), (M) are satisfied like
in Corollary 3.1, then for the approximate solutions un of this system, as defined in the proof of Theorem
1.1, it follows that un, hn(·, un) are bounded in L1(Ω)2 and un lies in a compact set of L1(Ω)2. However, the
extra condition (Φ) is not satisfied in general so that it is not clear whether hn(·, un) is uniformly integrable.
Actually, we have to choose here a different strategy with does not seem to be generalized to the abstract
setting of Section 2. It consists in looking at the equation satisfied by Tk(u

n
1 + ηun2 ) where Tk is a cut-off

function. It is then easy to pass to the limit in the nonlinear terms of the truncated approximate system
since they are multiplied by T ′k(u

n
1 + ηun2 ) which vanishes for uni large for all i. Therefore a.e. convergence

is sufficient to pass to the limit. The difficulty is then to prove precise estimates independent of n, in terms
of η, in order to control the other terms as it done in the parabolic case (see [16], [17], [13]). This approach
through cut-off functions Tk is precisely developed in Section 4 to prove Theorem 1.2 and we refer the reader
to this other approach without giving more details here. �

3.3 Examples with linear diffusions and Robin-type boundary conditions

Now we analyze what happens for systems like (24) when the boundary conditions are different. If
we replace the homogeneous boundary conditions of (24) by homogeneous Neumann boundary conditions,
then the result is exactly the same. On the other hand, the situation is quite more complicated if the
boundary conditions are of different type for each of the ui’s. This is actually connected with the content
of the assumption (Φ). For simplicity, we do it only for a 2 × 2-system. Given a nonlinearity h satisfying
(H1), (H2), (M), we consider the following system with general Robin-type boundary conditions.

i = 1, 2,
ui ∈W 1,1(Ω)+, hi(u1, u2) ∈ L1(Ω),
ui − di∆ui = hi(u1, u2) + fi,
λiui + (1− λi)∂νui = ψi on ∂Ω,
λi ∈ [0, 1], di ∈ (0,+∞), ψi ∈ [0,+∞), fi ∈ L1(Ω)+.

(29)
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Corollary 3.3 Let (f1, f2) ∈ L1(Ω)+ × L1(Ω)+. Assume the nonlinearity h satisfies (H1), (H2), (M).
Assume moreover [0 ≤ λ1, λ2 < 1] or [λ1 = λ2 = 1 and ψ1 = ψ2 = 0]. Then the system (29) has a solution.

Remark 3.4 It is known that the case when one of the λi is equal to 1 is different (see the analysis in
[14]). For instance, finite time blow up may occur for the associated evolution problem when the boundary
conditions are u1 = 1, ∂νu2 = 0 (see [2], [3]). Then the operator A1 does not satisfy (Ainf ) as easily seen
by considering (as in [14]) the following simple example: uσ(x) := cosh(σx)/ cosh(σ) on Ω := (−1, 1) with
σ ∈ (0,+∞). Then uσ ≥ 0 and uσ = 1 on ∂Ω. But −

∫
Ω u
′′
σ = u′σ(−1)− u′σ(1)→ −∞ as σ → +∞. Here we

consider only the cases that directly fall into the scope of Theorem 1.1. A few other cases could be treated
directly like λ1 = λ2 and positive data ψ1, ψ2 or also λ1 = 0 6= λ2 and ψ1 = 0.

Proof of Corollary 3.3. Here we define{
D(Bi) = {u ∈W 2,1(Ω); λiui + (1− λi)∂νui = ψi on ∂Ω},
Biu := −di∆ui.

Then the closure Ai of Bi in L1(Ω) satisfies the assumption (A) (see [4]).

• Let us first assume 0 ≤ λi < 1, i = 1, 2. Then, for ui ∈ D(Bi)∫
Ω
Biui = −

∫
Ω
di∆ui = −

∫
Ω
di∂νui = di

∫
Ω

(1− λi)−1(λiui − ψi) ≥ −di(1− λi)−1

∫
Ω
ψi.

This remains valid for Ai by closure. Thus the assumption (Ainf ) is satisfied. For the condition (Φ), we
come back to (26) with the same ϕ, b. Let pq(r) be a standard approximation of sign+(r − k) like

pq(r) = 0, ∀ r ∈ (−∞, k− 1/q]; pq(r) = q (r− k) + 1, ∀ r ∈ [k− 1/q, k]; pq(r) = 1, ∀ r ∈ [k,+∞). (30)

Then, for uj ∈ D(Bj), j = 1, 2 and for V :=
∑2

i,j=1mijdjuj∫
Ω
pq(ϕ(u)− k)b ·M0Bu =

∫
Ω
p′q(V )|∇V |2 −

∫
∂Ω
pq(V )∂νV ≥ −

∫
∂Ω
pq(V )∂νV.

−
∫
∂Ω
pq(V )∂νV =

∫
∂Ω
pq(V )

2∑
i,j=1

mijdj(1− λj)−1(λjuj − ψj).

If ψj = 0 for all j = 1, ...,m, then −
∫
∂Ω pq(V )∂νV ≥ 0 and letting q → +∞, we obtain that B and therefore

A satisfies the condition (Φ). When ψj 6= 0 for some j, we only obtain∫
Ω
sign+(ϕ(u)− k)b ·M0Bu ≥ −

∫
∂Ω
sign+(V − k)

m∑
i,j=1

mijdj(1− λj)−1ψj =: −η(V, k).

The point is that we can slightly modify the proof of Theorem 1.1 to get the same conclusion with this
weaker estimate from below. Indeed, in the present case, we have to add the term η(Vn, k) in the inequality
(19) where Vn =

∑2
i,j=1mijdju

n
j . Since η(Vn, k) tends to 0 as k → +∞ uniformly in n, the rest of the proof

remains unchanged if we choose kε large enough so that η(V, kε) < ε also.

• Assume now that λ1 = λ2 = 1. Then we make the same choice as in (26) and we see that

−
∫

Ω
sign+(ϕ(u)− k)b ·M0Au ≥ −

∫
∂Ω
sign+(

2∑
i,j=1

mijdjψj − k)∂ν(
2∑

i,j=1

mijdjuj) ≥ 0,

since uj ≥ 0, uj = 0 on ∂Ω imply that ∂νuj ≤ 0 on ∂Ω.

For the same reason, (Ainf ) holds since −
∫

Ω
∆uj = −

∫
∂Ω
∂νuj ≥ 0. �
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3.4 Examples with nonlinear diffusions

Let us now consider nonlinear diffusions.
• We start with porous media type equations.

For i = 1, ...,m,

ui ∈ L1(Ω)+, ϕi(ui) ∈W 1,1
0 (Ω), hi(u) ∈ L1(Ω),

ui −∆ϕi(ui) = hi(u) + fi,

(31)

where ϕi : [0,+∞)→ [0,+∞) is continuous, increasing with ϕi(0) = 0, lim
s→+∞

s−(N−2)+/Nϕi(s) = +∞.

Corollary 3.5 Let (f1, · · · , fm) ∈ (L1(Ω)+)m. Assume the nonlinearity h satisfies (H1), (H2), (M). Then
the system (31) has a solution.

Proof. We naturally define{
D(Ai) := {ui ∈ L1(Ω) ; ϕi(ui) ∈W 1,1

0 (Ω), ∆ϕi(ui) ∈ L1(Ω) },
Aiui := −∆ϕi(ui).

It is classical that the operators Ai satisfy the assumptions (A), (Ainf ) (see [4], [1]). To check that (Φ) is
satisfied, we consider r ∈ [0,+∞)m 7→ ϕ(r) :=

∑m
i,j=1mijϕj(rj) and b := (1, ..., 1)t. Then

∫
Ω
sign+(ϕ(u)− k)b ·M0Au = −

∫
Ω
sign+(

m∑
i,j=1

mijϕj(uj)− k)∆

 m∑
i,j=1

mijϕj(uj)

 ≥ 0.

We then apply Theorem 1.1. �

• A second example with nonlinear diffusions is the following where p ∈ (1,+∞) :
For i = 1, 2,

ui ∈W 1,p−1
0 (Ω)+, fi ∈ L1(Ω), di ∈ (0,+∞),

ui − di∆pui = hi(u1, u2) + fi,

(32)

where for v ∈W 1,p−1(Ω), ∆pv := ∇ · (|∇v|p−2∇v).

Corollary 3.6 Let (f1, f2) ∈ L1(Ω)+×L1(Ω)+. Assume the nonlinearity h satisfies (H1), (H2), (M). Then
the system (32) has a solution.

Proof. Here we define for i = 1, 2{
D(Bi) := {v ∈W 1,p

0 (Ω) ∩ L2(Ω) ; ∆pv ∈ L2(Ω)},
Bi(v) := −di ∆pv.

And the operators Ai are defined as the closure of Bi in L1(Ω). Then the assumptions (A), (Ainf ) are
satisfied (see e.g. [10]). Let us prove that (Φ) holds. For pq defined as in (30) and ûi ∈ D(Bi), i = 1, 2, we
have

−
∫

Ω
pq(û1 + û2)(∆pû1 + ∆pû2) =

∫
Ω

(∇û1 +∇û2)(|∇û1|p−2∇û1 + |∇û2|p−2∇û2)p′q(û1 + û2).

The mapping r ∈ RN 7→ |r|p is convex. Therefore its gradient r ∈ RN 7→ p|r|p−2r ∈ RN is monotone, which
means

(r1 − r2) · (|r1|p−2r1 − |r2|p−2r2) ≥ 0 , ∀ r1, r2 ∈ RN .
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We apply this with r1 := ∇û1(x), r2 := −∇û2(x), x ∈ Ω to deduce after integration on Ω:

−
∫

Ω
pq(û1 + û2)(∆pû1 + ∆pû2) ≥ 0.

And letting q → +∞ gives −
∫

Ω sign
+(û1 + û2 − k)(∆pû1 + ∆pû2) ≥ 0 and by closure∫

Ω
sign+(û1 + û2 − k)(A1û1 +A2û2) ≥ 0 ∀u1 ∈ D(A1),∀u2 ∈ D(A2). (33)

For the condition (M), we choose

b := (1, 1)t, ϕ(r1, r2) := c1r1 + c2r2, c1 := {(m11 +m21)d1}1/(p−1), c2 := {(m21 +m22)d2}1/(p−1)

where M0 := (mij)1≤i,j≤2. Then for u1 ∈ D(A1), u2 ∈ D(A2), u = (u1, u2),∫
Ω
sign+(ϕ(u)− k)b ·M0Au =

∫
Ω
sign+(c1u1 + c2u2 − k)

2∑
i,j=1

mijdjAjuj

=

∫
Ω
sign+(c1u1 + c2u2 − k)[A1(c1u1) +A2(c2u2)]

≥ 0,

the last inequality coming from (33) applied with û1 := c1u1, û2 := c2u2. This ends the proof of Corollary
3.6.

�

• To end this section, let us comment on the following system which is a model of situations where the
operators Ai are very different from each other :

p 6= 2

u1 ∈W 1,p−1
0 (Ω)+, u2 ∈W 1,1

0 (Ω)+,
h1, h2, f1, f2 ∈ L1(Ω),
u1 −∆pu1 = h1(u1, u2) + f1,
u2 −∆u2 = h2(u1, u2) + f2.

(34)

As a consequence, the compatibility condition (Φ) is not generally satisfied. However, if the nonlinearity h
satisfies (H1), (H2), (M), then for the approximate solution un defined in Section 2, hn(·, un) is bounded in
L1(Ω)×L1(Ω) and therefore un lies in a compact set of L1(Ω)×L1(Ω). Thus we may assume that, up to a
subsequence, un converges to some u in L1(Ω) × L1(Ω) and a.e. so that hn(·, un) converges a.e. to h(·, u).
Unfortunately we do not know whether we can pass to the limit in the approximate version of system (34).
And it is not clear how the use of cut-off function Tk as in the next section can help. We leave this as an
open problem. �

4 Proof of Theorem 1.2

For each k = 1, ...,m, we define σk := min{αk, βk}, γk := |αk − βk| so that (see (12) for the definition of
I, J ):

hk(u) = (βk − αk)
(
Πm
`=1u

σ`
`

)
B(u), B(u) := k1Πi∈Iu

γi
i − k2Πj∈Ju

γj
j . (35)

We first solve the approximate system with the bounded data fni := inf{fi, n}, n ∈ N.
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Lemma 4.1 There exists a nonnegative solution un ∈ ∩p∈[1,∞)W
2,p(Ω)+m of

For i = 1, ...,m,
uni − di∆uni = (βi − αi)Πm

k=1(unk)σk B(un) + fni in Ω,
∂νui = 0 on ∂Ω.

(36)

Moreover, we have

γju
n
i + γiu

n
j −∆(γjdiu

n
i + γidju

n
j ) = γjf

n
i + γif

n
j , ∀ i ∈ I, j ∈ J, (37)

and un is bounded in L1+η(Ω)m for some η > 0.

Proof. By the abstract Lemma 2.1, for ε ∈ (0, 1), there exists a regular nonnegative solution uε of
For i = 1, ...,m,

uεi − di∆uεi = (βi − αi)
Πm
k=1(uεk)

σk B(uε)

1 + ε
[
Πk=1m(uεk)

αk + Πm
k=1(uεk)

βk
∣∣ + fni in Ω,

∂νu
ε
i = 0 on ∂Ω.

(38)

Indeed the nonlinearity is here quasi-positive and uniformly bounded by maxi γi/ε. Then by multiplying
the equations in i ∈ I, j ∈ J respectively by γj , γi, we have

(γju
ε
i + γiu

ε
j)−∆(γjdiu

ε
i + γidju

ε
j) = γjf

n
i + γif

n
j . (39)

If d := max
1≤k≤m

dk, this implies (since uεi , u
ε
j ≥ 0)

(
d
)−1

[γjdiu
ε
i + γidju

ε
j ]−∆(γjdiu

ε
i + γidju

ε
j) ≤ γjfni + γif

n
j , ∂ν(γjdiu

ε
i + γidju

ε
j) = 0 on ∂Ω.

We deduce that

γjdiu
ε
i + γidju

ε
j ≤

[(
d
)−1

I −∆
]−1

(γjf
n
i + γif

n
j ). (40)

Since the fni are bounded by n (fixed), using the nonnegativity of uε, we obtain that the uεi are bounded in
L∞(Ω) independently of ε. By standard elliptic regularity results applied to the equation (38) in uεi , they
are also bounded in ∩p∈[1,∞)W

2,p(Ω). They are therefore included in a compact set of L∞(Ω) as ε → 0.
We can then easily pass to the limit as ε → 0 and obtain the convergence of a subsequence of uε toward a
solution un of (36).

Then the identities (37) follow by passing to the limit in (39). But (40) remains also valid at the limit
and implies that uni , i = 1, ...,m are bounded in L1(Ω) independently of n. Next we may rewrite (37), using
d := min

1≤k≤m
dk :

d−1[γjdiu
n
i +γidju

n
j ]−∆(γjdiu

n
i +γidju

n
j ) = γj [(d

−1di−1)uni +fni ]+γi[(d
−1dj−1)unj +fnj ], ∀ i ∈ I, j ∈ J, (41)

together with ∂ν(γjdiu
n
i + γidju

n
j ) = 0 on ∂Ω. Since the right-hand side is bounded in L1(Ω), this implies

that γjdiu
n
i + γidju

n
j is bounded in Lp(Ω) for all p ∈ [1, N/(N − 2)+) (see e.g. [4]). This ends the proof of

Lemma 4.1.

�

In order to rewrite the relations (41), we denote

gnk := (d−1dk − 1)unk + fnk ≥ 0, ∀ k = 1, ...,m. (42)
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When fk log fk is assumed to be in L1(Ω) for all k = 1, ...,m, then

sup
n∈N

{
max

1≤k≤m

∫
Ω
gnk + | gnk log gnk |

}
< +∞. (43)

This is due to the “L LOG L” assumption on the fi’s and on the L1+η-bound on the uni stated in Lemma
4.1. Next we introduce the solutions Gnk of

d−1Gnk −∆Gnk = gnk in Ω, ∂νG
n
k = 0 on ∂Ω, Gnk ≥ 0, k = 1, ...,m, (44)

so that the relations (37), (41) may be rewritten

γjdiu
n
i + γidju

n
j = γjG

n
i + γiG

n
j , ∀ i ∈ I, j ∈ J. (45)

Our goal is to prove that the nonlinearity of the system (36) is bounded in L1(Ω)m independently of n.
It will imply enough compactness on un to pass to the limit. The following lemma will provide the key
estimate.

Lemma 4.2 Under the assumptions of Theorem 1.2, there exists θn ∈W 2,1(Ω)+m (unique) such that
γjdiθ

n
i + γidjθ

n
j = γjG

n
i + γiG

n
j , ∀ i ∈ I, j ∈ J,

k1Πi∈I(θ
n
i )γi = k2Πj∈J(θnj )γj (or B(θn) = 0),

∂νθ
n
k = 0 on ∂Ω, ∀ k = 1, ...,m.

(46)

Moreover

sup
n

{
max

1≤k≤m
‖∆θnk‖L1(Ω)

}
< +∞. (47)

We postpone the proof of this lemma and we end the proof of Theorem 1.2.
Without loss of generality, we assume that 1 ∈ I. Using the equation in un1 given in the approximate

system (36), and the fact that B(θn) = 0, we have

un1 − θn1 − d1∆(un1 − θn1 ) + γ1Πm
k=1(unk)σk [B(un)−B(θn)] = ρn, ρn := fn1 − θn1 + d1∆θn1 . (48)

Now the main point is that B(un), B(θn) have the property that

B(un) = bn(·, un1 ), B(θn) = bn(·, θn1 ), (49)

where r 7→ bn(·, r) is a increasing function. More precisely, we deduce from the relations (45), (46) that

γidjθ
n
j = γjG

n
i + γiG

n
j − γjd1θ

n
1 ,∀ j ∈ J, γ1diθ

n
i = γid1θ

n
1 + γ1G

n
i − γiGn1 , ∀i ∈ I.

γidju
n
j = γjG

n
i + γiG

n
j − γjd1u

n
1 ,∀ j ∈ J, γ1diu

n
i = γid1u

n
1 + γ1G

n
i − γiGn1 , ∀i ∈ I.

Plugging this into B(un), B(θn, recalling that B(v) = k1Πi∈Iv
γi
i − k2Πj∈Jv

γj
j , we indeed obtain (49) by

setting

bn(x, r) := k1Πi∈I(δid1r + Fni (x))γi − k2Πj∈J(Fnj (x)− δjd1r)
γj , ∀ r ∈ [rn−, r

n
+], (50)

where we define
δk := γk/(γ1dk), ∀ k = 1, ...,m,

Fni := d−1
i Gni − δiGn1 , ∀ i ∈ I, Fnj := δjG

n
1 + d−1

j Gnj , ∀ j ∈ J,
rn−(x) := maxi∈I [F

n
i (x)]−/(δid1), rn+(x) := minj∈J F

n
j (x)/(δjd1).

(51)

16



We multiply the equation (48) by sign(un1 − θn1 ) and we integrate. Then we use the two following properties∫
Ω
sign(un1 − θn1 )[un1 − θn1 − d1∆(un1 − θn1 )] ≥ 0,

sign(un1 − θn1 )[B(un)−B(θn)] = sign(un1 − θn1 )[bn(·, un1 )− bn(·, θn1 )] = |bn(·, un1 )− bn(·, θn1 )|,

to obtain

γ1

∫
Ω

Πm
k=1(unk)σk |bn(·, un1 )− bn(·, θn1 )| ≤

∫
Ω
|ρn|.

Since ρn is bounded in L1(Ω) by Lemma 4.2, and since bn(·, θn1 ) ≡ 0, this implies that the nonlinearity of
the equation in un1

un1 − d1∆un1 + γ1Πm
k=1(unk)σk bn(·, un1 ) = fni in Ω,

is bounded in L1(Ω) independently of n. This implies that ∆un1 is bounded in L1(Ω). Going back to (45),
it follows that ∆unk is bounded in L1(Ω)m for all k = 1, ...,m as well. Up to a subsequence, we may deduce
that unk converges for all k to some uk in L1(Ω) and a.e. and that ∇unk converges in L1(Ω)N to ∇uk. Note
also that by Fatou’s lemma, Πk(uk)

σkB(u) ∈ L1(Ω).

Now to end the passing to the limit, we look at the equation satisfied by TR(vni ) where vni := uni + ε
∑

j 6=i u
n
j

and ε ∈ (0, 1) and the TR are C2-cut-off functions satisfying{
TR(s) = s if s ∈ [0, k − 1], T ′R(s) = 0 if s ≥ k, TR(s) ≤ k, ∀s ∈ [0,+∞),
0 ≤ T ′R(s) ≤ 1, T ′′R(s) ≤ 0 for all s ≥ 0.

(52)

−∆TR(vni ) = −T ′R(vni )∆vni − T ′′R(vni )|∇vni |2 ≥ −T ′R(vni )∆(uni + ε
∑
j 6=i

unj ).

Coming back to the system (36), we have that for all ψ ∈ C∞
(
Ω
)+

,

∫
Ω
∇ψ∇TR(vni ) ≥

∫
Ω
ψT ′R(vni )

Πk(u
n
k)σkB(un)[

βi − αi
di

+ ε
∑
j 6=i

βj − αj
dj

] +
fni − uni
di

+ ε
∑
j 6=i

fnj − unj
dj

 .

We know that, up to a subsequence, un converges in L1(Ω)m and a.e. to some u ∈ W 1,1(Ω)m. We may
pass to the limit along this subsequence in the above inequality. Indeed the nonlinear terms on the right
converge a.e. and T ′R(vni )Πk(u

n
k)σkB(un) is uniformly bounded, while the fnk , u

n
k , k = 1, ...,m converge in

L1(Ω). Moreover, ∇TR(vni ) = T ′R(vni )∇vni converges in L1(Ω) to ∇TR(vi), vi := ui + ε
∑

j 6=i uj . At the limit,
we obtain the same inequality without the superscript n. Then, we let ε go to 0 to obtain∫

Ω
∇ψ∇TR(ui) ≥

∫
Ω
ψT ′R(ui)

{
Πk(uk)

σkB(u)
βi − αi
di

+
fi − ui
di

}
.

And now we let R→ +∞ to obtain∫
Ω
∇ψ∇ui ≥

∫
Ω
ψ

{
Πm
k=1(uk)

σkB(u)
βi − αi
di

+
fi − ui
di

}
,

or equivalently

∀i = 1, ...,m,

∫
Ω
ψui + di∇ψ∇ui ≥

∫
Ω
ψ {Πk(uk)

σkB(u)(βi − αi) + fi} . (53)
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But, on the other hand, by passing directly to the limit as n→ +∞ in (37), we have that for i ∈ I, j ∈ J∫
Ω
ψ(γjui + γiuj) +∇ψ∇[γjdiui + γidjuj ] =

∫
Ω
ψ(γjfi + γifj).

This implies that all inequalities in (53) are actually equalities so that, for all i = 1, ...,m,

ui ∈W 2,1(Ω), ui − di∆ui = hi(u) + fi in Ω, ∂νui = 0 on ∂Ω.

This ends the proof of Theorem 1.2.

�

Proof of Lemma 4.2.

STEP 0 : The case m = 2. For simplicity, we drop the index ’n’. We assume I = {1}, J = {2}. Then
the system (46) is equivalent to

θ2 = G− δθ1, G := [γ2G1 + γ1G2][γ1d2]−1, δ := γ2d1[γ1d2]−1,

k1θ
γ1
1 = k2θ

γ2
2 ⇔ ρ θγ1 = G− δθ1, ρ := [k1/k2]γ

−1
2 γ := γ1/γ2,

∂νθ1 = 0 on ∂Ω.

It is easily seen that the equation in θ1 has a unique regular solution (see STEP 2 for more details) and
differentiating this equation gives

ρ[γθγ−1
1 + δ]∇θ1 = ∇G, ρ[γθγ−1

1 + δ]∆θ1 + ργ(γ − 1)θγ−2
1 |∇θ1|2 = ∆G,

⇒ ∆θ1 +
γ(γ − 1)θγ−2

1 |∇θ1|2

γθγ−1
1 + δ

=
∆G

ρ[γθγ−1
1 + δ]

(54)

If γ = 1, we immediately have

|∆θ1| = |∆G|[ρ(γθγ−1
1 + δ)]−1 ≤ |∆G|[ρδ]−1.

By (42) and (44), we know that ∆G is bounded in L1(Ω) independently of n as soon as the fk are (only) in
L1(Ω)+ for all k. Therefore so is ∆θ1.
If γ 6= 1, then integrating (54) and using ∂νθ1 = 0, we obtain

0 +

∫
Ω

γ(γ − 1)θγ−2
1 |∇θ1|2

γθγ−1
1 + δ

=

∫
Ω

∆G

ρ[γθγ−1
1 + δ]

.

Again, the last integral is bounded independently of n if the fk are (only) assumed to be in L1(Ω). There-
fore so is the first integral. But by positivity, this implies that θγ−2

1 |∇θ1|2/[γθγ−1
1 + δ] is bounded in L1(Ω)

independently of n. So is ∆θ1 by going back to (54). And finally the same holds for ∆θ2 = ∆(G− δθ1).

We now come back to the general situation m ≥ 2 and with the LLogL assumptions on the fk.

STEP 1 : Let us first treat the trivial case when there exists (i0, j0) ∈ I×J such that γj0G
n
i0

+γi0G
n
j0
≡ 0

(i.e. Gni0 ≡ 0 ≡ Gnj0). Then, by the first line of (46), θi0 ≡ 0 ≡ θj0 . Using again the first line of (46), we
deduce that θnk = Gnk for all k = 1, ..., n. Thus, the conclusion of the lemma is obvious in this case.
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Throughout the rest of the proof, we will assume that γjG
n
i + γiG

n
j 6≡ 0. By maximum principle applied

to the equation (44) defining the Gnk , anij := inf(γjG
n
i + γiG

n
j ) > 0. Also for the rest of the proof, choosing

n0 large enough, we fix c ∈ (0,+∞) such that

0 < c < anij/[γjdi + γidj ], ∀ (i, j) ∈ I × J, ∀n ≥ n0. (55)

This definition of c will be used only in STEPS 6 and 7 of the proof.

For simplicity, we now drop the superscript ’n’ in the rest of the proof.

STEP 2: Existence of θn satisfying (46). Again we assume (without loss of generality) that 1 ∈ I so
that we may use (50), (51). Thus, for all x ∈ Ω, the function r ∈ [r−(x), r+(x)]→ b(x, r) is increasing where
r−, r+ are defined in (51). Moreover{

b(x, r−(x)) = −k2Πj∈J(Fj(x)− d1δjr−(x))γj ≤ 0,
b(x, r+(x)) = k1Πi∈I(d1δir+(x) + Fi(x))γi ≥ 0.

Thus there exists a unique θ1(x) ∈ [r−(x), r+(x)] such that b(x, θ1(x)) = 0. Since the function (x, r)→ b(x, r)
is regular, by the implicit function theorem, so is x→ θ1(x). The function θk are then uniquely determined
from the first line of (46) which we rewrite as:

θi := d1δiθ1 + Fi, ∀ i ∈ I; θj := Fj − d1δjθ1, ∀j ∈ J. (56)

It remains to prove that ∂νθk = 0 on ∂Ω for all k = 1, ...,m. This will be a consequence of the following
computation (see (60) ).

STEP 3 : Differentiating B(θ) = 0. The condition B(θ) = 0 means

k1Πi∈Iθ
γi
i = k2Πj∈Jθ

γj
j , which implies log k1 +

∑
i∈I

γi log θi = log k2 +
∑
j∈J

γj log θj . (57)

Differentiating this leads to∑
i∈I

γi
∇θi
θi

=
∑
j∈J

γj
∇θj
θj

. (58)

Inserting (56) in this formula, we obtain ∇θ1 in terms of the θk, namely

d1∇θ1A =
∑
j∈J

γj∇Fj
θj

−
∑
i∈I

γi∇Fi
θi

, A :=
m∑
k=1

γkδk
θk

. (59)

Since ∇Fk · ν = 0 on ∂Ω for all k = 1, ...,m, it follows from this identity that ∇θ1 · ν = 0 on ∂Ω as well.
And by (56) it also follows that

∇θk · ν = 0 on ∂Ω, ∀ k = 1, ...,m. (60)

Differentiating once more (58) gives

∑
i∈I

γi∆θi
θi
− γi|∇θi|2

θ2
i

=
∑
j∈J

γj∆θj
θj

− γj |∇θj |2

θ2
j

,
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or also, using again (56) and the definition of A in (59),

d1A∆θ1 =
∑
i∈I
−γi∆Fi

θi
+
γi|∇θi|2

θ2
i

+
∑
j∈J

γj∆Fj
θj

− γj |∇θj |2

θ2
j

. (61)

Our goal is to estimate the L1-norm of ∆θ1. We remark that, if we denote αk := γkδk/Aθk, k = 1, ...,m,
then

0 ≤ αk ≤ 1,
m∑
k=1

αk = 1.

But the relation (61) may be rewritten

d1∆θ1 =
∑
i∈I

αi[−
∆Fi
δi

+
|∇θi|2

δiθi
] +
∑
j∈J

αj [
∆Fj
δj
− |∇θj |

2

δjθj
]. (62)

According to the definition of Fk in (51) and to the definition of Gk (or more precisely of Gnk) in (44) and
(43), we know that ‖∆Fk‖L1(Ω), k = 1, ...,m is bounded in terms of the data (independently of n). Thus∥∥∥∥∥∥

∑
i∈I
−αi

∆Fi
δi

+
∑
j∈J

αj
∆Fj
δj

∥∥∥∥∥∥
L1(Ω)

≤ C, (63)

where C is independent of n.
We also have that

∫
Ω ∆θ1 =

∫
∂Ω ∂νθ1 = 0. Inserting this into (62) and (63) gives∫

Ω

∑
j∈J

αj
|∇θj |2

δjθj
≤
∫

Ω

∑
i∈I

αi
|∇θi|2

δiθi
+ C, (64)

where again C does not depend on n. Therefore, it is sufficient to bound the right-hand side of (64) to
obtain a bound on ‖∆θ1‖L1(Ω) and this will end the proof of Lemma 4.2 (since an L1-bound on ∆θ1 implies
an L1- bound on ∆θk for all k = 1, ...,m).

STEP 4 : A bound from below on the θk. The previous step indicates that one has to bound |∇θi|2/θi
in L1(Ω) for all i ∈ I. The identity (59) says that

d1
∇θ1√
θ1

=
∑
j∈J

γj∇Fj
θj
√
θ1A
−
∑
i∈I

γi∇Fi
θi
√
θ1A

, A :=

m∑
k=1

γkδk
θk

. (65)

Thus we need to control θk
√
θ1A from below. We note that for all k = 1, ...,m:

θk
√
θ1A ≥

θkγ1δ1√
θ1

+
√
θ1γkδk.

Obviously, this implies θk
√
θ1A ≥ γkδk

√
θ1. Since the minimum of x ∈ (0,∞)→ a√

x
+b
√
x is equal to 2

√
ab,

for a, b ∈ (0,+∞), we also deduce that θk
√
θ1A is bounded from below by a factor of

√
θk. Therefore there

exists ck ∈ (0,+∞) such that

θk
√
θ1A ≥ ck sup{

√
d1δkθ1,

√
θk}. (66)
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Remark 4.3 For the analysis below, we will use the classical identity

max{a, b} =
a+ b+ |a− b|

2
, ∀ a, b ∈ [0,+∞). (67)

�

STEP 5 : Estimating the terms indexed by j ∈ J in (65). The inequality (66) allows us to control
the terms in j ∈ J in (65). Using it together with (67), we may write, for all j ∈ J ,

θ2
j θ1A

2 ≥ c2
j sup{d1δjθ1, θj} ≥

c2
j

2
[d1δjθ1 + θj ] =

c2
j

2
Fj , (68)

the last equality coming from (56). Therefore, this inequality, together with the second estimate of the
technical Lemma 4.5 (stated below after the end of the present proof) applied to Fj , gives∫

Ω

|∇Fj |2

θ2
j θ1A2

≤ 2

c2
j

∫
Ω

|∇Fj |2

Fj
≤
∫

Ω
f̃j log+ f̃j + (d− 1)f̃j + (de)−1,

where, by (51) and (44),

f̃j = d−1Fj −∆Fj = δj [d
−1G1 −∆G1] + [d−1Gj −∆Gj ]/dj = δjg1 + gj/dj ≥ 0.

We conclude from this and the estimate (43) that∥∥∥∥ ∇Fjθj
√
θ1A

∥∥∥∥
L2(Ω)

≤ C, ∀ j ∈ J, where C is independent of n. (69)

Remark 4.4 In STEP 5, we strongly used the fact that Fj ≥ 0 and even d−1Fj −∆Fj ≥ 0. Therefore we
could apply the second estimate of Lemma 4.5. Unfortunately, this is different for the terms in i ∈ I in (65)
since

d−1Fi −∆Fi = [d−1Gi −∆Gi]/di − δi[d−1G1 −∆G1] = gi/di − δig1. (70)

As in (68), and using also (67), we deduce that, for all i ∈ I,

θ2
i θ1A

2 ≥ c2
i sup{d1δiθ1, θi} ≥

c2
i

2
|θi − d1δiθ1| =

c2
i

2
|Fi|, (71)

the last equality coming from (56). This implies that the terms indexed by i ∈ I in (65) may be estimated
as follows ∫

Ω

|∇Fi|2

θ2
i θ1A2

≤ 2

c2
i

∫
Ω

|∇Fi|2

|Fi|
.

But since the sign of Fi is not constant on Ω, it is not clear how to bound this last integral.
Nevetheless, assume we are able to prove that, for some i0 ∈ I

sup{d1δi0θ1, θi0} ≥ c0 > 0, with c0 independent of n. (72)

Then using also (71), we can write

θ2
i0θ1A

2 ≥ c2
i0 sup{c0, |Fi0 |/2} ≥

c2
i0

4
[a+ |Fi0 |], a = 2c0.
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Then by the first estimate of the technical Lemma 4.5 below, we deduce∫
Ω

|∇Fi0 |2

θ2
i0
θ1A2

≤ 4

c2
i0

∫
Ω

|∇Fi0 |2

a+ |Fi0 |
≤
∫

Ω
|f̃i0 | log |f̃i0 |+ |f̃i0 |[a−1d− 1] + 1,

where f̃i0 = d−1Fi0 −∆Fi0 = gi0/d1− δi0g1 as indicated in (70). We conclude from the estimate (43) that∥∥∥∥ ∇Fi0θi0
√
θ1A

∥∥∥∥
L2(Ω)

≤ C where C is independent of n. (73)

�

STEP 6: More bounds from below on the θk. We prove here the two following facts, where the real
number c was defined in (55):{

Ω = ΩI ∪ ΩJ , ΩI := {x ∈ Ω ; θi(x) > c, ∀i ∈ I}, ΩJ := {x ∈ Ω ; θj(x) > c, ∀j ∈ J},
supi∈I θi ≥ c1 > 0, for some c1 ∈ (0,∞) independent of n.

(74)

For the first part of (74), assume by contradiction that there exists x ∈ Ω \ (ΩI ∪ ΩJ). Then there exists
(i, j) ∈ I × J such that, for this x:

θi(x) ≤ c and θj(x) ≤ c, or equivalently, γjdiθi(x) ≤ γjdic, γidjθj(x) ≤ γidjc.

Let us add these last two inequalities. Using the first line of (46) and the definition of c in (55), we have

γjGi(x) + γiGj(x) = γjdiθi(x) + γidjθj(x) ≤ [γjdi + γidj ]c < inf{γjGi + γiGj}.

And this is a contradiction. Whence the first statement of (74).
For the second one, let us first note that

sup
x∈ΩI

θi(x) ≥ inf
x∈ΩI

θi(x) ≥ c, ∀i ∈ I.

Now let x ∈ ΩJ so that, by the previous statement, θj(x) ≥ c for all j ∈ J . We then use the second line of
(46) to obtain

k2c
∑

j∈J γj ≤ k2Πj∈Jθj(x)γj = k1Πi∈Iθi(x)γi ≤ k1[sup
i∈I

θi]
∑

i∈I γi .

This implies that

sup
i∈I

θi ≥ c1 := min{c,
[
k2c

∑
j∈J γj/k1

][
∑

i∈I γi]
−1

}.

Whence the second statement of (74).

STEP 7: End of the proof of Lemma 4.2. This is where we use that I (for instance) has at most two
elements. Indeed, let us go back to the expression of ∇θ1/

√
θ1 in (65). We already know by STEP 5 that

all terms indexed by j ∈ J are bounded in L2(Ω). Since F1 ≡ 0, there is at most one term indexed by i ∈ I,
namely none if I = {1}, and only ∇Fi0/(θi0

√
θ1A) if I = {1, i0}.

If I = {1}, it immediately follows that ∇θ1/
√
θ1 is bounded in L2(Ω) independently of n.

If I = {1, i0}, then supi∈I θi = sup{θ1, θi0}. It follows from the second line of (74) in STEP 6 that
(72) holds. Consequently, as proved in Remark 4.4, ∇Fi0/(θi0

√
θ1A) is bounded in L2(Ω) independently

of n. Having controlled all terms in (65), we can conclude that ∇θ1/
√
θ1 is itself also bounded in L2(Ω)

independently of n. By symmetry, this also holds for ∇θi0/
√
θi0 . This implies that the right-hand side of

(64) in STEP 4 is bounded independently of n and ends the proof of Lemma 4.2.
�

Let us now state the following technical lemma which was used in two places in the previous proof.
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Lemma 4.5 Let F ∈W 2,1(Ω) such that, for some d ∈ (0,+∞)

dF −∆F = f, ∂νF = 0 on ∂Ω with f, f log |f | ∈ L1(Ω).

For a ∈ (0,+∞), we have ∫
Ω

|∇F |2

a+ |F |
≤
∫

Ω
|f | log |f |+ |f |[(ad)−1 − 1] + 1.

If moreover f ≥ 0, then ∫
Ω

|∇F |2

F
≤
∫

Ω
f log+ f + (d−1 − 1)f + de−1.

Proof. For the first inequality of the lemma, let us first remark that, if we set F := aF̃ , then by homogeneity,∫
Ω

|∇F |2

a+ |F |
= a

∫
Ω

|∇F̃ |2

1 + |F̃ |
.

Let us now multiply the equation dF̃ −∆F̃ = f/a by sign(F̃ ) log(|F̃ |+ 1). We obtain∫
Ω
|F̃ | log(|F̃ |+ 1) +

|∇F̃ |2

1 + |F̃ |
=

1

a

∫
Ω
fsign(F̃ ) log(|F̃ |+ 1) ≤ 1

a

∫
Ω
|f | log(|F̃ |+ 1).

Now we use the Young’s convexity inequality

∀ r ∈ [0,+∞), ∀ s ∈ R, rs ≤ (r log r − r) + es. (75)

We apply it with r := |f(x)|, s := log(|F̃ (x)|+ 1) to deduce∫
Ω
|f | log(|F̃ |+ 1) ≤

∫
Ω
|f |[log |f | − 1] + |F̃ |+ 1.

From the equation in F̃ , we also derive d
∫

Ω |F̃ | ≤
∫

Ω |f |/a. The first inequality of Lemma 4.5 follows.

If f ≥ 0, then F ≥ 0 by maximum principle. We multiply the equation in F by log(F + ε) and we
integrate by parts. Then,∫

Ω
dF log(F + ε) +

|∇F |2

F + ε
=

∫
Ω
f log(F + ε). (76)

We apply the Young’s inequality (75) with r := f(x), s := log(F (x) + ε). Then

f log(F + ε) ≤ (f log f − f) + F + ε,

so that, using (76), we deduce∫
[F≥1]

dF log(F + ε) +

∫
Ω

|∇F |2

F + ε
≤
∫

Ω
f log f − f + F + ε− d

∫
[F≤1]

F log(F + ε).

Now we let ε→ 0 and we use∫
[F≥1]

F logF ≥ 0, f log f ≤ f log+ f,

∫
Ω
dF =

∫
Ω
f, x log x ≥ −e−1, ∀x ∈ (0, 1),

to deduce the second estimate of Lemma 4.5.
�
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