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Abstract: Due to the fierce market competition, organizations should

needs by reducing lead times, or/and lowering operating costs. These objectives can be reached by

effectively assessing the workforce capacities. Manufacturing progress function or organizational 

learning is considered as one of the most important factors that affect workforce capacity. The current 

paper introduces an examination research that uses factory data to introduce the most appropriate

organizational learning model for the manufacture of electric motors. The data used was collected for a 

period of 42 months for 110 manufacturing processes and 10 different styles of electric motors. By using

regression analysis the significant parameters were obtained for 10 learning models. And in order to

select the most reliable one, the analytical hierarchy process (AHP) was used after defining the selection

criteria. Among most of monovariable learning models listed in literature the model of Wright (1936) is 

found to be the best one to fit the data, and then comes the model of Knecht (1974) The failure of the 

other models in fitting the data was also shown. 

Keywords  Learning curve, Continuous improvement, manufacturing of electric motors, non linear 

regression, analytical hierarchy process (AHP). 

1. INTRODUCTION

For the previous decades the modelling of the manufacturing 

progress function, also known as work-based-learning or 

learning curve, and according to which the productivity 

improvement can be modelled as a function of the work 

replication, aroused great interest from researchers and 

practitioners. The pioneer in this subject is Theodore P. 

Wright (1936) who discovered that, in aircraft manufacturing, 

a 20 percent productivity improvement is achieved each time 

the production quantity is doubled. This phenomenon has a 

great importance in operations planning and control by which 

the required human resources can be accurately estimated. As 

stated by Badiru (1991) learning curves are essential for 

setting production goals, monitoring progress, reducing 

waste, and improving efficiency. The learning curve concept 

was considered in many applications including cost 

estimation (Yelle, 1976), 

bottlenecks (Finch and Luebbe, 1995), lot sizing (Jaber et al., 

2009), implementation of ERP (Plaza et al., 2010), 

production planning (Glock et al., 2012), manpower 

assignment (Attia et al., 2014), inventory management (Teng 

et al. 2014), construction (Srour et al. 2015), and recently in 

machine scheduling (Ji et al. 2016) and construction costs of 

nuclear power reactors (Lovering et al. 2016). In addition, its 

existence was validated across a wide range of products  

manufacturing e.g. aircraft (Wright, 1936), fuel cells 

(Tsuchiya and Kobayashi, 2004), washing machines, laundry 

dryers, and dishwashers (Weiss et al., 2010). 

According to Levin and Globerson (1993) learning curves 

can be divided into two major types: individual and 

organizational. The individual learning curve considers the 

person  performance evolution versus work replications. 

According to DeJong (1957) skills development process 

includes not only the under-skilled workmen but also the 

skilled and experienced operators. Organizational learning 

curves are used when the evolution of the desired output (e.g. 

a specified product) is a function of the performance of the 

whole organization elements rather than that of a specified 

individual. Ellstrom (2001) defined it as changes in 

organizational practices (including routines and procedures, 

structures, technologies, systems, and so on) that are 

mediated through individual learning or problem-solving 

processes. For more details on organizational learning, see 

the work of Levitt and March (1988). 

In industrial applications the representation of learning effect 

on an individual basis is a very complex task where the 

industrial setup requires a wide range of different processes 

that are integrated to form the final products. To overcome 

this complexity the consideration of the skill evolution is 

represented in a batch basis. In other words, one can 

represent the number of required man-hours to manufacture a 

specified number of good parts, semi-finished products or 

even the whole products. But this aggregated consideration 
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1. INTRODUCTION

For the previous decades the modelling of the manufacturing

progress function, also known as work-based-learning or

learning curve, and according to which the productivity

improvement can be modelled as a function of the work

replication, arouse great interest from researche s and

practitioners. The pioneer in this subject is Theodore P. 

Wright 1936) ho discovered that, in aircraft manufacturing

a 20 percent productivity improvement is achieved each time

the production quantity is doubled. This phenomenon has a

great importance in operations planning and control by which

the required human resources can be accurately estimated. As

stated by Badiru (1991) learning curves are essential for

setting production goals, monitoring progress, reducing

waste, and improving efficiency. The learning curve concept 

was considered in many applications including cost

estimation (Yelle, 1976), 

bottlenecks (Finch and Luebbe, 1995), lot sizing (Jaber et al.,

2009) implementation of ERP (Plaza et al., 2010),

production planning (Glock et al., 2012), manpower

assignment (Attia et al., 2014), inventory management (Teng

et al. 2014), construction (Srour et al. 2015), and recently in

machine scheduling (Ji et al. 2016) and construction costs of

nuclear power reactors (Lovering et al. 2016). In addition its 

existence was validated across a wide range of products

manufacturing e.g. aircraft (Wright, 1936), fuel cells

(Tsuchiya and Kobayashi, 2004), washing machines, laundry 

dryers, and dishwashers (Weiss et al., 2010)

According to Levin and Globerson 1993) learning curves

an be divided into two major types: individual and

organizational. The individual learning curve considers the 

person performance evolution versus work replications.

According to DeJong 1957) skills development process

includes not only the under-skilled workmen but also the

skilled and experienced operators. Organizational learning

curves are used when the evolution of the desired output (e.g.

a specified product) is a function of the performance of the 

whole organization elements rather than that of a specified

individual. Ellstrom (2001) defined it as changes in

organizational practices (including routines and procedures,

structures, technologies, systems, and so on) that are 

mediated through individual learning or problem-solving

processes. For more details on organizational learning, see

the work of Levitt and March (1988)

In industrial applications the representation of learning effect 

on an individual basis is a very complex task where the 

industrial setup requires a wide range of different processes

that are integrated to form the final product . To overcome 

this complexity the consideration of the skill evolution is

represented in a batch basis. In other words, one can

represent the number of required man hours to manufacture a 

specified number of good parts, semi finished products or

even the whole products. But this aggregated consideration
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represents the organizational learning as well for a specified 

firm, where organizational learning refers to the total learning 

accumulated in an organization that depends on the 

continuous improvement (Kim and Seo, 2009), and 

distinguishing between individual learning and the 

organizational one is a hard task. In reasons of this difficulty 

many works propose to represent the organizational learning 

relying on the traditional learning models (e.g. Saraswat and 

Gorgone, 1990; Epple et al., 1991; Chatzimichali and 

Tourassis, 2008). 

In the current investigation learning is the process of making, 

retaining, and transferring knowledge within the factory for 

all workforces. The performance is improved as the firm 

gains experience; from this experience, it is able to 

build/accumulate knowledge. This knowledge is wide, 

covering any topic that could enhance 

performance. Examples may include ways to increase 

production efficiency or to develop beneficial relations 

among different groups. Knowledge is created at three 

interrelated levels: individuals, groups, and organizational 

aspects. The three levels can be combined to form the 

organizational continuous learning. An organization learns 

successfully when it is able to keep this knowledge and 

transfer it to several divisions. Organizational learning can be 

measured in different ways; however one common 

measurement used is the learning curve: it measures the 

relation between an improvement in labour skills and the 

practice of a given job. In other words, learning effect leads 

to reduce the unit production cost with an increased 

involvement of labour and managers in the production 

process: this leads to improvement in their efficiency. Here 

process/product over a specified period. The current paper 

investigates the most used monovariable learning models in 

order to introduce the best one. The investigation relies on 

shop floor data collected from a factory that is dedicated to 

produce electric motors for a large home appliance 

manufacturing company.   

The remainder of this paper is organized as follows: in 

Section 2 the most common monovariable learning models 

will be presented. Then Section 3 describes the 

manufacturing process of electric motors as a case study in 

one of the Egyptian manufacturing companies. Section 4 

introduces the research methodology. Section 5 discusses the 

results. And finally section 6 introduces the conclusions and 

future work. 

2. LEARNING CURVES

In literature there are many works that provide several 

formulations of the learning curve, starting from the model of 

Wright (1936). According to the review paper of Yelle 

(1979), the reason for searching more advanced models than 

the log-linear one of Wright (1936) is that the log-linear 

model does not always provide the best fit in all simulations. 

But on the other side, it is the most used model in reasons of 

its simplicity and generality of applications. Nembhard and 

Uzumeri, (2000) classified the learning curves according to 

two attributes depending on the originated bases: aggregated 

models or individual models, where Badiru (1992) classified 

them according to monovariable or multivariable models. 

Multivariable models were proposed to accommodate 

numerous factors that can influence how fast, how far, and 

how well a worker learns within a specified horizon. 

Depending on the work of Badiru (1992), Nembhard and 

Uzumeri (2000), the monovariable models can be listed by 

the following.  

Aggregated models: 

- The log-linear model (Wright, 1936); 

- The S-curve (Carr, 1946); 

- The Stanford-B model (Asher, 1956); 

- ; 

- ); 

Individual models of (Mazur and Hastie, 1978): 

- Exponential models with 2 and 3 parameters; 

- Hyperbolic models with 2 and 3 parameters; 

Combined models: 

- ; 

-  (Knecht, 1974); 

3. MANUFACTURING OF ELECTRIC MOTORS

The current real case study was conducted at an Egyptian 

manufacturing firm that is specialized in the manufacturing 

of electric home appliances. The study only considers the 

electric motors workshop. The production of electric motors 

has started to grow up in the current firm since 1992. The 

factory under consideration manufactures four types of 

electric motors with their different characteristics: 1- ceiling 

fans, 2- vacuum cleaning machines, 3- ventilators and 4- disk 

fans. Motors of types 1, 2 and 3 are completely produced in 

the factory, but the factory contributes to 95% of processes 

operations for type 4. Manufacturing these four families of 

products involve 110 production processes that must be 

performed to shape the required parts. The production 

processes can be classified into six main categories as shown 

by the simplified flow diagram shown by Fig. 1. 

Fig. 1 illustration of motor production processes 

The first category is the blanking and piercing operations of 

the steel strips that produce the steel laminations which form 

the stator of the electric motors. The second group is the die 

casting operations, producing some different parts such as the 

front and rear covers of the motors, and the cover of 

transmission gears for some models. Following the casting 

process, there is a need for metal cutting processes such as 

turning, drilling, reaming and tapping operations that form 

the third category. The fourth kind gathers the wiring 

operations that integrate the stator with the required electric 
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coils, then isolation and treatment of coils. There are some 

other processes such as pressing, grinding, knurling, shaft 

threading etc. These processes, simply known in this 

company as finishing, characterises the fifth category. 

Finally, the sixth category is the assembly process that 

gathers all the parts together so as to form the final product. 

Following the production steps, we find the inspection and 

testing operations, but they are not considered in this study. 

4. RESEARCH METHODOLOGY

4.1 Data collection 

In order to figure out the best model of productivity 

evolution, the actual production quantities are taken into 

consideration. The current study considers a production 

period of 42 months, with an average monthly production 

rate of over 17,000 units of end products. It starts from June 

2011 to the end of December 2014 and is split into 6 months 

long production periods. The use of such an aggregated level 

of data is practically valid, according to the empirical 

analysis based on the work of Smunt and Watts (2003): the 

aggregated data provide confidence to incorporate the 

learning curve effect into both short-and medium-term 

manufacturing horizons. And the data aggregation reduces 

the high variation that can be found in the detailed level - 

ano

information. In order to compute the labour required for 

manufacturing a specified number of parts or end products 

-

represented as the number of workers required to produce a 

number of 1000 units from a specified part/product during 

only one working day. At the end of each period two types of 

data are collected for the 110 processes. The first is ANpj: it 

represents the actual number of parts produced at each 

process p during production period j; the second is TWpj: it 

denotes the total number of workers required during this 

period j to produce the corresponding number of units at 

process p. Afterwards the man-day for each process is 

computed as: man-daypj = (1000×TWpj)/ ANpj. Additionally 

to the processes-based data, the final products data are also 

collected for all of 10 final products models. For each 

product the corresponding man-day is also computed by the 

same manner.  

4.2 Selected learning models 

In this study the learning models presented in section 2 were 

considered in the investigation. In each model the 

s the accumulated production 

duration in months. The learning model dependent variable 

represents the developed man-day. It will be used to represent 

the evolution of the required manpower capacity to produce a 

number of 1000 units of a given part at the associated 

production process or kind of product. We propose to 

introduce another mathematical model to represent the 

relation between man-day and the worked production period 
rd

 degree polynomial (man-day = 

c1+c2 3
2
 

3
) where c1 to c4 are constants that can be 

found by data regression. We call it cubic function model. 

Regardless the inapplicability of this function to represent a 

learning model, it was proven to fit all types of data. The 

drawback of this function is its cyclic nature (cycles of 

decreasing and increasing); accordingly it cannot be used to 

represent the evolution of manufacturing productivity in long 

run bases. However it can be used efficiently to forecast the 

improvement in productivity evolution for short terms. 

4.3 Data analysis 

The data analysis is conducted relying on two methods: the 

scatter plot with line of fit, and the regression analysis. The 

scatter plot is performed between the worked period (in 

months) and the required man-day to produce a number of 

1000 units either for processes and products. As it well 

known the scatter plot is used to show visually the trend of 

data. Regression analysis is mainly used to get the 

mathematical representation of this trend. Accordingly and in 

order to get the most appropriate learning model that can 

significantly fit the collected data, all of the previous learning 

models are regressed using the statistical software 

(XLSTAT). The fitness was measured by three criteria: the 

visual inspection of the scatter plot with the line of fit, the 

regression coefficient R
2
 and the sum of squares of the errors 

(SSE). All of these criteria express the relevance of the model 

to represent the real data. The regression analysis was 

performed for each of the 110 processes in addition to the 

final 10 products. 

5. RESULTS AND DISCUSSIONS

First, according to the data plots (Fig. 2), the learning effect 

was proven for processes as well as for products: the required 

capacity (man-day) decreases as the number of worked 

periods grows. Due to the aggregation of many processes or 

products in one chart, one can figure out that the amount of 

reduction is small. But the percentage of reduction varies 

from 6% to 56% for the 110 operations, and from 6% to 11% 

for products. The reduction percentage of products is smaller 

than that of processes where the full product is simply an 

aggregation of many processes. These reductions in the 

required capacity cannot be neglected in manufacturing 

management, e.g. capacity planning, productivity analysis 

etc. This reduction depends on many factors that form the 

organizational learning. These factors include: personal 

learning, mastering of tools and fixtures, manufacturing 

improvement initiatives (e.g. lean manufacturing, advanced 

maintenance philosophies and total quality management), 

and/or managers experience development (better use of 

resources, development of behavioural skills, increased 

cooperation between work groups, and standardization of 

processes in order to prevent defects). These factors 

formulate the final productivity improvement.   

As previously mentioned, the regression analysis is used to 

define the best-fitting learning model(s). The R
2
 and SSE are 

represented using the interval plot at confidence level of 

95%: results are displayed in Fig. 3, 4 and 5. In these figures, 

the confidence intervals of R
2
 are presented in a descending 

average R
2
 order. The confidence intervals of SSE are 

presented in growing average SSE order. Amongst the 
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analysis based on the work of Smunt and Watts 2003): the 

aggregated data provide confidence to incorporate the

learning curve effect into both short and medium term

manufacturing horizons. And the data aggregation reduces

the high variation that can be found in the detailed level

ano

information. In order to compute the labo r required for

manufacturing a specified number of parts or end products

epresented as the number of workers required to produce a 

number of 1000 units from a specified part/product during

only one working day. At the end of each period two types of

data are collected for the 110 processes. The first is ANpj: it

represents the actual number of parts produced at each

process during production period the second is TWpj: it 

denotes the total number of workers required during this

period to produce the corresponding number of units at

process . Afterwards the man day for each process is

computed as: man-daypj = (1000×TWpj)/ ANpj. Additionally

to the processes based data, the final products data are also

collected for all of 10 final products models. For each

product the corresponding man day is also computed by the

same manner.

4.2 Selected learning models

In this study the learning models presented in section 2 were 

considered in the investigation. In each model the

the accumulated production

duration in months. The learning model dependent variable

represents the developed man day. It will be used to represent

the evolution of the required manpower capacity to produce a 

number of 1000 units of a given part at the associated

production process or kind of product. We propose to

introduce another mathematical model to represent the 

relation between man day and the worked production period
rd

egree polynomial (man day =

c1+c2 ) where c1 to c4 are constants that can be 

found by data regression. We call it cubic function model.

Regardless the inapplicability of this function to represent a 

learning model, it was proven to fit all types of da a. The 

drawback of this function is its cyclic nature (cycles of

decreasing and increasing); accordingly it cannot be used to

represent the evolution of manufacturing productivity in long

run bases. However it can be used efficiently to forecast the

improvement in productivity evolution for short terms.

4.3 Data analysis

The data analysis is conducted relying on two methods: the 

scatter plot with line of fit and the regression analysis. The

scatter plot is performed between the worked period (in

months) and the required man day to produce a number of

1000 units either for processes and products. As it well

known the scatter plot is used to show visually the trend of

data. Regression analysis is mainly used to get the 

mathematical representation of this trend. Accordingly and in

order to get the most appropriate learning model that can

significantly fit the collected data, all of the previous learning

models are regressed using the statistical software 

(XLSTAT). The fitness was measured by three criteria: the 

visual inspection of the scatter plot with the line of fit, the 

regression coefficient R nd the sum of squares of the errors

(SSE). All of these criteria express the relevance of the model

to represent the real data. The regression analysis was 

performed for each of the 110 processes in addition to the 

final 10 products.

5. RESULTS AND DISCUSSIONS 

First, according to the data plots (Fig. ), the learning effect 

was proven for processes as well as for products the required

capacity (man day) decreases as the number of worked

periods grows. Due to the aggregation of many processes or

products in one chart, one can figure out that the amount of

reduction is small. But the percentage of reduction varies

from 6% to 56% for the 110 operations and from 6% to 11% 

for products The reduction percentage of product is smaller

than that of processes where the full product is simply an

aggregation of many processes. These reductions in the 

required capacity cannot be neglected in manufacturing

management, e.g. capacity planning, productivity analysis

etc. This reduction depends on many factors that form the

organizational learning. These factors include: personal 

learning, mastering of tools and fixtures, manufacturing

improvement initiatives (e.g. lean manufacturing, advanced

maintenance philosophies and total quality management),

and/or managers experience development (better use of

resources, development of behavioural skills, increased

cooperation between work groups, and standardization of

processes in order to prevent defects). These factors

formulate the final productivity improvement. 

As previously mentioned, the regression analysis is used to

define the best fitting learning model(s). The R and SSE are 

represented using the interval plot at confidence level of

95%: results are displayed in ig. 3, 4 and 5. In these figures,

the confidence intervals of R are presented in a descending

average R rder. The confidence intervals of SSE are 

presented in growing average SSE order. Amongst the 
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models listed in section 2, seven models proved to fit the 

process data. These seven models are: Levy (1965), Knecht 

(1974), hyperbolic models with 3 parameters (named Mazur-

3P) or with 2 parameters (Mazur-2P) (Mazur and Hastie, 

1978), Pegels (1969), Wright (1936), and DeJong, (1957). 

All the other models show inability to fit the data. And only 

three models are likely to fit the data concerning products, 

these models being Knecht (1974), Wright, (1936), and 

DeJong (1957). In the following, the investigations of the 

different learning models for each process and each product 

will be presented.  

(a) 

(b) 

Fig. 2 Sample of: (a) processes data (b) products data 

Relying on the data analysis and as shown in the sample Fig. 

3, 4, and 5 one can observe that the best model to fit the data 

is the cubic function we propose. It provides the highest 

values of R
2
 (average of 0.986 for operations and 0.926 for 

products) with low variance (shortest interval). It also 

provides smallest values of SSE (0.096 for operations and 

2.38 for products). It looks relevant for all kinds of data. 

Regarding learning models listed in literature, the 

performance of each model varies according to the data 

investigated. Referring only to the average R
2
 of the 

operations data one can rank them as: Levy (1965) with 

average R
2
 = 0.96 and average SSE= 0.05; Knecht (1974) 

with R
2
 = 0.96 / SSE= 0.19; Mazur 3P with R

2
 = 0.923 / SSE 

= 0.878; Pegels (1969) with R
2
 = 0.912 / SSE= 0.255; 

DeJong (1957) with R
2
 = 0.86 / SSE = 0.503; Wright (1936) 

with R
2
 = 0. 856 / SSE= 0. 485; Mazur 2P (R

2
 = 0. 755 / 

SSE= 0. 

the average R
2
 only. As shown in Fig. 4 and 5, there are 

instable models e.g. some models unable to fit the data of 

assembly operations and data of full products. Also there are 

variations in the obtained R
2
 and SSE. In order to rank these 

models correctly the results of the different measuring criteria 

(R
2
, Stability, SSE, Variation of R

2
, and Variation of SSE) 

are computed. The analytical hierarchy process (AHP) could 

be adopted to sort the models according to their results. 
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Fig. 3 interval plots of R
2
 and SSE for blanking and piercing 

Fig. 4 interval plots of R
2
 and SSE for assembly 

Fig. 5 interval plot of R
2
  

The current problem can be rearranged as a three levels 

hierarchy in which the alternatives are the learning models, 

the criteria are R
2
, Stability, SSE, Variation of R

2
, and 

Variation of SSE, and the goal is to find the best model to fit 

the manufacturing data. According to Saaty and Vargas 

(2012) the AHP can be performed as following. First, pair-
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wise comparisons are performed between the results of each 

pair of models. Regarding pair-wise comparison of R
2
: for 

each instance, the obtained R
2
 of the first model was divided 

by that of the second one. After that, the sum of these ratios 

of all instances was computed. After computing all the pair-

wise comparisons of models, the obtained values were then 

normalized over the interval [1, 9] where 1 indicates equal 

importance of the two models and 9 extreme superiority of 

the first model on the second one. The obtained preference 

matrix is presented in table 1 where the models are coded as 

[1] Mazur-2P (1978); [2] Mazur-3P (1978); [3] Pegels 

(1969); [4] DeJong (1957); [5] Knecht (1974); [6] Levy 

(1965); [7] Wright (1936); [8] Cubic Function. For a given 

model, its comparisons with all the others are read on the 

corresponding line: thus, the model of Knecht (1974) [5] is 

preferable to that of DeJong (1957) [4] by a factor of 5.25. 

But the model [4] is better than the [5] by a preference factor 

of 1/5.25 = 0.19, which means that it is not preferable at all. 

Relying on this preference matrix the priority of each model, 

computed via the principal eigenvector of the preference 

matrix is presented in the last column of table 1.  

Regarding , for each model the number 

of instances (operations, products) where a specified model 

fits the corresponding data was computed. Then the pair-wise 

comparisons were determined, after that results were 

normalized over the interval [1, 9] where 9 indicates the 

highest stability of the model. Table 2 displays these results 

and here again the priority of each model according to this 

criterion was defined by computing the principal eigenvector 

of the stability preference matrix and provided in the last 

column. By the same manner, the preference matrices for the 

other criteria were computed. In these results, regarding R
2
 

and stability, the maximum values are preferred, whereas for 

SSE, variation of R
2
 and variation of SSE, the minimum 

values are preferred. In each case of SSE, variation of R
2
 and 

variation of SSE, the data were first transformed to the 

maximum is the best  by subtracting each element of the 

matrix from the highest value in the whole matrix.  

The second step consists in prioritizing the sorting criteria 

with respect to the desired goal. Each of the criteria was 

compared to each other, according to a qualitative scale of (1, 

3, 5, 7, 9) to represent respectively equal, moderate, strong, 

very strong and extreme importance. Results of these pair-

wise comparisons are listed in table 3. After that the principle 

eigenvector was computed to represent the priority vector. 

Table 1 Models comparisons according to R
2

[1] [2] [3] [4] [5] [6] [7] [8] 
Model  
priority  

[1] 1.00 0.22 0.22 0.16 0.12 0.45 0.15 0.11 0.018 

[2] 4.65 1.00 0.58 0.28 0.19 4.53 0.25 0.17 0.058 

[3] 4.64 1.72 1.00 0.29 0.19 2.68 0.24 0.17 0.055 

[4] 6.15 3.57 3.45 1.00 0.19 0.72 0.25 0.17 0.080 

[5] 8.30 5.20 5.33 5.25 1.00 1.41 0.43 0.24 0.165 

[6] 2.22 0.22 0.37 1.38 0.71 1.00 0.19 0.14 0.046 

[7] 6.78 4.02 4.18 3.98 2.32 5.37 1.00 0.18 0.188 

[8] 9.00 5.86 6.02 6.03 4.09 6.97 5.43 1.00 0.391 

Table 2 Models comparisons according to stability 

[1] [2] [3] [4] [5] [6] [7] [8] 
Model  
priority  

[1] 1.00 0.19 0.19 0.15 0.13 0.36 0.13 0.13 0.017 

[2] 5.18 1.00 0.27 0.20 0.17 0.64 0.17 0.17 0.032 

[3] 5.30 3.75 1.00 0.21 0.18 0.68 0.18 0.17 0.046 

[4] 6.60 4.89 4.78 1.00 0.22 1.57 0.23 0.22 0.084 

[5] 7.66 5.83 5.71 4.49 1.00 16.85 0.28 0.27 0.200 

[6] 2.81 1.56 1.47 0.64 0.06 1.00 0.11 0.11 0.035 

[7] 7.54 5.72 5.60 4.39 3.55 8.74 1.00 0.26 0.240 

[8] 7.78 5.93 5.81 4.58 3.73 9.00 3.82 1.00 0.347 

Table 3 Pairewise comparison of the sorting criteria 

R2 Stability SSE 
Var. 

 of R2 

Var. 

.of SSE 

Model 

priority  

R2 1 9/7 7/3 9/3 7/1 0.329 

Stability 7/9 1 7/1 5/1 9/1 0.431 

SSE 3/7 1/7 1 3/5 9/3 0.094 

Var. of R2 3/9 1/5 5/3 1 3/2 0.100 

Var. of SSE 1/7 1/9 3/9 2/3 1 0.046 

Once we have evaluated the priority of each learning model 

according to the different criteria, and the priority of each of 

these criteria with respect to the goal, one can compute the 

consistency of the different models with respect to the final 

goal. The obtained priorities of learning models can by 

synthesized as shown by figure 6. As shown the best model 

to fit the data is the cubic function then the model of Wright 

(1936), then the model of Knecht (1974). And the worst 

models are that of Mazur and Hastie, (1978) with 2 

parameters and 3 parameters. The poor performances of these 

two last models may relate to the fact that they both represent 

individual learning and not an aggregated betterment.  

Fig. 6 Priority of learning models in fitting database 

CONCLUSIONS 

Due to the greatest importance of the organizational learning 

in operations management, the current paper introduces an 

investigation study to determine the most reliable 

monovariable learning model according to a set of shop floor 

data. A total of ten learning models have been considered. 

The data base considers 110 manufacturing operations and 10 

final products. The regression analysis has been used to 
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wise comparisons are performed between the results of each

pair of models. Regarding pair wise comparison of : or 

each instance the obtained of the first model was divided

by that of the second one. After that the sum of these ratios

of all instances was computed. After computing all the pair-

wise comparison of models, the obtained values were then

normalized over the interval [1, 9] where 1 indicates equal

importance of the two models and 9 extreme superiority of 

the first model on the second one. The obtained preference

matrix is presented in table 1 where the models are coded as

[1] Mazur 2P (1978); [2] Mazur 3P (1978); [3] Pegels

(1969); [4] DeJong (1957); [5] Knecht (1974); [6] Levy

(1965); [7] Wright (1936); [8] Cubic Function For a given

model, its comparisons with all the others are read on the

corresponding line: thus, the model of Knecht (1974) [5] is

preferable to that of DeJong (1957) [4] by a factor of 5.25.

But the model [4] is better than the [5] by a preference factor

of 1/5.25 = 0.19, which means that it is not preferable at all. 

Relying on this preference matrix the priority of each model, 

computed via the principal eigenvector of the preference 

matrix is presented in the last column of table . 

Regarding for each model the number

of instances (operations, products) where a specified model 

fits the corresponding data was computed Then the pair-wise

comparisons were determined, after that results were 

normalized over the interval [1, 9] where 9 indicates the

highest stability of the model Table 2 displays these results

and here again the priority of each model according to this

criterion was defined by computing the principal eigenvector

of the stability preference matrix and provided in the last 

column. By the same manner the preference matri es for the 

other criteria were computed. In these results, regarding R

and stability the maximum values are preferred, whereas for 

SSE, variation of and variation of SSE, he minimum

values are preferred. In each case of SSE, variation of R and 

ariation of SSE, the data were first transformed to the

maximum is the best by subtracting each element of the

matrix from the highest value in the whole matrix. 

The second step consists in prioritizing the sorting criteria 

with respect to the desired goal. Each of the criteria was

compared to each other, according to a qualitative scale of (1,

3, 5, 7, 9) to represent respectively equal, moderate, strong,

very strong and extreme importance. Results of these pair

wise comparisons are listed in table 3. After that the principle 

eigenvector was computed to represent the priority vector.

Table 1 Models comparisons according to

[1] [2] [3] [4] [5] [6] [7] [8]
Model
priority

[1] 1.00 0.22 0.22 0.16 0.12 0.45 0.15 0.11 0.018

[2] 4.65 1.00 0.58 0.28 0.19 4.53 0.25 0.17 0.058

[3] 4.64 1.72 1.00 0.29 0.19 2.68 0.24 0.17 0.055

[4] 6.15 3.57 3.45 1.00 0.19 0.72 0.25 0.17 0.080

[5] 8.30 5.20 5.33 5.25 1.00 1.41 0.43 0.24 0.165

[6] 2.22 0.22 0.37 1.38 0.71 1.00 0.19 0.14 0.046

[7] 6.78 4.02 4.18 3.98 2.32 5.37 1.00 0.18 0.188

[8] 9.0 5.86 6.02 6.03 4.09 6.97 5.43 1.00 0.391

Table 2 Models comparisons according to stability

[1] [2] [3] [4] [5] [6] [7] [8]
Model
priority

[1] 1.00 0.19 0.19 0.15 0.13 0.36 0.13 0.13 0.017

[2] 5.18 1.00 0.27 0.20 0.17 0.64 0.17 0.17 0.032

[3] 5.30 3.75 1.00 0.21 0.18 0.68 0.18 0.17 0.046

[4] 6.60 4.89 4.78 1.00 0.22 1.57 0.23 0.22 0.084

[5] 7.66 5.83 5.71 4.49 1.00 16.85 0.28 0.27 0.200

[6] 2.81 1.56 1.47 0.64 0.06 1.00 0.11 0.11 0.035

[7] 7.54 5.72 5.60 4.39 3.55 8.74 1.00 0.26 0.240

[8] 7.78 5.93 5.81 4.58 3.73 9.00 3.82 1.00 0.347

Table 3 Pairewise comparison of the sorting criteria

Stability SSE
Var.

of R

Var

.of SSE

Model

priority

9/7 7/3 9/3 7/1 0.329

Stability 7/9 7/1 5/1 9/1 0.431

SSE 3/7 1/7 3/5 9/3 0.094

Var. of R 3/9 1/5 5/3 3/2 0.100

Var. of SSE 1/7 1/9 3/9 2/3 0.046

Once we have evaluated the priority of each learning model

according to the different criteria, and the priority of each of 

these criteria with respect to the goal one can compute the 

consistency of the different model with respect to the final

goal. The obtained priorities of learning models can by

synthesized as shown by figure . As shown the best model 

to fit the data is the cubic function then the model of Wright

(1936), then the model of Knecht (1974). And the worst 

models are that of Mazur and Hastie, 1978 with 2

parameters and 3 parameters. The poor performances of these

two last models may relate to the fact that they both represent

individual learning and not an aggregated betterment. 

Fig. 6 Priority of learning models in fitting database

CONCLUSIONS 

Due to the greatest importance of the organizational learning

in operations management, the current paper introduces an

investigation study to determine the most reliable

monovariable learning model according to a set of shop floor

data. A total of ten learning models have been considered.

The data base considers 110 manufacturing operations and 10 

final products. The regression analysis has been used to
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determine the significance of models to fit the data. In order 

to introduce the most significant and stable model to present 

the organizational learning phenomenon, the AHP process 

has been used to prioritize the associated performance of each 

model. Amongst all the monovariable learning models listed 

in literature the model of Wright (1936) was proven to be the 

best one to fit the collected data of electric motors 

manufacturing. The model of Wright (1936) can be used 

efficiently to represent the organizational learning of the firm 

relying on the aggregated data. As a future work, the best 

model will be used for the capacity planning. Moreover, the 

factors affect the development of organizational learning can 

be investigated to introduce the principal causes. 
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